BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klein M, Reichelt M, Gershenzon J, Papenbrock J. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J 2006;273:122-36. [PMID: 16367753 DOI: 10.1111/j.1742-4658.2005.05048.x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Koprivova A, Kopriva S. Sulfation pathways in plants. Chem Biol Interact 2016;259:23-30. [PMID: 27206694 DOI: 10.1016/j.cbi.2016.05.021] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
2 Chen R, Jiang Y, Dong J, Zhang X, Xiao H, Xu Z, Gao X. Genome-wide analysis and environmental response profiling of SOT family genes in rice (Oryza sativa). Genes Genom 2012;34:549-60. [DOI: 10.1007/s13258-012-0053-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
3 Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. In: Mérillon J, Ramawat KG, editors. Glucosinolates. Cham: Springer International Publishing; 2017. pp. 163-99. [DOI: 10.1007/978-3-319-25462-3_3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
4 Hirschmann F, Krause F, Baruch P, Chizhov I, Mueller JW, Manstein DJ, Papenbrock J, Fedorov R. Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism. Sci Rep 2017;7:4160. [PMID: 28646214 DOI: 10.1038/s41598-017-04539-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
5 Torres-contreras AM, Senés-guerrero C, Pacheco A, González-agüero M, Ramos-parra PA, Cisneros-zevallos L, Jacobo-velázquez DA. Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biology and Technology 2018;145:172-82. [DOI: 10.1016/j.postharvbio.2018.07.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
6 Trejo-Téllez LI, Estrada-Ortiz E, Gómez-Merino FC, Becker C, Krumbein A, Schwarz D. Flavonoid, Nitrate and Glucosinolate Concentrations in Brassica Species Are Differentially Affected by Photosynthetically Active Radiation, Phosphate and Phosphite. Front Plant Sci 2019;10:371. [PMID: 30972096 DOI: 10.3389/fpls.2019.00371] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
7 Kopriva S, Mugford SG, Baraniecka P, Lee BR, Matthewman CA, Koprivova A. Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front Plant Sci 2012;3:163. [PMID: 22833750 DOI: 10.3389/fpls.2012.00163] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
8 Møldrup ME, Geu-Flores F, Olsen CE, Halkier BA. Modulation of sulfur metabolism enables efficient glucosinolate engineering. BMC Biotechnol 2011;11:12. [PMID: 21281472 DOI: 10.1186/1472-6750-11-12] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
9 Voelckel C, Heenan PB, Janssen B, Reichelt M, Ford K, Hofmann R, Lockhart PJ. Transcriptional and biochemical signatures of divergence in natural populations of two species of New Zealand alpine Pachycladon. Molecular Ecology 2008;17:4740-53. [DOI: 10.1111/j.1365-294x.2008.03933.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
10 Hernàndez-sebastiá C, Varin L, Marsolais F. Sulfotransferases from Plants, Algae and Phototrophic Bacteria. In: Hell R, Dahl C, Knaff D, Leustek T, editors. Sulfur Metabolism in Phototrophic Organisms. Dordrecht: Springer Netherlands; 2008. pp. 111-30. [DOI: 10.1007/978-1-4020-6863-8_6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
11 Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. In: Mérillon J, Ramawat KG, editors. Glucosinolates. Cham: Springer International Publishing; 2016. pp. 1-37. [DOI: 10.1007/978-3-319-26479-0_3-1] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
12 Luczak S, Forlani F, Papenbrock J. Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics. Plant Physiol Biochem 2013;63:15-23. [PMID: 23220083 DOI: 10.1016/j.plaphy.2012.11.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
13 Kitainda V, Jez JM. Structural Studies of Aliphatic Glucosinolate Chain-Elongation Enzymes. Antioxidants (Basel) 2021;10:1500. [PMID: 34573132 DOI: 10.3390/antiox10091500] [Reference Citation Analysis]
14 Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Dev Cell 2019;48:840-852.e5. [PMID: 30913408 DOI: 10.1016/j.devcel.2019.02.022] [Cited by in Crossref: 138] [Cited by in F6Publishing: 99] [Article Influence: 46.0] [Reference Citation Analysis]
