BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qian Y, Han Q, Zhao X, Song J, Cheng Y, Fang Z, Ouyang Y, Yuan WE, Fan C. 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration. J Pineal Res 2018;65:e12516. [PMID: 29935084 DOI: 10.1111/jpi.12516] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Visser ZB, Verma SK, Rainey JK, Frampton JP. Loading and Release of Quercetin from Contact-Drawn Polyvinyl Alcohol Fiber Scaffolds. ACS Pharmacol Transl Sci 2022. [DOI: 10.1021/acsptsci.2c00191] [Reference Citation Analysis]
2 Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022;10:999322. [DOI: 10.3389/fcell.2022.999322] [Reference Citation Analysis]
3 Li X, Jiang H, He N, Yuan W, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. Cyborg and Bionic Systems 2022;2022:1-20. [DOI: 10.34133/2022/9892526] [Reference Citation Analysis]
4 Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics 2022;12:4993-5014. [PMID: 35836812 DOI: 10.7150/thno.74571] [Reference Citation Analysis]
5 Choi SY, Kim JM, Jung J, Park DC, Yoo MC, Kim SS, Kim SH, Yeo SG. Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice. Biomedicines 2022;10:1678. [DOI: 10.3390/biomedicines10071678] [Reference Citation Analysis]
6 Zhang Y, Liu T, Yang H, He F, Zhu X. Melatonin: A novel candidate for the treatment of osteoarthritis. Ageing Res Rev 2022;78:101635. [PMID: 35483626 DOI: 10.1016/j.arr.2022.101635] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022;10:812340. [DOI: 10.3389/fbioe.2022.812340] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Costăchescu B, Niculescu AG, Dabija MG, Teleanu RI, Grumezescu AM, Eva L. Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci 2022;23:4552. [PMID: 35562941 DOI: 10.3390/ijms23094552] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jin Y, Zhang W, Zhang Y, Yang Y, Fang Z, Song J, Qian Y, Yuan WE. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv 2022;135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yongguang L, Xiaowei W, Huichao Y, Yanxiang Z. Gastrodin promotes the regeneration of peripheral nerves by regulating miR-497/BDNF axis. BMC Complement Med Ther 2022;22:45. [PMID: 35177060 DOI: 10.1186/s12906-021-03483-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Yao Z, Qian Y, Jin Y, Wang S, Li J, Yuan WE, Fan C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr Polym 2022;277:118865. [PMID: 34893270 DOI: 10.1016/j.carbpol.2021.118865] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
12 Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan W, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Rizwana N, Agarwal V, Nune M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants 2022;11:72. [DOI: 10.3390/antiox11010072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Chen T, Jiang H, Li X, Zhang D, Zhu Y, Chen X, Yang H, Shen F, Xia H, Zheng J, Xie K. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol 2021;197:103-10. [PMID: 34968534 DOI: 10.1016/j.ijbiomac.2021.12.074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Huang Q, Cai Y, Yang X, Li W, Pu H, Liu Z, Liu H, Tamtaji M, Xu F, Sheng L, Kim T, Zhao S, Sun D, Qin J, Luo Z, Lu X. Graphene foam/hydrogel scaffolds for regeneration of peripheral nerve using ADSCs in a diabetic mouse model. Nano Res . [DOI: 10.1007/s12274-021-3961-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today 2021;51:165-87. [DOI: 10.1016/j.mattod.2021.09.014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 32.0] [Reference Citation Analysis]
17 Zhan L, Deng J, Ke Q, Li X, Ouyang Y, Huang C, Liu X, Qian Y. Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00116-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 19.0] [Reference Citation Analysis]
18 Liu YJ, Chen XF, Zhou LP, Rao F, Zhang DY, Wang YH. A nerve conduit filled with Wnt5a-loaded fibrin hydrogels promotes peripheral nerve regeneration. CNS Neurosci Ther 2021. [PMID: 34729936 DOI: 10.1111/cns.13752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. Burns Trauma 2021;9:tkab011. [PMID: 34212061 DOI: 10.1093/burnst/tkab011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
