BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ 2014;37:2722-37. [PMID: 24716850 DOI: 10.1111/pce.12344] [Cited by in Crossref: 65] [Cited by in F6Publishing: 50] [Article Influence: 8.1] [Reference Citation Analysis]
Number Citing Articles
1 Spoelhof JP, Soltis PS, Soltis DE. Pure polyploidy: Closing the gaps in autopolyploid research: Pure polyploidy. Jnl of Sytematics Evolution 2017;55:340-52. [DOI: 10.1111/jse.12253] [Cited by in Crossref: 77] [Cited by in F6Publishing: 29] [Article Influence: 15.4] [Reference Citation Analysis]
2 Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 2021;33:11-26. [PMID: 33751096 DOI: 10.1093/plcell/koaa015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
3 del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot 2015;66:6991-7003. [PMID: 26417017 DOI: 10.1093/jxb/erv432] [Cited by in Crossref: 86] [Cited by in F6Publishing: 61] [Article Influence: 12.3] [Reference Citation Analysis]
4 Tan F, Tu H, Wang R, Wu X, Xie K, Chen J, Zhang H, Xu J, Guo W. Metabolic adaptation following genome doubling in citrus doubled diploids revealed by non-targeted metabolomics. Metabolomics 2017;13. [DOI: 10.1007/s11306-017-1276-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 4.4] [Reference Citation Analysis]
5 Cara N, Piccoli PN, Bolcato L, Marfil CF, Masuelli RW. Variation in the amino acids, volatile organic compounds and terpenes profiles in induced polyploids and in Solanum tuberosum varieties. Phytochemistry 2020;180:112516. [PMID: 32949937 DOI: 10.1016/j.phytochem.2020.112516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wang L, Zhang Q, Cao Q, Gao X, Jia G. An efficient method for inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell Tiss Organ Cult 2020;141:499-510. [DOI: 10.1007/s11240-020-01807-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Jiang J, Yuan Y, Zhu S, Fang T, Ran L, Wu J, Wang Y. Comparison of physiological and methylational changes in resynthesized Brassica napus and diploid progenitors under drought stress. Acta Physiol Plant 2019;41. [DOI: 10.1007/s11738-019-2837-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mattingly KZ, Hovick SM. Autopolyploids of Arabidopsis thaliana are more phenotypically plastic than their diploid progenitors. Ann Bot 2021:mcab081. [PMID: 34175922 DOI: 10.1093/aob/mcab081] [Reference Citation Analysis]
9 Fan G, Wang L, Deng M, Niu S, Zhao Z, Xu E, Cao X, Zhang X. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing. Mol Genet Genomics 2015;290:1627-38. [PMID: 25773315 DOI: 10.1007/s00438-015-1023-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
10 Ulum FB, Costa Castro C, Hörandl E. Ploidy-Dependent Effects of Light Stress on the Mode of Reproduction in the Ranunculus auricomus Complex (Ranunculaceae). Front Plant Sci 2020;11:104. [PMID: 32153611 DOI: 10.3389/fpls.2020.00104] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
11 Scarrow M, Wang Y, Sun G. Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biol Rev Camb Philos Soc 2021;96:394-407. [PMID: 33098261 DOI: 10.1111/brv.12661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Pacey EK, Maherali H, Husband BC. The influence of experimentally induced polyploidy on the relationships between endopolyploidy and plant function in Arabidopsis thaliana. Ecol Evol 2020;10:198-216. [PMID: 31988723 DOI: 10.1002/ece3.5886] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
13 Wang L, Cao S, Wang P, Lu K, Song Q, Zhao FJ, Chen ZJ. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc Natl Acad Sci U S A 2021;118:e2023981118. [PMID: 33771925 DOI: 10.1073/pnas.2023981118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
14 Baduel P, Bray S, Vallejo-marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018;6:117. [DOI: 10.3389/fevo.2018.00117] [Cited by in Crossref: 49] [Cited by in F6Publishing: 10] [Article Influence: 12.3] [Reference Citation Analysis]
