BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana: D-cysteine desulfhydrase from a higher plant. FEBS Journal 2005;272:1291-304. [DOI: 10.1111/j.1742-4658.2005.04567.x] [Cited by in Crossref: 127] [Cited by in F6Publishing: 102] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Xie Y, Lai D, Mao Y, Zhang W, Shen W, Guan R. Molecular Cloning, Characterization, and Expression Analysis of a Novel Gene Encoding l-Cysteine Desulfhydrase from Brassica napus. Mol Biotechnol 2013;54:737-46. [DOI: 10.1007/s12033-012-9621-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
2 Ma Y, Zhang W, Niu J. Hydrogen sulfide may function downstream of hydrogen peroxide in CdCl2-induced stomatal closure in Vigna radiata L. South African Journal of Botany 2019;124:39-46. [DOI: 10.1016/j.sajb.2019.04.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Fang H, Jing T, Liu Z, Zhang L, Jin Z, Pei Y. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium 2014;56:472-81. [DOI: 10.1016/j.ceca.2014.10.004] [Cited by in Crossref: 75] [Cited by in F6Publishing: 51] [Article Influence: 9.4] [Reference Citation Analysis]
4 Höfler S, Lorenz C, Busch T, Brinkkötter M, Tohge T, Fernie AR, Braun H, Hildebrandt TM. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l -cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria. Physiol Plantarum 2016;157:352-66. [DOI: 10.1111/ppl.12454] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
5 Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, Cui W, Xie Y. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science 2014;225:117-29. [DOI: 10.1016/j.plantsci.2014.06.006] [Cited by in Crossref: 108] [Cited by in F6Publishing: 76] [Article Influence: 13.5] [Reference Citation Analysis]
6 Deng G, Zhou L, Wang Y, Zhang G, Chen X. Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. Planta 2020;251:42. [PMID: 31907619 DOI: 10.1007/s00425-019-03334-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
7 Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiology and Biochemistry 2005;43:473-83. [DOI: 10.1016/j.plaphy.2005.04.001] [Cited by in Crossref: 103] [Cited by in F6Publishing: 96] [Article Influence: 6.1] [Reference Citation Analysis]
8 Huo J, Huang D, Zhang J, Fang H, Wang B, Wang C, Liao W. Hydrogen Sulfide: A Gaseous Molecule in Postharvest Freshness. Front Plant Sci 2018;9:1172. [PMID: 30210510 DOI: 10.3389/fpls.2018.01172] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
9 Shen J, Su Y, Zhou C, Zhang F, Zhou H, Liu X, Wu D, Yin X, Xie Y, Yuan X. A putative rice l-cysteine desulfhydrase encodes a true l-cysteine synthase that regulates plant cadmium tolerance. Plant Growth Regul 2019;89:217-26. [DOI: 10.1007/s10725-019-00528-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Thakur M, Anand A. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants. Physiol Plant 2021;172:1227-43. [PMID: 33860955 DOI: 10.1111/ppl.13432] [Reference Citation Analysis]
11 Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant 2020;168:256-77. [PMID: 30980533 DOI: 10.1111/ppl.12976] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 16.7] [Reference Citation Analysis]
12 Alvarez C, Calo L, Romero LC, García I, Gotor C. An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 2010;152:656-69. [PMID: 19955263 DOI: 10.1104/pp.109.147975] [Cited by in Crossref: 220] [Cited by in F6Publishing: 201] [Article Influence: 16.9] [Reference Citation Analysis]
13 Ma Y, Zhang W, Niu J, Ren Y, Zhang F. Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Functional Plant Biol 2019;46:136. [DOI: 10.1071/fp18096] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
14 Liu X, Chen J, Wang G, Wang W, Shen Z, Luo M, Gao G, Simon M, Ghoto K, Zheng H. Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil 2016;400:177-92. [DOI: 10.1007/s11104-015-2719-7] [Cited by in Crossref: 57] [Cited by in F6Publishing: 33] [Article Influence: 8.1] [Reference Citation Analysis]
15 Laureano-Marín AM, García I, Romero LC, Gotor C. Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana. Front Plant Sci 2014;5:683. [PMID: 25538717 DOI: 10.3389/fpls.2014.00683] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
16 Khan MN, Mobin M, Abbas ZK, Siddiqui MH. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 2017;68:91-102. [PMID: 28062279 DOI: 10.1016/j.niox.2017.01.001] [Cited by in Crossref: 87] [Cited by in F6Publishing: 55] [Article Influence: 17.4] [Reference Citation Analysis]
