BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van den Berghe PV, Klomp LW. New developments in the regulation of intestinal copper absorption. Nutr Rev 2009;67:658-72. [PMID: 19906252 DOI: 10.1111/j.1753-4887.2009.00250.x] [Cited by in Crossref: 91] [Cited by in F6Publishing: 65] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Weiss KH, Zischka H. Copper Directly Affects Intestinal Lipid Turnover. Gastroenterology 2018;154:15-7. [DOI: 10.1053/j.gastro.2017.11.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
2 Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017;18:E1456. [PMID: 28684721 DOI: 10.3390/ijms18071456] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 6.4] [Reference Citation Analysis]
3 Kiela PR, Ghishan FK. Physiology of Intestinal Absorption and Secretion. Best Pract Res Clin Gastroenterol 2016;30:145-59. [PMID: 27086882 DOI: 10.1016/j.bpg.2016.02.007] [Cited by in Crossref: 190] [Cited by in F6Publishing: 162] [Article Influence: 31.7] [Reference Citation Analysis]
4 Chun H, Catterton T, Kim H, Lee J, Kim BE. Organ-specific regulation of ATP7A abundance is coordinated with systemic copper homeostasis. Sci Rep 2017;7:12001. [PMID: 28931909 DOI: 10.1038/s41598-017-11961-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
5 Lowe J, Taveira-da-silva R, Hilário-souza E. Dissecting copper homeostasis in diabetes mellitus: COPPER HOMEOSTASIS IN DM. IUBMB Life 2017;69:255-62. [DOI: 10.1002/iub.1614] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
6 Gao Y, Yang W, Che D, Adams S, Yang L. Advances in the mechanism of high copper diets in restraining pigs growth. J Anim Physiol Anim Nutr (Berl) 2020;104:667-78. [PMID: 31840317 DOI: 10.1111/jpn.13213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 2018;101:2763-813. [PMID: 29397180 DOI: 10.3168/jds.2017-13112] [Cited by in Crossref: 82] [Cited by in F6Publishing: 56] [Article Influence: 20.5] [Reference Citation Analysis]
8 Miller KA, Keenan CM, Martin GR, Jirik FR, Sharkey KA, Wieser ME. The expression levels of cellular prion protein affect copper isotopic shifts in the organs of mice. J Anal At Spectrom 2016;31:2015-22. [DOI: 10.1039/c6ja00195e] [Cited by in Crossref: 16] [Article Influence: 2.7] [Reference Citation Analysis]
9 Gandhar JS, De UK, Kala A, Malik YS, Yadav S, Paul BR, Dixit SK, Sircar S, Chaudhary P, Patra MK, Gaur GK. Efficacy of Microencapsulated Probiotic as Adjunct Therapy on Resolution of Diarrhea, Copper-Zinc Homeostasis, Immunoglobulins, and Inflammatory Markers in Serum of Spontaneous Rotavirus-Infected Diarrhoetic Calves. Probiotics Antimicrob Proteins 2021. [PMID: 34676503 DOI: 10.1007/s12602-021-09862-9] [Reference Citation Analysis]
10 Grammer TB, Kleber ME, Silbernagel G, Pilz S, Scharnagl H, Lerchbaum E, Tomaschitz A, Koenig W, März W. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (The Ludwigshafen Risk and Cardiovascular Health Study). Free Radical Research 2014;48:706-15. [DOI: 10.3109/10715762.2014.901510] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
11 Theotoki EI, Velentzas AD, Katarachia SA, Papandreou NC, Kalavros NI, Pasadaki SN, Giannopoulou AF, Giannios P, Iconomidou VA, Konstantakou EG, Anastasiadou E, Papassideri IS, Stravopodis DJ. Targeting of copper-trafficking chaperones causes gene-specific systemic pathology in Drosophila melanogaster: prospective expansion of mutational landscapes that regulate tumor resistance to cisplatin. Biol Open 2019;8:bio046961. [PMID: 31575544 DOI: 10.1242/bio.046961] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 M-M P, Weiskirchen R, Gassler N, Bosserhoff AK, Becker JS. Novel bioimaging techniques of metals by laser ablation inductively coupled plasma mass spectrometry for diagnosis of fibrotic and cirrhotic liver disorders. PLoS One 2013;8:e58702. [PMID: 23505552 DOI: 10.1371/journal.pone.0058702] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