15 Wang LJ, Gao X, Jia GX. Stomata and ROS changes during Botrytis elliptica infection in diploid and tetraploid Lilium rosthornii Diels. Plant Physiol Biochem 2021;167:366-75. [PMID: 34404007 DOI: 10.1016/j.plaphy.2021.08.008] [Reference Citation Analysis]
16 Bomblies K. When everything changes at once: finding a new normal after genome duplication. Proc Biol Sci 2020;287:20202154. [PMID: 33203329 DOI: 10.1098/rspb.2020.2154] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Liu H, Sun H, Bao L, Han S, Hui T, Zhang R, Zhang M, Su C, Qian Y, Jiao F. Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry (Morus Alba L.) Trees Against Drought. Front Plant Sci 2021;12:720452. [PMID: 34691101 DOI: 10.3389/fpls.2021.720452] [Reference Citation Analysis]
18 Lourkisti R, Froelicher Y, Morillon R, Berti L, Santini J. Enhanced Photosynthetic Capacity, Osmotic Adjustment and Antioxidant Defenses Contribute to Improve Tolerance to Moderate Water Deficit and Recovery of Triploid Citrus Genotypes. Antioxidants 2022;11:562. [DOI: 10.3390/antiox11030562] [Reference Citation Analysis]
19 Tan FQ, Tu H, Liang WJ, Long JM, Wu XM, Zhang HY, Guo WW. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol 2015;15:89. [PMID: 25848687 DOI: 10.1186/s12870-015-0450-4] [Cited by in Crossref: 78] [Cited by in F6Publishing: 48] [Article Influence: 11.1] [Reference Citation Analysis]
20 Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun 2019;10:5218. [PMID: 31740675 DOI: 10.1038/s41467-019-13159-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
21 Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. Front Plant Sci 2020;11:939. [PMID: 32670332 DOI: 10.3389/fpls.2020.00939] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Martínez LM, Fernández-Ocaña A, Rey PJ, Salido T, Amil-Ruiz F, Manzaneda AJ. Variation in functional responses to water stress and differentiation between natural allopolyploid populations in the Brachypodium distachyon species complex. Ann Bot 2018;121:1369-82. [PMID: 29893879 DOI: 10.1093/aob/mcy037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
23 Zhang J, Tian Y, Yan L, Zhang G, Wang X, Zeng Y, Zhang J, Ma X, Tan Y, Long N, Wang Y, Ma Y, He Y, Xue Y, Hao S, Yang S, Wang W, Zhang L, Dong Y, Chen W, Sheng J. Genome of Plant Maca ( Lepidium meyenii ) Illuminates Genomic Basis for High-Altitude Adaptation in the Central Andes. Molecular Plant 2016;9:1066-77. [DOI: 10.1016/j.molp.2016.04.016] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
24 Zhang F, Xue H, Lu X, Zhang B, Wang F, Ma Y, Zhang Z. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 2015;29:1773-80. [DOI: 10.1007/s00468-015-1258-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 4] [Article Influence: 3.4] [Reference Citation Analysis]
25 Liu S, Yang Y, Wei F, Duan J, Braynen J, Tian B, Cao G, Shi G, Yuan J. Autopolyploidy leads to rapid genomic changes in Arabidopsis thaliana. Theory Biosci 2017;136:199-206. [PMID: 28612184 DOI: 10.1007/s12064-017-0252-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Lourkisti R, Froelicher Y, Herbette S, Morillon R, Tomi F, Gibernau M, Giannettini J, Berti L, Santini J. Triploid Citrus Genotypes Have a Better Tolerance to Natural Chilling Conditions of Photosynthetic Capacities and Specific Leaf Volatile Organic Compounds. Front Plant Sci 2020;11:330. [PMID: 32391024 DOI: 10.3389/fpls.2020.00330] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
27 Robinson DO, Coate JE, Singh A, Hong L, Bush M, Doyle JJ, Roeder AHK. Ploidy and Size at Multiple Scales in the Arabidopsis Sepal. Plant Cell 2018;30:2308-29. [PMID: 30143539 DOI: 10.1105/tpc.18.00344] [Cited by in Crossref: 66] [Cited by in F6Publishing: 48] [Article Influence: 16.5] [Reference Citation Analysis]