17 Rausch T, Wachter A. Sulfur metabolism: a versatile platform for launching defence operations. Trends in Plant Science 2005;10:503-9. [DOI: 10.1016/j.tplants.2005.08.006] [Cited by in Crossref: 353] [Cited by in F6Publishing: 270] [Article Influence: 20.8] [Reference Citation Analysis]
18 Peng R, Bian Z, Zhou L, Cheng W, Hai N, Yang C, Yang T, Wang X, Wang C. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.). Plant Cell Rep 2016;35:2325-40. [DOI: 10.1007/s00299-016-2037-4] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
19 Carter JM, Brown EM, Irish EE, Bowden NB. Characterization of Dialkyldithiophosphates as Slow Hydrogen Sulfide Releasing Chemicals and Their Effect on the Growth of Maize. J Agric Food Chem 2019;67:11883-92. [PMID: 31596582 DOI: 10.1021/acs.jafc.9b04398] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
20 Qiao Z, Jing T, Jin Z, Liang Y, Zhang L, Liu Z, Liu D, Pei Y. CDPKs enhance Cd tolerance through intensifying H2S signal in Arabidopsis thaliana. Plant Soil 2016;398:99-110. [DOI: 10.1007/s11104-015-2643-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
21 González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 2010;22:2058-84. [PMID: 20587772 DOI: 10.1105/tpc.109.071167] [Cited by in Crossref: 182] [Cited by in F6Publishing: 181] [Article Influence: 15.2] [Reference Citation Analysis]
22 Zhang Q, Cai W, Ji TT, Ye L, Lu YT, Yuan TT. WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production. Plant Physiol 2020;183:345-57. [PMID: 32179630 DOI: 10.1104/pp.19.01504] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
23 Cheng W, Zhang L, Jiao C, Su M, Yang T, Zhou L, Peng R, Wang R, Wang C. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiology and Biochemistry 2013;70:278-86. [DOI: 10.1016/j.plaphy.2013.05.042] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 8.7] [Reference Citation Analysis]
24 Kanodia S, Agarwal S, Singh P, Agarwal S, Singh P, Bhatnagar R. Biochemical characterization of alanine racemase--a spore protein produced by Bacillus anthracis. BMB Rep 2009;42:47-52. [PMID: 19192393 DOI: 10.5483/bmbrep.2009.42.1.047] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
25 Hasanuzzaman M, Hossain MS, Bhuyan MHMB, Al Mahmud J, Nahar K, Fujita M. The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-nowak B, editors. Plant Nutrients and Abiotic Stress Tolerance. Singapore: Springer; 2018. pp. 221-52. [DOI: 10.1007/978-981-10-9044-8_10] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
26 Li YW, Gong ZH, Mu Y, Zhang YX, Qiao ZJ, Zhang LP, Jin ZP, Li H, Pei YX. An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission. J Zhejiang Univ Sci B 2012;13:1006-14. [PMID: 23225856 DOI: 10.1631/jzus.B1200089] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Papenbrock J, Riemenschneider A, Kamp A, Schulz-vogt HN, Schmidt A. Characterization of Cysteine-Degrading and H 2 S-Releasing Enzymes of Higher Plants - From the Field to the Test Tube and Back. Plant Biology 2007;9:582-8. [DOI: 10.1055/s-2007-965424] [Cited by in Crossref: 131] [Cited by in F6Publishing: 114] [Article Influence: 8.7] [Reference Citation Analysis]
28 Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. Plant Physiology and Biochemistry 2020;155:20-34. [DOI: 10.1016/j.plaphy.2020.07.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
29 Ma L, Yang L, Zhao J, Wei J, Kong X, Wang C, Zhang X, Yang Y, Hu X. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta 2015;241:887-906. [PMID: 25526962 DOI: 10.1007/s00425-014-2209-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
30 Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA. Sulfur Metabolism and Stress Defense Responses in Plants. Tropical Plant Biol 2015;8:60-73. [DOI: 10.1007/s12042-015-9152-1] [Cited by in Crossref: 92] [Cited by in F6Publishing: 37] [Article Influence: 13.1] [Reference Citation Analysis]
31 Baudouin E, Poilevey A, Hewage NI, Cochet F, Puyaubert J, Bailly C. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination. Front Plant Sci 2016;7:930. [PMID: 27446159 DOI: 10.3389/fpls.2016.00930] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
32 De Kok LJ, Durenkamp M, Yang L, Stulen I. Atmospheric sulfur. In: Hawkesford MJ, De Kok LJ, editors. Sulfur in Plants An Ecological Perspective. Dordrecht: Springer Netherlands; 2007. pp. 91-106. [DOI: 10.1007/978-1-4020-5887-5_5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
