BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H2 O2 metabolism. J Integr Plant Biol 2019;61:803-16. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Cited by in Crossref: 16] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the Ubiquitin Proteasome System and Ubiquitin-Mediated Autophagy in Plants. Cells 2020;9:E2219. [PMID: 33019500 DOI: 10.3390/cells9102219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
2 Corpas FJ. Peroxisomes in higher plants: an example of metabolic adaptability. Botany Letters 2019;166:298-308. [DOI: 10.1080/23818107.2019.1619196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
3 Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H2 S and NO in sweet pepper (Capsicum annuum L.) fruits. Physiol Plant 2020;168:278-88. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
4 Surówka E, Latowski D, Dziurka M, Rys M, Maksymowicz A, Żur I, Olchawa-Pajor M, Desel C, Krzewska M, Miszalski Z. ROS-Scavengers, Osmoprotectants and Violaxanthin De-Epoxidation in Salt-Stressed Arabidopsis thaliana with Different Tocopherol Composition. Int J Mol Sci 2021;22:11370. [PMID: 34768798 DOI: 10.3390/ijms222111370] [Reference Citation Analysis]
5 Jbir Koubaa R, Ayadi M, Saidi MN, Charfeddine S, Gargouri-bouzid R, Nouri-ellouz O. Comprehensive Genome-Wide Analysis of the Catalase Enzyme Toolbox in Potato (Solanum tuberosum L.). Potato Res . [DOI: 10.1007/s11540-022-09554-z] [Reference Citation Analysis]
6 Gholizadeh F, Mirzaghaderi G. Genome-wide analysis of the polyamine oxidase gene family in wheat (Triticum aestivum L.) reveals involvement in temperature stress response. PLoS One 2020;15:e0236226. [PMID: 32866160 DOI: 10.1371/journal.pone.0236226] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Betti C, Della Rovere F, Piacentini D, Fattorini L, Falasca G, Altamura MM. Jasmonates, Ethylene and Brassinosteroids Control Adventitious and Lateral Rooting as Stress Avoidance Responses to Heavy Metals and Metalloids. Biomolecules 2021;11:77. [PMID: 33435585 DOI: 10.3390/biom11010077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. New Phytol 2020;225:1410-27. [PMID: 31442305 DOI: 10.1111/nph.16134] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
9 Benny J, Marra FP, Giovino A, Balan B, Caruso T, Martinelli F, Marchese A. Transcriptome Analysis of Pistacia vera Inflorescence Buds in Bearing and Non-Bearing Shoots Reveals the Molecular Mechanism Causing Premature Flower Bud Abscission. Genes (Basel) 2020;11:E851. [PMID: 32722492 DOI: 10.3390/genes11080851] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021;22:12970. [PMID: 34884769 DOI: 10.3390/ijms222312970] [Reference Citation Analysis]
11 Borek S, Stefaniak S, Śliwiński J, Garnczarska M, Pietrowska-Borek M. Autophagic Machinery of Plant Peroxisomes. Int J Mol Sci 2019;20:E4754. [PMID: 31557865 DOI: 10.3390/ijms20194754] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
12 Corpas FJ, González-gordo S, Cañas A, Palma JM, Brouquisse R. Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 2019;70:4391-404. [DOI: 10.1093/jxb/erz031] [Cited by in Crossref: 107] [Cited by in F6Publishing: 76] [Article Influence: 35.7] [Reference Citation Analysis]
13 Mukarram M, Khan MMA, Uddin M, Corpas FJ. Irradiated chitosan (ICH): an alternative tool to increase essential oil content in lemongrass (Cymbopogon flexuosus). Acta Physiol Plant 2022;44. [DOI: 10.1007/s11738-021-03335-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Fatima A, Husain T, Suhel M, Prasad SM, Singh VP. Implication of Nitric Oxide Under Salinity Stress: The Possible Interaction with Other Signaling Molecules. J Plant Growth Regul. [DOI: 10.1007/s00344-020-10255-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021;10:277. [PMID: 33670123 DOI: 10.3390/antiox10020277] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 18.0] [Reference Citation Analysis]
16 Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. Plant Physiol 2021:kiaa081. [PMID: 33793937 DOI: 10.1093/plphys/kiaa081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H2S targets. Redox Biol 2020;34:101525. [PMID: 32505768 DOI: 10.1016/j.redox.2020.101525] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 20.5] [Reference Citation Analysis]