13 Kodama H, Fujisawa C, Bhadhprasit W. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr Drug Metab. 2012;13:237-250. [PMID: 21838703 DOI: 10.2174/138920012799320455] [Cited by in Crossref: 101] [Cited by in F6Publishing: 79] [Article Influence: 10.1] [Reference Citation Analysis]
14 Clarkson AH, Paine S, Martín-Tereso J, Kendall NR. Copper physiology in ruminants: trafficking of systemic copper, adaptations to variation in nutritional supply and thiomolybdate challenge. Nutr Res Rev 2020;33:43-9. [PMID: 31533870 DOI: 10.1017/S0954422419000180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
15 Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol 2016;35:107-15. [PMID: 27049134 DOI: 10.1016/j.jtemb.2016.02.006] [Cited by in Crossref: 207] [Cited by in F6Publishing: 134] [Article Influence: 34.5] [Reference Citation Analysis]
16 Faulkner M, St-pierre N, Weiss W. Effect of source of trace minerals in either forage- or by-product–based diets fed to dairy cows: 2. Apparent absorption and retention of minerals. Journal of Dairy Science 2017;100:5368-77. [DOI: 10.3168/jds.2016-12096] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
17 McCann CJ, Jayakanthan S, Siotto M, Yang N, Osipova M, Squitti R, Lutsenko S. Single nucleotide polymorphisms in the human ATP7B gene modify the properties of the ATP7B protein. Metallomics 2019;11:1128-39. [PMID: 31070637 DOI: 10.1039/c9mt00057g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
18 Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 2011;7:15-29. [PMID: 21221114 DOI: 10.1038/nrneurol.2010.180] [Cited by in Crossref: 339] [Cited by in F6Publishing: 306] [Article Influence: 30.8] [Reference Citation Analysis]
19 Mercer SW, Wang J, Burke R. In Vivo Modeling of the Pathogenic Effect of Copper Transporter Mutations That Cause Menkes and Wilson Diseases, Motor Neuropathy, and Susceptibility to Alzheimer's Disease. J Biol Chem 2017;292:4113-22. [PMID: 28119449 DOI: 10.1074/jbc.M116.756163] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 7.4] [Reference Citation Analysis]
20 Corkins MR. Copper metabolism and pediatric cholestasis: . Current Opinion in Clinical Nutrition and Metabolic Care 2011;14:642-6. [DOI: 10.1097/mco.0b013e32834b2b1b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
21 Renier N, Reinaud O, Jabin I, Valkenier H. Transmembrane transport of copper(i) by imidazole-functionalised calix[4]arenes. Chem Commun (Camb) 2020;56:8206-9. [PMID: 32555796 DOI: 10.1039/d0cc03555f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Rasmussen KL, Delbey T, d’Imporzano P, Skytte L, Schiavone S, Torino M, Tarp P, Thomsen PO. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: an investigation of social stratification in two medieval and post-medieval societies. Herit Sci 2020;8. [DOI: 10.1186/s40494-020-00407-x] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Li X, Shao F, Sun J, Du K, Sun Y, Feng F. Enhanced Copper–Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme. ACS Appl Mater Interfaces 2019;11:41935-45. [DOI: 10.1021/acsami.9b14849] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
24 Karlíčková J, Macáková K, Říha M, Pinheiro LM, Filipský T, Horňasová V, Hrdina R, Mladěnka P. Isoflavones Reduce Copper with Minimal Impact on Iron In Vitro. Oxid Med Cell Longev 2015;2015:437381. [PMID: 26273421 DOI: 10.1155/2015/437381] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
25 Ellingsen DG, Møller LB, Aaseth J. Copper. Handbook on the Toxicology of Metals. Elsevier; 2015. pp. 765-86. [DOI: 10.1016/b978-0-444-59453-2.00035-4] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
