BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zou Y, Kim CH, Chung JH, Kim JY, Chung SW, Kim MK, Im DS, Lee J, Yu BP, Chung HY. Upregulation of endothelial adhesion molecules by lysophosphatidylcholine. Involvement of G protein-coupled receptor GPR4. FEBS J 2007;274:2573-84. [PMID: 17437524 DOI: 10.1111/j.1742-4658.2007.05792.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
Number Citing Articles
1 Mochimaru Y, Azuma M, Oshima N, Ichijo Y, Satou K, Matsuda K, Asaoka Y, Nishina H, Nakakura T, Mogi C, Sato K, Okajima F, Tomura H. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish. Biochemical and Biophysical Research Communications 2015;457:493-9. [DOI: 10.1016/j.bbrc.2014.12.105] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
2 Dautel SE, Kyle JE, Clair G, Sontag RL, Weitz KK, Shukla AK, Nguyen SN, Kim YM, Zink EM, Luders T, Frevert CW, Gharib SA, Laskin J, Carson JP, Metz TO, Corley RA, Ansong C. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung. Sci Rep 2017;7:40555. [PMID: 28145528 DOI: 10.1038/srep40555] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 10.0] [Reference Citation Analysis]
3 Zhao X, Xia Y. Characterization of Fatty Acyl Modifications in Phosphatidylcholines and Lysophosphatidylcholines via Radical-Directed Dissociation. J Am Soc Mass Spectrom 2021;32:560-8. [PMID: 33444004 DOI: 10.1021/jasms.0c00407] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Riederer M, Lechleitner M, Hrzenjak A, Koefeler H, Desoye G, Heinemann A, Frank S. Endothelial lipase (EL) and EL-generated lysophosphatidylcholines promote IL-8 expression in endothelial cells. Atherosclerosis 2011;214:338-44. [PMID: 21130993 DOI: 10.1016/j.atherosclerosis.2010.11.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
5 Wang S, Liu F, Tan KS, Ser HL, Tan LT, Lee LH, Tan W. Effect of (R)-salbutamol on the switch of phenotype and metabolic pattern in LPS-induced macrophage cells. J Cell Mol Med 2020;24:722-36. [PMID: 31680470 DOI: 10.1111/jcmm.14780] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Yoshida N, Mita T, Onda M. Susceptibilities of Phospholipid Membranes Containing Cholesterol or Ergosterol to Gramicidin and its Derivative Incorporated in Lysophospholipid Micelles. Journal of Biochemistry 2008;144:167-76. [DOI: 10.1093/jb/mvn056] [Reference Citation Analysis]
7 Zhuge Y, Yuan Y, van Breemen R, Degrand M, Holian O, Yoder M, Lum H. Stimulated bronchial epithelial cells release bioactive lysophosphatidylcholine 16:0, 18:0, and 18:1. Allergy Asthma Immunol Res 2014;6:66-74. [PMID: 24404396 DOI: 10.4168/aair.2014.6.1.66] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
8 Yoon BK, Kang YH, Oh WJ, Park K, Lee DY, Choi D, Kim DK, Lee Y, Rhyu MR. Impact of lysophosphatidylcholine on the plasminogen activator system in cultured vascular smooth muscle cells. J Korean Med Sci 2012;27:803-10. [PMID: 22787379 DOI: 10.3346/jkms.2012.27.7.803] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
9 Riederer M, Ojala PJ, Hrzenjak A, Graier WF, Malli R, Tritscher M, Hermansson M, Watzer B, Schweer H, Desoye G, Heinemann A, Frank S. Acyl chain-dependent effect of lysophosphatidylcholine on endothelial prostacyclin production. J Lipid Res 2010;51:2957-66. [PMID: 20610733 DOI: 10.1194/jlr.M006536] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
10 Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020;21:E4501. [PMID: 32599910 DOI: 10.3390/ijms21124501] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
11 Barberis E, Timo S, Amede E, Vanella VV, Puricelli C, Cappellano G, Raineri D, Cittone MG, Rizzi E, Pedrinelli AR, Vassia V, Casciaro FG, Priora S, Nerici I, Galbiati A, Hayden E, Falasca M, Vaschetto R, Sainaghi PP, Dianzani U, Rolla R, Chiocchetti A, Baldanzi G, Marengo E, Manfredi M. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. Int J Mol Sci 2020;21:E8623. [PMID: 33207699 DOI: 10.3390/ijms21228623] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 19.0] [Reference Citation Analysis]
12 Im D. New intercellular lipid mediators and their GPCRs: An update. Prostaglandins & Other Lipid Mediators 2009;89:53-6. [DOI: 10.1016/j.prostaglandins.2009.01.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
13 Chen A, Dong L, Leffler NR, Asch AS, Witte ON, Yang LV. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One. 2011;6:e27586. [PMID: 22110680 DOI: 10.1371/journal.pone.0027586] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 6.4] [Reference Citation Analysis]
14 Wyder L, Suply T, Ricoux B, Billy E, Schnell C, Baumgarten BU, Maira SM, Koelbing C, Ferretti M, Kinzel B, Müller M, Seuwen K, Ludwig MG. Reduced pathological angiogenesis and tumor growth in mice lacking GPR4, a proton sensing receptor. Angiogenesis 2011;14:533-44. [PMID: 22045552 DOI: 10.1007/s10456-011-9238-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
15 Palomo I, Fuentes E, Padró T, Badimon L. Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.). Exp Ther Med 2012;3:577-84. [PMID: 22969932 DOI: 10.3892/etm.2012.477] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
16 Zou Y, Kim DH, Jung KJ, Heo H, Kim CH, Baik HS, Yu BP, Yokozawa T, Chung HY. Lysophosphatidylcholine Enhances Oxidative Stress Via the 5-Lipoxygenase Pathway in Rat Aorta During Aging. Rejuvenation Research 2009;12:15-24. [DOI: 10.1089/rej.2008.0807] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
17 Yoder M, Zhuge Y, Yuan Y, Holian O, Kuo S, van Breemen R, Thomas LL, Lum H. Bioactive lysophosphatidylcholine 16:0 and 18:0 are elevated in lungs of asthmatic subjects. Allergy Asthma Immunol Res 2014;6:61-5. [PMID: 24404395 DOI: 10.4168/aair.2014.6.1.61] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
18 Okito A, Nakahama K, Akiyama M, Ono T, Morita I. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment. Biochemical and Biophysical Research Communications 2015;458:435-40. [DOI: 10.1016/j.bbrc.2015.01.142] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
19 Lee EK, Jang EJ, Jung KJ, Kim DH, Yu BP, Chung HY. Betaine attenuates lysophosphatidylcholine-mediated adhesion molecules in aged rat aorta: modulation of the nuclear factor-κB pathway. Exp Gerontol 2013;48:517-24. [PMID: 23466300 DOI: 10.1016/j.exger.2013.02.024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
20 Liu T, Wang X, Guo F, Sun X, Yuan K, Wang Q, Lan C. Lysophosphatidylcholine induces apoptosis and inflammatory damage in brain microvascular endothelial cells via GPR4-mediated NLRP3 inflammasome activation. Toxicol In Vitro 2021;77:105227. [PMID: 34293432 DOI: 10.1016/j.tiv.2021.105227] [Reference Citation Analysis]