15 Velasco P, Rodríguez VM, Francisco M, Cartea ME, Soengas P. Genetics and Breeding of Brassica Crops. In: Mérillon J, Ramawat KG, editors. Glucosinolates. Cham: Springer International Publishing; 2017. pp. 61-86. [DOI: 10.1007/978-3-319-25462-3_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Marsolais F, Boyd J, Paredes Y, Schinas AM, Garcia M, Elzein S, Varin L. Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 2007;225:1233-44. [PMID: 17039368 DOI: 10.1007/s00425-006-0413-y] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 4.2] [Reference Citation Analysis]
17 Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa. Gene 2011;487:135-42. [PMID: 21835231 DOI: 10.1016/j.gene.2011.07.021] [Cited by in Crossref: 93] [Cited by in F6Publishing: 79] [Article Influence: 8.5] [Reference Citation Analysis]
18 Geu-Flores F, Møldrup ME, Böttcher C, Olsen CE, Scheel D, Halkier BA. Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 2011;23:2456-69. [PMID: 21712415 DOI: 10.1105/tpc.111.083998] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 7.3] [Reference Citation Analysis]
19 Klein M, Papenbrock J. Sulfotransferases and Their Role in Glucosinolate Biosynthesis. In: Khan NA, Singh S, Umar S, editors. Sulfur Assimilation and Abiotic Stress in Plants. Berlin: Springer Berlin Heidelberg; 2008. pp. 149-66. [DOI: 10.1007/978-3-540-76326-0_7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
20 Hirai MY. A robust omics-based approach for the identification of glucosinolate biosynthetic genes. Phytochem Rev 2009;8:15-23. [DOI: 10.1007/s11101-008-9114-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
21 Nafisi M, Sønderby IE, Hansen BG, Geu-flores F, Nour-eldin HH, Nørholm MH, Jensen NB, Li J, Halkier BA. Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids. Phytochem Rev 2006;5:331-46. [DOI: 10.1007/s11101-006-9004-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
22 Mikkelsen MD, Olsen CE, Halkier BA. Production of the cancer-preventive glucoraphanin in tobacco. Mol Plant 2010;3:751-9. [PMID: 20457641 DOI: 10.1093/mp/ssq020] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
23 Yin L, Chen C, Chen G, Cao B, Lei J. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey). Molecules 2015;20:20254-67. [PMID: 26569208 DOI: 10.3390/molecules201119688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
24 Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S. Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 2006;18:2664-79. [PMID: 17056707 DOI: 10.1105/tpc.105.039339] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 7.1] [Reference Citation Analysis]
25 Kliebenstein DJ. A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS One 2008;3:e1838. [PMID: 18350173 DOI: 10.1371/journal.pone.0001838] [Cited by in Crossref: 80] [Cited by in F6Publishing: 72] [Article Influence: 5.7] [Reference Citation Analysis]
26 Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana: HAG1 and glucosinolate biosynthesis. The Plant Journal 2007;51:247-61. [DOI: 10.1111/j.1365-313x.2007.03133.x] [Cited by in Crossref: 279] [Cited by in F6Publishing: 127] [Article Influence: 18.6] [Reference Citation Analysis]
27 Bekaert M, Edger PP, Hudson CM, Pires JC, Conant GC. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol 2012;196:596-605. [PMID: 22943527 DOI: 10.1111/j.1469-8137.2012.04302.x] [Cited by in Crossref: 106] [Cited by in F6Publishing: 89] [Article Influence: 10.6] [Reference Citation Analysis]
28 Li J, Kristiansen KA, Hansen BG, Halkier BA. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. J Exp Bot 2011;62:1337-46. [PMID: 21078824 DOI: 10.1093/jxb/erq369] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
29 Mostafa I, Zhu N, Yoo MJ, Balmant KM, Misra BB, Dufresne C, Abou-Hashem M, Chen S, El-Domiaty M. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. J Proteomics 2016;138:1-19. [PMID: 26915584 DOI: 10.1016/j.jprot.2016.02.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