33 Tyagi A, Sharma S, Ali S, Gaikwad K. Crosstalk between H2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. Plant Biol (Stuttg) 2021. [PMID: 34693601 DOI: 10.1111/plb.13319] [Reference Citation Analysis]
34 Krüßel L, Junemann J, Wirtz M, Birke H, Thornton JD, Browning LW, Poschet G, Hell R, Balk J, Braun HP, Hildebrandt TM. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis. Plant Physiol 2014;165:92-104. [PMID: 24692429 DOI: 10.1104/pp.114.239764] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 5.5] [Reference Citation Analysis]
35 Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S. 8-Mercapto-Cyclic GMP Mediates Hydrogen Sulfide-Induced Stomatal Closure in Arabidopsis. Plant Cell Physiol 2015;56:1481-9. [PMID: 25975264 DOI: 10.1093/pcp/pcv069] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 8.1] [Reference Citation Analysis]
36 Cui W, Chen H, Zhu K, Jin Q, Xie Y, Cui J, Xia Y, Zhang J, Shen W. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases. PLoS One 2014;9:e109669. [PMID: 25275379 DOI: 10.1371/journal.pone.0109669] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
37 Pandey AK, Gautam A. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol Plant 2020;168:511-25. [PMID: 31916586 DOI: 10.1111/ppl.13064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
38 Yamasaki H, Cohen MF. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 2016;55-56:91-100. [DOI: 10.1016/j.niox.2016.04.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 8.2] [Reference Citation Analysis]
39 Chen Y, Mo HZ, Zheng MY, Xian M, Qi ZQ, Li YQ, Hu LB, Chen J, Yang LF. Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa. PLoS One 2014;9:e110904. [PMID: 25333279 DOI: 10.1371/journal.pone.0110904] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
40 Zhang H, Ye Y, Wang S, Luo J, Tang J, Ma D. Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 2009;58:243-50. [DOI: 10.1007/s10725-009-9372-1] [Cited by in Crossref: 128] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
41 Zhang L, Pei Y, Wang H, Jin Z, Liu Z, Qiao Z, Fang H, Zhang Y. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis. Oxid Med Cell Longev 2015;2015:804603. [PMID: 26078819 DOI: 10.1155/2015/804603] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
42 Talukdar D. Glutathione deficiency in a grass pea (Lathyrus sativus L.) mutant reveals major reshuffle in up-stream thiol cascade and down-stream antioxidant defense under arsenate stress. Braz J Bot 2016;39:55-66. [DOI: 10.1007/s40415-015-0213-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
43 Guo H, Xiao T, Zhou H, Xie Y, Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol Plant 2016;38. [DOI: 10.1007/s11738-015-2038-x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 29] [Article Influence: 8.1] [Reference Citation Analysis]
44 Yang L, Xu Y, Zhang R, Wang X, Yang C. Comprehensive transcriptome profiling of soybean leaves in response to simulated acid rain. Ecotoxicol Environ Saf 2018;158:18-27. [PMID: 29656160 DOI: 10.1016/j.ecoenv.2018.04.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
45 Zhang H, Tan Z, Hu L, Wang S, Luo J, Jones RL. Hydrogen Sulfide Alleviates Aluminum Toxicity in Germinating Wheat Seedlings. Journal of Integrative Plant Biology 2010;52:556-67. [DOI: 10.1111/j.1744-7909.2010.00946.x] [Cited by in Crossref: 149] [Cited by in F6Publishing: 121] [Article Influence: 12.4] [Reference Citation Analysis]
46 Vojtovič D, Luhová L, Petřivalský M. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2021;27:199-209. [PMID: 33318878 DOI: 10.1016/j.jare.2020.09.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep 2021;40:1543-64. [PMID: 34142217 DOI: 10.1007/s00299-021-02731-3] [Reference Citation Analysis]
48 Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y. Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 2017;7:2615. [PMID: 28572670 DOI: 10.1038/s41598-017-02872-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
49 Hou Z, Wang L, Liu J, Hou L, Liu X. Hydrogen Sulfide Regulates Ethylene-induced Stomatal Closure in Arabidopsis thaliana. Journal of Integrative Plant Biology 2013;55:277-89. [DOI: 10.1111/jipb.12004] [Cited by in Crossref: 76] [Cited by in F6Publishing: 62] [Article Influence: 8.4] [Reference Citation Analysis]