20 Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021;16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
21 Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021;8:rbab032. [PMID: 34188955 DOI: 10.1093/rb/rbab032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
22 Yao Z, Li J, Xiong H, Cui H, Ning J, Wang S, Ouyang X, Qian Y, Fan C. MicroRNA engineered umbilical cord stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J Nanobiotechnology 2021;19:169. [PMID: 34090456 DOI: 10.1186/s12951-021-00906-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
23 Qian Y, Wang X, Song J, Chen W, Chen S, Jin Y, Ouyang Y, Yuan WE, Fan C. Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. NPJ Regen Med 2021;6:31. [PMID: 34078912 DOI: 10.1038/s41536-021-00142-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 31.0] [Reference Citation Analysis]
24 Kaczmarek-Szczepańska B, Ostrowska J, Kozłowska J, Szota Z, Brożyna AA, Dreier R, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K. Evaluation of Polymeric Matrix Loaded with Melatonin for Wound Dressing. Int J Mol Sci 2021;22:5658. [PMID: 34073402 DOI: 10.3390/ijms22115658] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Tavares LA, Rezende AA, Santos JL, Estevam CS, Silva AMO, Schneider JK, Cunha JLS, Droppa-Almeida D, Correia-Neto IJ, Cardoso JC, Severino P, Souto EB, de Albuquerque-Júnior RLC. Cymbopogon winterianus Essential Oil Attenuates Bleomycin-Induced Pulmonary Fibrosis in a Murine Model. Pharmaceutics 2021;13:679. [PMID: 34065064 DOI: 10.3390/pharmaceutics13050679] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Qian Y, Xu Y, Yan Z, Jin Y, Chen X, Yuan W, Fan C. Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 2021;83:105779. [DOI: 10.1016/j.nanoen.2021.105779] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 30.0] [Reference Citation Analysis]
27 Huang L, Yang X, Deng L, Ying D, Lu A, Zhang L, Yu A, Duan B. Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS Appl Mater Interfaces 2021;13:16106-17. [PMID: 33787211 DOI: 10.1021/acsami.1c01904] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
28 Shen D, Ju L, Zhou F, Yu M, Ma H, Zhang Y, Liu T, Xiao Y, Wang X, Qian K. The inhibitory effect of melatonin on human prostate cancer. Cell Commun Signal 2021;19:34. [PMID: 33722247 DOI: 10.1186/s12964-021-00723-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
29 Luo Y, Xue F, Liu K, Li B, Fu C, Ding J. Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Materials & Design 2021;201:109484. [DOI: 10.1016/j.matdes.2021.109484] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
30 Qian J, Lin Z, Liu Y, Wang Z, Lin Y, Gong C, Ruan R, Zhang J, Yang H. Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine 2021;2:260-79. [DOI: 10.1016/j.smaim.2021.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
31 Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, Li R, Tao J, Li X, Liu X, Gou M. A 3D-Printed Self-Adhesive Bandage with Drug Release for Peripheral Nerve Repair. Adv Sci (Weinh) 2020;7:2002601. [PMID: 33304766 DOI: 10.1002/advs.202002601] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
32 Liu J, Zhang B, Li L, Yin J, Fu J. Additive-lathe 3D bioprinting of bilayered nerve conduits incorporated with supportive cells. Bioact Mater 2021;6:219-29. [PMID: 32913930 DOI: 10.1016/j.bioactmat.2020.08.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
33 Chen X, Ge X, Qian Y, Tang H, Song J, Qu X, Yue B, Yuan W. Electrospinning Multilayered Scaffolds Loaded with Melatonin and Fe 3 O 4 Magnetic Nanoparticles for Peripheral Nerve Regeneration. Adv Funct Mater 2020;30:2004537. [DOI: 10.1002/adfm.202004537] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