26 Amorós R, Murcia M, González L, Soler-Blasco R, Rebagliato M, Iñiguez C, Carrasco P, Vioque J, Broberg K, Levi M, Lopez-Espinosa MJ, Ballester F, Llop S. Maternal copper status and neuropsychological development in infants and preschool children. Int J Hyg Environ Health 2019;222:503-12. [PMID: 30713056 DOI: 10.1016/j.ijheh.2019.01.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
27 Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017;9:1204-29. [DOI: 10.1039/c7mt00010c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 5.6] [Reference Citation Analysis]
28 Sadraie M, Missirlis F. Evidence for evolutionary constraints in Drosophila metal biology. Biometals 2011;24:679-86. [PMID: 21293906 DOI: 10.1007/s10534-011-9420-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
29 Song M, Schuschke DA, Zhou Z, Chen T, Pierce WM, Wang R, Johnson WT, McClain CJ. High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. J Hepatol. 2012;56:433-440. [PMID: 21781943 DOI: 10.1016/j.jhep.2011.05.030] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 7.3] [Reference Citation Analysis]
30 Rattanachaiwong S, Singer P. Diets and Diet Therapy: Trace Elements. Encyclopedia of Food Security and Sustainability. Elsevier; 2019. pp. 143-60. [DOI: 10.1016/b978-0-08-100596-5.21941-0] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Mattová J, Poučková P, Kučka J, Skodová M, Vetrík M, Stěpánek P, Urbánek P, Petřík M, Nový Z, Hrubý M. Chelating polymeric beads as potential therapeutics for Wilson's disease. Eur J Pharm Sci 2014;62:1-7. [PMID: 24815561 DOI: 10.1016/j.ejps.2014.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
32 Song M, Vos MB, McClain CJ. Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD. Nutrients 2018;10:E1815. [PMID: 30469339 DOI: 10.3390/nu10111815] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
33 Vetrik M, Mattova J, Mackova H, Kucka J, Pouckova P, Kukackova O, Brus J, Eigner-henke S, Sedlacek O, Sefc L, Stepanek P, Hruby M. Biopolymer strategy for the treatment of Wilson's disease. Journal of Controlled Release 2018;273:131-8. [DOI: 10.1016/j.jconrel.2018.01.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
34 Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020;21:E2341. [PMID: 32231018 DOI: 10.3390/ijms21072341] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
35 Qin Q, Wang X, Zhou B. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation. BMC Biol 2013;11:101. [PMID: 24063361 DOI: 10.1186/1741-7007-11-101] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
36 Taylor AA, Tsuji JS, Garry MR, McArdle ME, Goodfellow WL Jr, Adams WJ, Menzie CA. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ Manage 2020;65:131-59. [PMID: 31832729 DOI: 10.1007/s00267-019-01234-y] [Cited by in Crossref: 65] [Cited by in F6Publishing: 28] [Article Influence: 21.7] [Reference Citation Analysis]
37 Galan-Vasquez E, Perez-Rueda E. A landscape for drug-target interactions based on network analysis. PLoS One 2021;16:e0247018. [PMID: 33730052 DOI: 10.1371/journal.pone.0247018] [Reference Citation Analysis]
38 Via MA, Mechanick JI. Nutritional and Micronutrient Care of Bariatric Surgery Patients: Current Evidence Update. Curr Obes Rep 2017;6:286-96. [DOI: 10.1007/s13679-017-0271-x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 12.6] [Reference Citation Analysis]
39 Southon A, Burke R, Camakaris J. What can flies tell us about copper homeostasis? Metallomics 2013;5:1346-56. [PMID: 23903872 DOI: 10.1039/c3mt00105a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
40 Song M, Schuschke DA, Zhou Z, Chen T, Shi X, Zhang J, Zhang X, Pierce WM Jr, Johnson WT, Vos MB, McClain CJ. Modest fructose beverage intake causes liver injury and fat accumulation in marginal copper deficient rats. Obesity (Silver Spring) 2013;21:1669-75. [PMID: 23512597 DOI: 10.1002/oby.20380] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