30 Zhang T, Meng L, Kong W, Yin Z, Wang Y, Schneider JD, Chen S. Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000. Journal of Proteomics 2018;175:114-26. [DOI: 10.1016/j.jprot.2018.01.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
31 Ouassou M, Mukhaimar M, El Amrani A, Kroymann J, Chauveau O. [Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways]. C R Biol 2019;342:58-80. [PMID: 31088733 DOI: 10.1016/j.crvi.2019.03.005] [Reference Citation Analysis]
32 Liu F, Yang H, Wang L, Yu B. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli. ACS Synth Biol 2016;5:1557-65. [DOI: 10.1021/acssynbio.6b00143] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
33 Wu Q, Wang J, Mao S, Xu H, Wu Q, Liang M, Yuan Y, Liu M, Huang K. Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing. BMC Genomics 2019;20:377. [PMID: 31088374 DOI: 10.1186/s12864-019-5758-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
34 Bak S, Paquette SM, Morant M, Morant AV, Saito S, Bjarnholt N, Zagrobelny M, Jørgensen K, Osmani S, Simonsen HT, Pérez RS, van Heeswijck TB, Jørgensen B, Møller BL. Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem Rev 2006;5:309-29. [DOI: 10.1007/s11101-006-9033-1] [Cited by in Crossref: 95] [Cited by in F6Publishing: 61] [Article Influence: 5.9] [Reference Citation Analysis]
35 Bender J, Celenza JL. Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem Rev 2009;8:25-37. [DOI: 10.1007/s11101-008-9111-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
36 Khan D, Millar JL, Girard IJ, Chan A, Kirkbride RC, Pelletier JM, Kost S, Becker MG, Yeung EC, Stasolla C, Goldberg RB, Harada JJ, Belmonte MF. Transcriptome atlas of the Arabidopsis funiculus - a study of maternal seed subregions. Plant J 2015;82:41-53. [DOI: 10.1111/tpj.12790] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
37 Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, Hirai MY, Saito K, Pare PW, Shi H. A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ 2010;33:1383-92. [PMID: 20374532 DOI: 10.1111/j.1365-3040.2010.02156.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 31] [Article Influence: 1.0] [Reference Citation Analysis]
38 Bednarek P. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. Chembiochem 2012;13:1846-59. [PMID: 22807086 DOI: 10.1002/cbic.201200086] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
39 Geu-flores F, Olsen CE, Halkier BA. Towards engineering glucosinolates into non-cruciferous plants. Planta 2009;229:261-70. [DOI: 10.1007/s00425-008-0825-y] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
40 Wang C, Crocoll C, Agerbirk N, Halkier BA. Engineering and optimization of the 2‐phenylethylglucosinolate production in Nicotiana benthamiana by combining biosynthetic genes from Barbarea vulgaris and Arabidopsis thaliana. Plant J 2021;106:978-92. [DOI: 10.1111/tpj.15212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Klein M, Papenbrock J. Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol Plant 2009;135:140-9. [PMID: 19077143 DOI: 10.1111/j.1399-3054.2008.01182.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
42 Huseby S, Koprivova A, Lee BR, Saha S, Mithen R, Wold AB, Bengtsson GB, Kopriva S. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J Exp Bot 2013;64:1039-48. [PMID: 23314821 DOI: 10.1093/jxb/ers378] [Cited by in Crossref: 94] [Cited by in F6Publishing: 75] [Article Influence: 10.4] [Reference Citation Analysis]
43 Del Carmen Martínez-Ballesta M, Moreno DA, Carvajal M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 2013;14:11607-25. [PMID: 23722664 DOI: 10.3390/ijms140611607] [Cited by in Crossref: 164] [Cited by in F6Publishing: 122] [Article Influence: 18.2] [Reference Citation Analysis]
44 Chen J, Gao L, Baek D, Liu C, Ruan Y, Shi H. Detoxification function of the Arabidopsis sulphotransferase AtSOT12 by sulphonation of xenobiotics: Detoxification function of AtSOT12. Plant Cell Environ 2015;38:1673-82. [DOI: 10.1111/pce.12525] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
