BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? J Fish Biol 2020;97:328-40. [DOI: 10.1111/jfb.14402] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Benítez S, Figueroa Á, Lagos NA, Silva AX, Duarte C, Vargas CA, Lardies MA, Cárdenas L. Differential gene expression analysis in the scallop Argopecten purpuratus exposed to altered pH and temperature conditions in an upwelling-influenced farming area. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2022. [DOI: 10.1016/j.cbd.2022.101046] [Reference Citation Analysis]
2 Ridgway MS, Bell AH, Lacombe NA, Mitchell KJ, Smith DA, Taylor CE, Middel TA. Thermal niche and habitat use by co-occurring lake trout (Salvelinus namaycush) and brook trout (S. fontinalis) in stratified lakes. Environ Biol Fish 2022. [DOI: 10.1007/s10641-022-01368-9] [Reference Citation Analysis]
3 Earhart ML, Blanchard TS, Harman AA, Schulte PM. Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World? The Biological Bulletin 2022. [DOI: 10.1086/722115] [Reference Citation Analysis]
4 Marić A, Špelić I, Radočaj T, Vidović Z, Kanjuh T, Vilizzi L, Piria M, Nikolić V, Škraba Jurlina D, Mrdak D, Simonović P. Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe). NB 2022;76:135-61. [DOI: 10.3897/neobiota.76.82964] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Vasdravanidis C, Alvanou MV, Lattos A, Papadopoulos DK, Chatzigeorgiou I, Ravani M, Liantas G, Georgoulis I, Feidantsis K, Ntinas GK, Giantsis IA. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals 2022;12:2523. [DOI: 10.3390/ani12192523] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. Environ Biol Fish. [DOI: 10.1007/s10641-022-01333-6] [Reference Citation Analysis]
7 Thoral E, Roussel D, Quispe L, Voituron Y, Teulier L. Absence of mitochondrial responses in muscles of zebrafish exposed to several heat waves. Comp Biochem Physiol A Mol Integr Physiol 2022;:111299. [PMID: 36031060 DOI: 10.1016/j.cbpa.2022.111299] [Reference Citation Analysis]
8 Chmura HE, Williams CT. A cross-taxonomic perspective on the integration of temperature cues in vertebrate seasonal neuroendocrine pathways. Hormones and Behavior 2022;144:105215. [DOI: 10.1016/j.yhbeh.2022.105215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Turriago JL, Tejedo M, Hoyos JM, Bernal MH. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. J Exp Zool Pt A 2022;337:746-759. [DOI: 10.1002/jez.2632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sabino MA, Bodin N, Govinden R, Arrisol R, Churlaud C, Pethybridge H, Bustamante P. The role of tropical small-scale fisheries in trace element delivery for a Small Island Developing State community, the Seychelles. Mar Pollut Bull 2022;181:113870. [PMID: 35835052 DOI: 10.1016/j.marpolbul.2022.113870] [Reference Citation Analysis]
11 Murray TS, Elston C, Parkinson MC, Filmalter JD, Cowley PD. A Decade of South Africa’s Acoustic Tracking Array Platform: An Example of a Successful Ocean Stewardship Programme. Front Mar Sci 2022;9:886554. [DOI: 10.3389/fmars.2022.886554] [Reference Citation Analysis]
12 Yang S, Xu W, Tan C, Li M, Li D, Zhang C, Feng L, Chen Q, Jiang J, Li Y, Du Z, Luo W, Li C, Gong Q, Huang X, Du X, Du J, Liu G, Wu J. Heat Stress Weakens the Skin Barrier Function in Sturgeon by Decreasing Mucus Secretion and Disrupting the Mucosal Microbiota. Front Microbiol 2022;13:860079. [PMID: 35558118 DOI: 10.3389/fmicb.2022.860079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Stewart TR, Vinson MR, Stockwell JD. Effects of warming winter embryo incubation temperatures on larval cisco (Coregonus artedi) survival, growth, and critical thermal maximum. Journal of Great Lakes Research 2022. [DOI: 10.1016/j.jglr.2022.04.013] [Reference Citation Analysis]
14 Dawson NJ, Millet C, Selman C, Metcalfe NB. Inter-individual variation in mitochondrial phosphorylation efficiency predicts growth rates in ectotherms at high temperatures. FASEB J 2022;36:e22333. [PMID: 35486025 DOI: 10.1096/fj.202101806RR] [Reference Citation Analysis]
15 O'sullivan AM, Devito KJ, D'orangeville L, Curry RA. The waterscape continuum concept: Rethinking boundaries in ecosystems. WIREs Water. [DOI: 10.1002/wat2.1598] [Reference Citation Analysis]
16 Iorizzo M, Albanese G, Letizia F, Testa B, Tremonte P, Vergalito F, Lombardi SJ, Succi M, Coppola R, Sorrentino E. Probiotic Potentiality from Versatile Lactiplantibacillus plantarum Strains as Resource to Enhance Freshwater Fish Health. Microorganisms 2022;10:463. [DOI: 10.3390/microorganisms10020463] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Árnason T, Smáradóttir H, Thorarensen H, Steinarsson A. Effects of Early Thermal Environment on Growth, Age at Maturity, and Sexual Size Dimorphism in Arctic Charr. JMSE 2022;10:167. [DOI: 10.3390/jmse10020167] [Reference Citation Analysis]
18 Adams OA, Zhang Y, Gilbert MH, Lawrence CS, Snow M, Farrell AP, Cooke S. An unusually high upper thermal acclimation potential for rainbow trout. Conservation Physiology 2022;10:coab101. [DOI: 10.1093/conphys/coab101] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