28 Behling AH, Shepherd LD, Cox MP. The importance and prevalence of allopolyploidy in Aotearoa New Zealand. Journal of the Royal Society of New Zealand 2020;50:189-210. [DOI: 10.1080/03036758.2019.1676797] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 2015;15:152. [PMID: 26092253 DOI: 10.1186/s12870-015-0511-8] [Cited by in Crossref: 181] [Cited by in F6Publishing: 145] [Article Influence: 25.9] [Reference Citation Analysis]
30 Parra-Nunez P, Pradillo M, Santos JL. How to Perform an Accurate Analysis of Metaphase I Chromosome Configurations in Autopolyploids of Arabidopsis thaliana. Methods Mol Biol 2020;2061:25-36. [PMID: 31583650 DOI: 10.1007/978-1-4939-9818-0_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Ruiz M, Oustric J, Santini J, Morillon R. Synthetic Polyploidy in Grafted Crops. Front Plant Sci 2020;11:540894. [PMID: 33224156 DOI: 10.3389/fpls.2020.540894] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
32 Zhu Y, Tang W, Tang X, Wang L, Li W, Zhang Q, Li M, Fang C, Liu Y, Wang S. Transcriptome analysis of colchicine-induced tetraploid Kiwifruit leaves with increased biomass and cell size. Plant Biotechnol Rep 2021;15:673-82. [DOI: 10.1007/s11816-021-00704-2] [Reference Citation Analysis]
33 Giraud D, Lima O, Rousseau-Gueutin M, Salmon A, Aïnouche M. Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae). Front Genet 2021;12:589160. [PMID: 33841492 DOI: 10.3389/fgene.2021.589160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Zhang C, Wang H, Xu Y, Zhang S, Wang J, Hu B, Hou X, Li Y, Liu T. Enhanced Relative Electron Transport Rate Contributes to Increased Photosynthetic Capacity in Autotetraploid Pak Choi. Plant Cell Physiol 2020;61:761-74. [PMID: 31904850 DOI: 10.1093/pcp/pcz238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
35 Visger CJ, Germain-Aubrey CC, Patel M, Sessa EB, Soltis PS, Soltis DE. Niche divergence between diploid and autotetraploid Tolmiea. Am J Bot 2016;103:1396-406. [PMID: 27507838 DOI: 10.3732/ajb.1600130] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 6.7] [Reference Citation Analysis]
36 Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. Am J Bot 2016;103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Cited by in Crossref: 167] [Cited by in F6Publishing: 119] [Article Influence: 27.8] [Reference Citation Analysis]
37 Narukawa H, Yokoyama R, Nishitani K. Possible pathways linking ploidy level to cell elongation and cuticular function in hypocotyls of dark-grown Arabidopsis seedlings. Plant Signal Behav 2016;11:e1118597. [PMID: 26618780 DOI: 10.1080/15592324.2015.1118597] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
38 Li M, Xu G, Xia X, Wang M, Yin X, Zhang B, Zhang X, Cui Y. Deciphering the physiological and molecular mechanisms for copper tolerance in autotetraploid Arabidopsis. Plant Cell Rep 2017;36:1585-97. [PMID: 28685360 DOI: 10.1007/s00299-017-2176-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
39 Skalska A, Wolny E, Beckmann M, Doonan JH, Hasterok R, Mur LAJ. Allotetraploidization in Brachypodium May Have Led to the Dominance of One Parent's Metabolome in Germinating Seeds. Cells 2021;10:828. [PMID: 33917018 DOI: 10.3390/cells10040828] [Reference Citation Analysis]
40 Xue H, Zhang B, Tian J, Chen M, Zhang Y, Zhang Z, Ma Y. Comparison of the morphology, growth and development of diploid and autotetraploid ‘Hanfu’ apple trees. Scientia Horticulturae 2017;225:277-85. [DOI: 10.1016/j.scienta.2017.06.059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 4.2] [Reference Citation Analysis]
41 Monda K, Araki H, Kuhara S, Ishigaki G, Akashi R, Negi J, Kojima M, Sakakibara H, Takahashi S, Hashimoto-Sugimoto M, Goto N, Iba K. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture. Plant Physiol 2016;170:1435-44. [PMID: 26754665 DOI: 10.1104/pp.15.01450] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