41 Dirksen K, Spee B, Penning LC, van den Ingh TSGAM, Burgener IA, Watson AL, Groot Koerkamp M, Rothuizen J, van Steenbeek FG, Fieten H. Gene expression patterns in the progression of canine copper-associated chronic hepatitis. PLoS One 2017;12:e0176826. [PMID: 28459846 DOI: 10.1371/journal.pone.0176826] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
42 Amtage F, Birnbaum D, Reinhard T, Niesen WD, Weiller C, Mader I, Meyer PT, Rijntjes M. Estrogen intake and copper depositions: implications for Alzheimer's disease? Case Rep Neurol 2014;6:181-7. [PMID: 25076894 DOI: 10.1159/000363688] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
43 Wu X, Leegwater PA, Fieten H. Canine Models for Copper Homeostasis Disorders. Int J Mol Sci 2016;17:196. [PMID: 26861285 DOI: 10.3390/ijms17020196] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
44 Lindh U. Uptake of Elements from a Biological Point of View. In: Selinus O, editor. Essentials of Medical Geology. Dordrecht: Springer Netherlands; 2013. pp. 101-27. [DOI: 10.1007/978-94-007-4375-5_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
45 Škodová M, Kučka J, Vetrík M, Skopal J, Walterová Z, Sedláček O, Štěpánek P, Mattová J, Poučková P, Urbánek P, Hrubý M. Chelating polymeric particles intended for the therapy of Wilson’s disease. Reactive and Functional Polymers 2013;73:1426-31. [DOI: 10.1016/j.reactfunctpolym.2013.07.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
46 Gateau C, Mintz E, Delangle P. Rational Design of Copper and Iron Chelators to Treat Wilson's Disease and Hemochromatosis. In: Storr T, editor. Ligand Design in Medicinal Inorganic Chemistry. Chichester: John Wiley & Sons, Ltd; 2014. pp. 287-319. [DOI: 10.1002/9781118697191.ch11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
47 Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients 2018;10:E1591. [PMID: 30380720 DOI: 10.3390/nu10111591] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
48 Langley A, Dameron CT. Copper and anesthesia: clinical relevance and management of copper related disorders. Anesthesiol Res Pract 2013;2013:750901. [PMID: 23762044 DOI: 10.1155/2013/750901] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
49 Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS, Spears JW, Thiele DJ. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem 2010;285:32385-92. [PMID: 20699218 DOI: 10.1074/jbc.M110.143826] [Cited by in Crossref: 87] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
50 Seblani MD, McColley SA, Gong S, Bass LM, Badawy SM. A rare case of pancytopenia in a child with cystic fibrosis: Can copper cure it all? Pediatr Pulmonol 2021. [PMID: 34583429 DOI: 10.1002/ppul.25701] [Reference Citation Analysis]
51 Zimnicka AM, Ivy K, Kaplan JH. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am J Physiol Cell Physiol 2011;300:C588-99. [PMID: 21191107 DOI: 10.1152/ajpcell.00054.2010] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 4.9] [Reference Citation Analysis]
52 Lebel A, Matte JJ, Guay F. Effect of mineral source and mannan oligosaccharide supplements on zinc and copper digestibility in growing pigs. Arch Anim Nutr 2014;68:370-84. [PMID: 25179553 DOI: 10.1080/1745039X.2014.954357] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
53 Mackay M, Mulroy CW, Street J, Stewart C, Johnsen J, Jackson D, Paul I. Assessing Copper Status in Pediatric Patients Receiving Parenteral Nutrition. Nutr Clin Pract 2015;30:117-21. [DOI: 10.1177/0884533614538457] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
