BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rahimnejad S, Lee S, Park H, Choi J. Effects of Dietary Inclusion of Chlorella vulgaris on Growth, Blood Biochemical Parameters, and Antioxidant Enzyme Activity in Olive Flounder, Paralichthys olivaceus: DIETARY CHLORELLA MEAL FOR OLIVE FLOUNDER. J World Aquacult Soc 2017;48:103-12. [DOI: 10.1111/jwas.12320] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Carneiro WF, Castro TFD, Orlando TM, Meurer F, Paula DADJ, Virote BDCR, Vianna ARDCB, Murgas LDS. Replacing fish meal by Chlorella sp. meal: Effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture 2020;528:735612. [DOI: 10.1016/j.aquaculture.2020.735612] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
2 Lee SY, Lee S, Kim YK. First de-novo transcriptome assembly, annotation and expression profiles of a freshwater snail (Semisulcospira coreana) fed with chlorella supplement. Marine Genomics 2019;47:100657. [DOI: 10.1016/j.margen.2019.01.006] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
3 Tharaka K, Gunathilaka BE, Veille A, Kim M, Shin J, Lim H, Jeong J, Meallet V, Lee K. Algae-clay powder (sea lettuce, Ulva lactuca and red algae, Solieria chordalis in exfoliated micronized montmorillonite) supplementation in a fish meal-reduced diet for olive flounder (Paralichthys olivaceus). Aquaculture Reports 2020;18:100498. [DOI: 10.1016/j.aqrep.2020.100498] [Reference Citation Analysis]
4 Sagaram US, Gaikwad MS, Nandru R, Dasgupta S. Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiol Lett 2021;368:fnab071. [PMID: 34113989 DOI: 10.1093/femsle/fnab071] [Reference Citation Analysis]
5 Safari O, Paolucci M, Motlagh HA. Dietary supplementation of Chlorella vulgaris improved growth performance, immunity, intestinal microbiota and stress resistance of juvenile narrow clawed crayfish, Pontastacus leptodactylus Eschscholtz, 1823. Aquaculture 2022;554:738138. [DOI: 10.1016/j.aquaculture.2022.738138] [Reference Citation Analysis]
6 Ibrahim IA, Shalaby AA, Abd Elaziz RT, Bahr HI. Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis with regard to androgen receptor expression in rats. Environ Sci Pollut Res Int 2021;28:39126-38. [PMID: 33754266 DOI: 10.1007/s11356-021-13411-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Abdel-tawwab M, Mousa MA, Mamoon A, Abdelghany MF, Abdel-hamid EA, Abdel-razek N, Ali FS, Shady SH, Gewida AG. Dietary Chlorella vulgaris modulates the performance, antioxidant capacity, innate immunity, and disease resistance capability of Nile tilapia fingerlings fed on plant-based diets. Animal Feed Science and Technology 2022;283:115181. [DOI: 10.1016/j.anifeedsci.2021.115181] [Reference Citation Analysis]
8 Sharma S, Shah E, Davla D, Dixit G, Patel A, Kumar AK. Effect of microalga-based diet on oxidative stress enzymes of African catfish, Clarias gariepinus. Int Aquat Res 2019;11:377-87. [DOI: 10.1007/s40071-019-00245-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
9 Tibbetts SM, Mann J, Dumas A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture 2017;481:25-39. [DOI: 10.1016/j.aquaculture.2017.08.018] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 7.4] [Reference Citation Analysis]
10 Abdel-latif HM, El-ashram S, Yilmaz S, Naiel MA, Abdul Kari Z, Hamid NKA, Dawood MA, Nowosad J, Kucharczyk D. The effectiveness of Arthrospira platensis and microalgae in relieving stressful conditions affecting finfish and shellfish species: An overview. Aquaculture Reports 2022;24:101135. [DOI: 10.1016/j.aqrep.2022.101135] [Reference Citation Analysis]
11 Barnharst T, Rajendran A, Hu B. Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm. International Biodeterioration & Biodegradation 2018;126:131-42. [DOI: 10.1016/j.ibiod.2017.10.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
12 Zhang Y, Kendall A. Consequential analysis of algal biofuels: Benefits to ocean resources. Journal of Cleaner Production 2019;231:35-42. [DOI: 10.1016/j.jclepro.2019.05.057] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
13 Batista S, Pereira R, Oliveira B, Baião LF, Jessen F, Tulli F, Messina M, Silva JL, Abreu H, Valente LMP. Exploring the potential of seaweed Gracilaria gracilis and microalga Nannochloropsis oceanica, single or blended, as natural dietary ingredients for European seabass Dicentrarchus labrax. J Appl Phycol 2020;32:2041-59. [DOI: 10.1007/s10811-020-02118-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
14 Abdelhamid FM, Elshopakey GE, Aziza AE. Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020;96:213-22. [PMID: 31821844 DOI: 10.1016/j.fsi.2019.12.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
15 El‐habashi N, Fadl SE, Farag HF, Gad DM, Elsadany AY, El Gohary MS. Effect of using Spirulina and Chlorella as feed additives for elevating immunity status of Nile tilapia experimentally infected with Aeromonas hydrophila. Aquac Res 2019;50:2769-81. [DOI: 10.1111/are.14229] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
16 Pakravan S, Akbarzadeh A, Sajjadi M, Hajimoradloo A, Noori F. Chlorella vulgaris meal improved growth performance, digestive enzyme activities, fatty acid composition and tolerance of hypoxia and ammonia stress in juvenile Pacific white shrimp Litopenaeus vannamei. Aquacult Nutr 2018;24:594-604. [DOI: 10.1111/anu.12594] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Huang C, Feng L, Liu X, Jiang W, Wu P, Liu Y, Jiang J, Kuang S, Tang L, Zhou X. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: Oxidative damage, apoptosis and tight junctions disruption. Toxicon 2020;174:32-42. [DOI: 10.1016/j.toxicon.2019.12.151] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
18 Gunathilaka BE, Veille A, Tharaka K, Shin J, Shin J, Jeong J, Meallet V, Lee K. Evaluation of marine algal ( Ulva spp./ Solieria spp.) extracts combined with organic acids in diets for olive flounder ( Paralichthys olivaceus ). Aquaculture Research 2021;52:3270-9. [DOI: 10.1111/are.15172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Chen F, Leng Y, Lu Q, Zhou W. The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Research 2021;60:102541. [DOI: 10.1016/j.algal.2021.102541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Rahimnejad S, Hu S, Song K, Wang L, Lu K, Wu R, Zhang C. Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2019;510:150-9. [DOI: 10.1016/j.aquaculture.2019.05.054] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
21 Galal AAA, Reda RM, Abdel-Rahman Mohamed A. Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. Fish Shellfish Immunol 2018;77:445-56. [PMID: 29626668 DOI: 10.1016/j.fsi.2018.04.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]