42 Xiao L, Shang XH, Cao S, Xie XY, Zeng WD, Lu LY, Chen SB, Yan HB. Comparative physiology and transcriptome analysis allows for identification of lncRNAs imparting tolerance to drought stress in autotetraploid cassava. BMC Genomics 2019;20:514. [PMID: 31226927 DOI: 10.1186/s12864-019-5895-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
43 Fasano C, Diretto G, Aversano R, D'Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol 2016;210:1382-94. [PMID: 26915816 DOI: 10.1111/nph.13878] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
44 Garcia-Lozano M, Natarajan P, Levi A, Katam R, Lopez-Ortiz C, Nimmakayala P, Reddy UK. Altered chromatin conformation and transcriptional regulation in watermelon following genome doubling. Plant J 2021;106:588-600. [PMID: 33788333 DOI: 10.1111/tpj.15256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Xu X, Wang S, Han Y, Wang Y, Xu P, Chen C, Zhang G. Comparative Analysis of Transcriptomes of Diploid and Tetraploid Miscanthus lutarioriparius under Drought Stress. Genes 2022;13:873. [DOI: 10.3390/genes13050873] [Reference Citation Analysis]
46 De la Rosa L, Zambrana E, Ramirez-Parra E. Molecular bases for drought tolerance in common vetch: designing new molecular breeding tools. BMC Plant Biol 2020;20:71. [PMID: 32054459 DOI: 10.1186/s12870-020-2267-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Ciska M, Hikida R, Masuda K, Moreno Díaz de la Espina S. Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. J Exp Bot 2019;70:2651-64. [PMID: 30828723 DOI: 10.1093/jxb/erz102] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
48 Faralli M, Williams K, Corke F, Li M, Doonan JH, Varotto C. Interspecific and intraspecific phenotypic diversity for drought adaptation in bioenergy Arundo species. Glob Change Biol Bioenergy 2021;13:753-69. [PMID: 33777185 DOI: 10.1111/gcbb.12810] [Reference Citation Analysis]
49 Gillard GB, Grønvold L, Røsæg LL, Holen MM, Monsen Ø, Koop BF, Rondeau EB, Gundappa MK, Mendoza J, Macqueen DJ, Rohlfs RV, Sandve SR, Hvidsten TR. Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biol 2021;22:103. [PMID: 33849620 DOI: 10.1186/s13059-021-02323-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
50 Long YL, Qiao F, Jiang XF, Cong HQ, Sun ML, Xu ZJ. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile. Braz J Biol 2019;79:180-90. [DOI: 10.1590/1519-6984.174475] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Corneillie S, De Storme N, Van Acker R, Fangel JU, De Bruyne M, De Rycke R, Geelen D, Willats WGT, Vanholme B, Boerjan W. Polyploidy Affects Plant Growth and Alters Cell Wall Composition. Plant Physiol 2019;179:74-87. [PMID: 30301776 DOI: 10.1104/pp.18.00967] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
52 Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. Trends Plant Sci 2021:S1360-1385(21)00143-6. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Reference Citation Analysis]
53 [DOI: 10.1101/2020.07.20.212316] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Liu B, Sun G. microRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor. Plant J 2017;91:57-69. [PMID: 28370696 DOI: 10.1111/tpj.13546] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
55 Visger CJ, Wong GK, Zhang Y, Soltis PS, Soltis DE. Divergent gene expression levels between diploid and autotetraploid Tolmiea relative to the total transcriptome, the cell, and biomass. Am J Bot 2019;106:280-91. [PMID: 30779448 DOI: 10.1002/ajb2.1239] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
56 Liu Y, Yu Y, Sun J, Cao Q, Tang Z, Liu M, Xu T, Ma D, Li Z, Sun J. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. J Exp Bot 2019;70:1389-405. [PMID: 30689932 DOI: 10.1093/jxb/ery461] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]