54 Wolber FM, Beck KL, Conlon CA, Kruger MC. Kiwifruit and Mineral Nutrition. Nutritional Benefits of Kiwifruit. Elsevier; 2013. pp. 233-56. [DOI: 10.1016/b978-0-12-394294-4.00013-4] [Cited by in Crossref: 7] [Article Influence: 0.8] [Reference Citation Analysis]
55 Stättermayer AF, Traussnigg S, Aigner E, Kienbacher C, Huber-schönauer U, Steindl-munda P, Stadlmayr A, Wrba F, Trauner M, Datz C, Ferenci P. Low hepatic copper content and PNPLA3 polymorphism in non-alcoholic fatty liver disease in patients without metabolic syndrome. Journal of Trace Elements in Medicine and Biology 2017;39:100-7. [DOI: 10.1016/j.jtemb.2016.08.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
56 Duncan A, Gallacher G, Willox L. The role of the clinical biochemist in detection of zinc-induced copper deficiency. Ann Clin Biochem 2016;53:298-301. [DOI: 10.1177/0004563215595429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
57 Southon A, Greenough MA, Ganio G, Bush AI, Burke R, Camakaris J. Presenilin promotes dietary copper uptake. PLoS One 2013;8:e62811. [PMID: 23667524 DOI: 10.1371/journal.pone.0062811] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
58 Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017;89:22-41. [PMID: 27976855 DOI: 10.1021/acs.analchem.6b04631] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 13.0] [Reference Citation Analysis]
59 Hrubý M, Kučka J, Pánek J, Štěpánek P. Seven years of radionuclide laboratory at IMC - important achievements. Physiol Res 2016;65:S191-201. [PMID: 27762585 DOI: 10.33549/physiolres.933421] [Reference Citation Analysis]
60 De Brucker K, Bink A, Meert E, Cammue BP, Thevissen K. Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase inhibition. Oxid Med Cell Longev 2013;2013:704654. [PMID: 24078861 DOI: 10.1155/2013/704654] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
61 Lammel T, Thit A, Cui X, Mouneyrac C, Baun A, Valsami-Jones E, Sturve J, Selck H. Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled 65CuCl2 and 65CuO NPs. Sci Total Environ 2021;757:143779. [PMID: 33279190 DOI: 10.1016/j.scitotenv.2020.143779] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Steiger D, Fetchko M, Vardanyan A, Atanesyan L, Steiner K, Turski ML, Thiele DJ, Georgiev O, Schaffner W. The Drosophila copper transporter Ctr1C functions in male fertility. J Biol Chem 2010;285:17089-97. [PMID: 20351114 DOI: 10.1074/jbc.M109.090282] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
63 Evans DM, Zhu G, Dy V, Heath AC, Madden PA, Kemp JP, McMahon G, St Pourcain B, Timpson NJ, Golding J, Lawlor DA, Steer C, Montgomery GW, Martin NG, Smith GD, Whitfield JB. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet 2013;22:3998-4006. [PMID: 23720494 DOI: 10.1093/hmg/ddt239] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 6.2] [Reference Citation Analysis]
64 Miller KA, Vicentini FA, Hirota SA, Sharkey KA, Wieser ME. Antibiotic treatment affects the expression levels of copper transporters and the isotopic composition of copper in the colon of mice. Proc Natl Acad Sci U S A 2019;116:5955-60. [PMID: 30850515 DOI: 10.1073/pnas.1814047116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
65 Delangle P, Mintz E. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators. Dalton Trans 2012;41:6359-70. [PMID: 22327203 DOI: 10.1039/c2dt12188c] [Cited by in Crossref: 101] [Cited by in F6Publishing: 89] [Article Influence: 10.1] [Reference Citation Analysis]
66 Russell K, Gillanders LK, Orr DW, Plank LD. Dietary copper restriction in Wilson's disease. Eur J Clin Nutr 2018;72:326-31. [PMID: 29235558 DOI: 10.1038/s41430-017-0002-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
67 Espinosa CD, Stein HH. Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: a review. J Anim Sci Biotechnol 2021;12:13. [PMID: 33431053 DOI: 10.1186/s40104-020-00533-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]