19 Martínez-silva MA, Vagner M, Senay C, Audet C, Hauser L. Using gene expression to identify the most suitable environmental conditions for growth and metabolism of juvenile deepwater redfish ( Sebastes mentella ) in the Estuary and the Gulf of St. Lawrence. ICES Journal of Marine Science 2022. [DOI: 10.1093/icesjms/fsab269] [Reference Citation Analysis]
20 Arevalo E, Maire A, Tétard S, Prévost E, Lange F, Marchand F, Josset Q, Drouineau H. Does global change increase the risk of maladaptation of Atlantic salmon migration through joint modifications of river temperature and discharge? Proc Biol Sci 2021;288:20211882. [PMID: 34875197 DOI: 10.1098/rspb.2021.1882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 O'sullivan AM, Corey E, Cunjak RA, Linnansaari T, Curry RA. Salmonid thermal habitat contraction in a hydrogeologically complex setting. Ecosphere 2021;12. [DOI: 10.1002/ecs2.3797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Fabrizio MC, Tuckey TD, Bever AJ, Macwilliams ML. The Extent of Seasonally Suitable Habitats May Limit Forage Fish Production in a Temperate Estuary. Front Mar Sci 2021;8. [DOI: 10.3389/fmars.2021.706666] [Reference Citation Analysis]
23 Lavender E, Fox CJ, Burrows MT. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. PLoS One 2021;16:e0258184. [PMID: 34606498 DOI: 10.1371/journal.pone.0258184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021;9:735487. [DOI: 10.3389/fevo.2021.735487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Brosset P, Cooke SJ, Schull Q, Trenkel VM, Soudant P, Lebigre C. Physiological biomarkers and fisheries management. Rev Fish Biol Fisheries 2021;31:797-819. [DOI: 10.1007/s11160-021-09677-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Islam MJ, Kunzmann A, Slater MJ. Responses of aquaculture fish to climate change‐induced extreme temperatures: A review. J World Aquac Soc. [DOI: 10.1111/jwas.12853] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
27 Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021;10:1205. [PMID: 34578236 DOI: 10.3390/pathogens10091205] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
28 Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021;10:1401. [PMID: 34573033 DOI: 10.3390/antiox10091401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Lankford TE, Targett TE. Ontogenetic Changes in Behavioral and Energetic Responses of Juvenile Atlantic Croaker to an Estuarine Salinity Gradient. Trans Am Fish Soc 2021;150:618-26. [DOI: 10.1002/tafs.10310] [Reference Citation Analysis]
30 McKenzie DJ, Geffroy B, Farrell AP. Effects of global warming on fishes and fisheries. J Fish Biol 2021;98:1489-92. [PMID: 34312853 DOI: 10.1111/jfb.14762] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 . What do warming waters mean for fish physiology and fisheries? J Fish Biol 2021;98:1493. [PMID: 34312858 DOI: 10.1111/jfb.14803] [Reference Citation Analysis]
32 Stewart TR, Mäkinen M, Goulon C, Guillard J, Marjomäki TJ, Lasne E, Karjalainen J, Stockwell JD. Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia 2021;848:4363-85. [DOI: 10.1007/s10750-021-04648-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Stewart TR, Vinson MR, Stockwell JD. Effects of warming winter embryo incubation temperatures on larval cisco (Coregonus artedi) survival, growth, and critical thermal maximum.. [DOI: 10.1101/2021.07.01.450800] [Reference Citation Analysis]
34 Little AG. Thyroid hormone regulation of thermal acclimation in ectotherms: Physiological mechanisms and ecoevolutionary implications. Mol Cell Endocrinol 2021;530:111285. [PMID: 33891994 DOI: 10.1016/j.mce.2021.111285] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
35 Giroux M, Schlenk D. The effects of temperature and salinity on the endocrinology in two life stages of juvenile rainbow/steelhead trout (Oncorhynchus mykiss). J Fish Biol 2021;99:513-23. [PMID: 33786821 DOI: 10.1111/jfb.14741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021;224:jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
37 Stewart TR, Mäkinen M, Goulon C, Guillard J, Marjomäki TJ, Lasne E, Karjalainen J, Stockwell JD. Influence of warming temperatures on coregonine embryogenesis within and among species.. [DOI: 10.1101/2021.02.13.431107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Morash AJ, Speers‐roesch B, Andrew S, Currie S. The physiological ups and downs of thermal variability in temperate freshwater ecosystems. J Fish Biol 2021;98:1524-35. [DOI: 10.1111/jfb.14655] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
39 Gerber L, Clow KA, Gamperl AK. Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon (Salmo salar). J Exp Biol 2021;224:jeb236257. [PMID: 33288533 DOI: 10.1242/jeb.236257] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
40 McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. J Fish Biol 2021;98:1536-55. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
41 Gerber L, Clow KA, Mark FC, Gamperl AK. Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial 'ceiling'. Sci Rep 2020;10:21636. [PMID: 33303856 DOI: 10.1038/s41598-020-78519-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
42 Deal CK, Volkoff H. The Role of the Thyroid Axis in Fish. Front Endocrinol (Lausanne) 2020;11:596585. [PMID: 33240222 DOI: 10.3389/fendo.2020.596585] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 16.0] [Reference Citation Analysis]