34 Chen T, Li Y, Ni W, Tang B, Wei Y, Li J, Yu J, Zhang L, Gao J, Zhou J, Zhang W, Xu H, Hu J. Human Neural Stem Cell-Conditioned Medium Inhibits Inflammation in Macrophages Via Sirt-1 Signaling Pathway In Vitro and Promotes Sciatic Nerve Injury Recovery in Rats. Stem Cells Dev 2020;29:1084-95. [PMID: 32560594 DOI: 10.1089/scd.2020.0020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zhang J, Zhang Y, Chen L, Rao Z, Sun Y. Ulinastatin Promotes Regeneration of Peripheral Nerves After Sciatic Nerve Injury by Targeting let-7 microRNAs and Enhancing NGF Expression. Drug Des Devel Ther 2020;14:2695-705. [PMID: 32753848 DOI: 10.2147/DDDT.S255158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Xia L, Sun C, Zhu H, Zhai M, Zhang L, Jiang L, Hou P, Li J, Li K, Liu Z, Li B, Wang X, Yi W, Liang H, Jin Z, Yang J, Yi D, Liu J, Yu S, Duan W. Melatonin protects against thoracic aortic aneurysm and dissection through SIRT1‐dependent regulation of oxidative stress and vascular smooth muscle cell loss. J Pineal Res 2020;69. [DOI: 10.1111/jpi.12661] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
37 Zhang X, Qu W, Li D, Shi K, Li R, Han Y, Jin E, Ding J, Chen X. Functional Polymer‐Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Adv Mater Interfaces 2020;7:2000225. [DOI: 10.1002/admi.202000225] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
38 Xu Y, Chen X, Qian Y, Tang H, Song J, Qu X, Yue B, Yuan W. Melatonin‐Based and Biomimetic Scaffold as Muscle–ECM Implant for Guiding Myogenic Differentiation of Volumetric Muscle Loss. Adv Funct Mater 2020;30:2002378. [DOI: 10.1002/adfm.202002378] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
39 Lumsden SC, Clarkson AN, Cakmak YO. Neuromodulation of the Pineal Gland via Electrical Stimulation of Its Sympathetic Innervation Pathway. Front Neurosci 2020;14:264. [PMID: 32300290 DOI: 10.3389/fnins.2020.00264] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
40 Kaleli HN, Ozer E, Kaya VO, Kutlu O. Protein Kinase C Isozymes and Autophagy during Neurodegenerative Disease Progression. Cells 2020;9:E553. [PMID: 32120776 DOI: 10.3390/cells9030553] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
41 Fang X, Guo H, Zhang W, Fang H, Li Q, Bai S, Zhang P. Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration. J Mater Chem B 2020;8:10593-601. [DOI: 10.1039/d0tb00779j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
42 Qian Y, Yao Z, Wang X, Cheng Y, Fang Z, Yuan WE, Fan C, Ouyang Y. (-)-Epigallocatechin gallate-loaded polycaprolactone scaffolds fabricated using a 3D integrated moulding method alleviate immune stress and induce neurogenesis. Cell Prolif 2020;53:e12730. [PMID: 31746040 DOI: 10.1111/cpr.12730] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
43 Qiu J, Yang X, Wang L, Zhang Q, Ma W, Huang Z, Bao Y, Zhong L, Sun H, Ding F. Isoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. Ann Transl Med 2019;7:680. [PMID: 31930081 DOI: 10.21037/atm.2019.11.18] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
44 Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020;40:25-51. [PMID: 31435851 DOI: 10.1007/s10571-019-00724-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
45 Qian Y, Cheng Y, Ouyang Y, Yuan W, Fan C. Multilayered spraying and gradient dotting of nanodiamond–polycaprolactone guidance channels for restoration of immune homeostasis. NPG Asia Mater 2019;11. [DOI: 10.1038/s41427-019-0136-8] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
46 Zhang Y, Liu Z, Zhang W, Wu Q, Zhang Y, Liu Y, Guan Y, Chen X. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J Neurosci Res 2019;97:733-43. [PMID: 31006904 DOI: 10.1002/jnr.24409] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
47 Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Adib A, Darband SG, Sadighparvar S, Mihanfar A, Majidinia M, Yousefi B. Melatonin-mediated regulation of autophagy: Making sense of double-edged sword in cancer. J Cell Physiol 2019;234:17011-22. [PMID: 30859580 DOI: 10.1002/jcp.28435] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
48 Qian Y, Han Q, Zhao X, Li H, Yuan WE, Fan C. Asymmetrical 3D Nanoceria Channel for Severe Neurological Defect Regeneration. iScience 2019;12:216-31. [PMID: 30703735 DOI: 10.1016/j.isci.2019.01.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
49 Alkhalili OA, Muñiz AJ, Hanks JE, Stebbins AW, Elzinga S, Topal T, Lahann J, Feldman EL, Brenner MJ. Scaffold for facial nerve reconstruction. Handbook of Tissue Engineering Scaffolds: Volume Two. Elsevier; 2019. pp. 95-121. [DOI: 10.1016/b978-0-08-102561-1.00004-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]