45 Kliebenstein DJ, Osbourn A. Making new molecules - evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 2012;15:415-23. [PMID: 22683039 DOI: 10.1016/j.pbi.2012.05.005] [Cited by in Crossref: 86] [Cited by in F6Publishing: 72] [Article Influence: 8.6] [Reference Citation Analysis]
46 Rennenberg H, Herschbach C. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses. Journal of Experimental Botany 2014;65:5711-24. [DOI: 10.1093/jxb/eru315] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
47 Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flügge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S. Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 2009;21:910-27. [PMID: 19304933 DOI: 10.1105/tpc.109.065581] [Cited by in Crossref: 132] [Cited by in F6Publishing: 126] [Article Influence: 10.2] [Reference Citation Analysis]
48 Casajús V, Demkura P, Civello P, Gómez Lobato M, Martínez G. Harvesting at different time-points of day affects glucosinolate metabolism during postharvest storage of broccoli. Food Research International 2020;136:109529. [DOI: 10.1016/j.foodres.2020.109529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Harun S, Abdullah-zawawi M, Goh H, Mohamed-hussein Z. A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in Arabidopsis thaliana. J Agric Food Chem 2020;68:7281-97. [DOI: 10.1021/acs.jafc.0c01916] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
50 Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, Petschenka G, Gómez JM, Perfectti F, Müller C, Pires JC, Mueller LA, Jander G. Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae). Elife 2020;9:e51712. [PMID: 32252891 DOI: 10.7554/eLife.51712] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
51 Akbudak MA, Filiz E. Genome-wide analyses of ATP sulfurylase (ATPS) genes in higher plants and expression profiles in sorghum (Sorghum bicolor) under cadmium and salinity stresses. Genomics 2019;111:579-89. [DOI: 10.1016/j.ygeno.2018.03.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Günal S, Hardman R, Kopriva S, Mueller JW. Sulfation pathways from red to green. J Biol Chem 2019;294:12293-312. [PMID: 31270211 DOI: 10.1074/jbc.REV119.007422] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
53 Mucha S, Walther D, Müller TM, Hincha DK, Glawischnig E. Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. BMC Plant Biol 2015;15:137. [PMID: 26063239 DOI: 10.1186/s12870-015-0506-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
54 Yang H, Liu F, Li Y, Yu B. Reconstructing Biosynthetic Pathway of the Plant-Derived Cancer Chemopreventive-Precursor Glucoraphanin in Escherichia coli. ACS Synth Biol 2017;7:121-31. [DOI: 10.1021/acssynbio.7b00256] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
55 Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. Front Plant Sci 2014;5:556. [PMID: 25360143 DOI: 10.3389/fpls.2014.00556] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 6.5] [Reference Citation Analysis]
56 Lee BR, Huseby S, Koprivova A, Chételat A, Wirtz M, Mugford ST, Navid E, Brearley C, Saha S, Mithen R, Hell R, Farmer EE, Kopriva S. Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response? PLoS One 2012;7:e39425. [PMID: 22724014 DOI: 10.1371/journal.pone.0039425] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]
57 Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. Front Plant Sci 2019;10:1008. [PMID: 31447873 DOI: 10.3389/fpls.2019.01008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
58 Hirschmann F, Papenbrock J. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana. Plant Physiol Biochem 2015;91:10-9. [PMID: 25827495 DOI: 10.1016/j.plaphy.2015.03.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
59 Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 2007;3:1687-701. [PMID: 17941713 DOI: 10.1371/journal.pgen.0030162] [Cited by in Crossref: 205] [Cited by in F6Publishing: 198] [Article Influence: 13.7] [Reference Citation Analysis]
60 Chen Y, Yan X, Chen S. Bioinformatic analysis of molecular network of glucosinolate biosynthesis. Comput Biol Chem 2011;35:10-8. [PMID: 21247808 DOI: 10.1016/j.compbiolchem.2010.12.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]