18 Khan J, Malangisha GK, Ali A, Mahmoud A, Yang J, Zhang M, Hu Z. Nitric oxide alleviates lead toxicity by inhibiting lead translocation and regulating root growth in watermelon seedlings. Hortic Environ Biotechnol 2021;62:701-14. [DOI: 10.1007/s13580-021-00346-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Corpas FJ, Río LAD, Palma JM. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. Plants (Basel) 2019;8:E37. [PMID: 30744153 DOI: 10.3390/plants8020037] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
20 Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants (Basel) 2019;8:E641. [PMID: 31842380 DOI: 10.3390/antiox8120641] [Cited by in Crossref: 91] [Cited by in F6Publishing: 53] [Article Influence: 30.3] [Reference Citation Analysis]
21 Hashem AM, Moore S, Chen S, Hu C, Zhao Q, Elesawi IE, Feng Y, Topping JF, Liu J, Lindsey K, Chen C. Putrescine Depletion Affects Arabidopsis Root Meristem Size by Modulating Auxin and Cytokinin Signaling and ROS Accumulation. Int J Mol Sci 2021;22:4094. [PMID: 33920993 DOI: 10.3390/ijms22084094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Xiang C, Yang X, Peng D, Kang H, Liu M, Li W, Huang W, Liu S. Proteome-Wide Analyses Provide New Insights into the Compatible Interaction of Rice with the Root-Knot Nematode Meloidogyne graminicola. Int J Mol Sci 2020;21:E5640. [PMID: 32781661 DOI: 10.3390/ijms21165640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu L, Huang L, Sun C, Wang L, Jin C, Lin X. Cross-Talk between Hydrogen Peroxide and Nitric Oxide during Plant Development and Responses to Stress. J Agric Food Chem 2021;69:9485-97. [PMID: 34428901 DOI: 10.1021/acs.jafc.1c01605] [Reference Citation Analysis]
24 Quiles FA, Galvez-Valdivieso G, Guerrero-Casado J, Pineda M, Piedras P. Relationship between ureidic/amidic metabolism and antioxidant enzymatic activities in legume seedlings. Plant Physiol Biochem 2019;138:1-8. [PMID: 30825724 DOI: 10.1016/j.plaphy.2019.02.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
25 Mahjoubi Y, Rzigui T, Kharbech O, Mohamed SN, Abaza L, Chaoui A, Nouairi I, Djebali W. Exogenous nitric oxide alleviates manganese toxicity in bean plants by modulating photosynthesis in relation to leaf lipid composition. Protoplasma 2021. [PMID: 34651236 DOI: 10.1007/s00709-021-01713-2] [Reference Citation Analysis]
26 León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant Cell Environ 2020;43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
27 Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. Front Plant Sci 2019;10:561. [PMID: 31134113 DOI: 10.3389/fpls.2019.00561] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 16.3] [Reference Citation Analysis]
28 Mishchenko L, Nazarov T, Dunich A, Mishchenko I, Ryshchakova O, Motsnyi I, Dashchenko A, Bezkrovna L, Fanin Y, Molodchenkova O, Smertenko A. Impact of Wheat Streak Mosaic Virus on Peroxisome Proliferation, Redox Reactions, and Resistance Responses in Wheat. Int J Mol Sci 2021;22:10218. [PMID: 34638559 DOI: 10.3390/ijms221910218] [Reference Citation Analysis]
29 Xi Y, Hu W, Zhou Y, Liu X, Qian Y. Genome-Wide Identification and Functional Analysis of Polyamine Oxidase Genes in Maize Reveal Essential Roles in Abiotic Stress Tolerance. Front Plant Sci 2022;13:950064. [DOI: 10.3389/fpls.2022.950064] [Reference Citation Analysis]
30 Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, Romero LC, Shen J, Ge Z, Zhang Z, Shen W, Yuan X, Xie Y. Hydrogen sulfide, a signaling molecule in plant stress responses. J Integr Plant Biol 2021;63:146-60. [PMID: 33058490 DOI: 10.1111/jipb.13022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
31 Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants (Basel) 2020;9:E681. [PMID: 32751256 DOI: 10.3390/antiox9080681] [Cited by in Crossref: 173] [Cited by in F6Publishing: 99] [Article Influence: 86.5] [Reference Citation Analysis]
32 Corpas FJ, González-Gordo S, Palma JM. Plant Peroxisomes: A Factory of Reactive Species. Front Plant Sci 2020;11:853. [PMID: 32719691 DOI: 10.3389/fpls.2020.00853] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
33 Khan MSS, Islam F, Ye Y, Ashline M, Wang D, Zhao B, Fu ZQ, Chen J. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022;23:4272. [PMID: 35457090 DOI: 10.3390/ijms23084272] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Bellido-Pedraza CM, Calatrava V, Sanz-Luque E, Tejada-Jiménez M, Llamas Á, Plouviez M, Guieysse B, Fernández E, Galván A. Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. Plants (Basel) 2020;9:E903. [PMID: 32708782 DOI: 10.3390/plants9070903] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]