50 Zhou H, Guan W, Zhou M, Shen J, Liu X, Wu D, Yin X, Xie Y. Cloning and Characterization of a gene Encoding True D-cysteine Desulfhydrase from Oryza sativa. Plant Mol Biol Rep 2020;38:95-113. [DOI: 10.1007/s11105-019-01181-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Kharbech O, Sakouhi L, Mahjoubi Y, Ben Massoud M, Debez A, Zribi OT, Djebali W, Chaoui A, Mur LAJ. Nitric oxide donor, sodium nitroprusside modulates hydrogen sulfide metabolism and cysteine homeostasis to aid the alleviation of chromium toxicity in maize seedlings (Zea mays L.). J Hazard Mater 2022;424:127302. [PMID: 34583165 DOI: 10.1016/j.jhazmat.2021.127302] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Zhang H, Jiao H, Jiang C, Wang S, Wei Z, Luo J, Jones RL. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 2010;32:849-57. [DOI: 10.1007/s11738-010-0469-y] [Cited by in Crossref: 100] [Cited by in F6Publishing: 54] [Article Influence: 8.3] [Reference Citation Analysis]
53 Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. Amino Acid Catabolism in Plants. Mol Plant 2015;8:1563-79. [PMID: 26384576 DOI: 10.1016/j.molp.2015.09.005] [Cited by in Crossref: 406] [Cited by in F6Publishing: 319] [Article Influence: 58.0] [Reference Citation Analysis]
54 Zhou M, Zhou H, Shen J, Zhang Z, Gotor C, Romero LC, Yuan X, Xie Y. H2S action in plant life cycle. Plant Growth Regul 2021;94:1-9. [DOI: 10.1007/s10725-021-00693-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
55 Laureano-marín AM, Moreno I, Aroca Á, García I, Romero LC, Gotor C. Regulation of Autophagy by Hydrogen Sulfide. In: Lamattina L, García-mata C, editors. Gasotransmitters in Plants. Cham: Springer International Publishing; 2016. pp. 53-75. [DOI: 10.1007/978-3-319-40713-5_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
56 Liu H, Wang J, Liu J, Liu T, Xue S. Hydrogen sulfide (H2S) signaling in plant development and stress responses. Abiotech 2021;:1-32. [PMID: 34377579 DOI: 10.1007/s42994-021-00035-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
57 Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H2 S) for improving fruit quality traits. Plant Biol (Stuttg) 2021. [PMID: 34866296 DOI: 10.1111/plb.13372] [Reference Citation Analysis]
58 Mukherjee S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 2019;82:25-34. [DOI: 10.1016/j.niox.2018.11.003] [Cited by in Crossref: 51] [Cited by in F6Publishing: 31] [Article Influence: 17.0] [Reference Citation Analysis]
59 Niwa K, Nakamura M, Ohmiya Y. Stereoisomeric bio-inversion key to biosynthesis of firefly d -luciferin. FEBS Letters 2006;580:5283-7. [DOI: 10.1016/j.febslet.2006.08.073] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 1.9] [Reference Citation Analysis]
60 Brown EM, Ranasinghe Arachchige NPR, Paudel A, Bowden NB. Synthesis, Stability, and Kinetics of Hydrogen Sulfide Release of Dithiophosphates. J Agric Food Chem 2021;69:12900-8. [PMID: 34694792 DOI: 10.1021/acs.jafc.1c04655] [Reference Citation Analysis]
61 Liu F, Zhang X, Cai B, Pan D, Fu X, Bi H, Ai X. Physiological response and transcription profiling analysis reveal the role of glutathione in H2S-induced chilling stress tolerance of cucumber seedlings. Plant Science 2020;291:110363. [DOI: 10.1016/j.plantsci.2019.110363] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
62 Zhou H, Zhou Y, Zhang F, Guan W, Su Y, Yuan X, Xie Y. Persulfidation of Nitrate Reductase 2 Is Involved in l-Cysteine Desulfhydrase-Regulated Rice Drought Tolerance. Int J Mol Sci 2021;22:12119. [PMID: 34829996 DOI: 10.3390/ijms222212119] [Reference Citation Analysis]
63 Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, Romero LC, Shen J, Ge Z, Zhang Z, Shen W, Yuan X, Xie Y. Hydrogen sulfide, a signaling molecule in plant stress responses. J Integr Plant Biol 2021;63:146-60. [PMID: 33058490 DOI: 10.1111/jipb.13022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
64 Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 2013;64:1953-66. [PMID: 23567865 DOI: 10.1093/jxb/ert055] [Cited by in Crossref: 202] [Cited by in F6Publishing: 153] [Article Influence: 22.4] [Reference Citation Analysis]
65 Khan MN, Siddiqui MH, Alsolami MA, Alamri S, Hu Y, Ali HM, Al-amri AA, Alsubaie QD, Al-munqedhi BM, Al-ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology and Biochemistry 2020;156:278-90. [DOI: 10.1016/j.plaphy.2020.09.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 10.5] [Reference Citation Analysis]
66 Aroca A, Gotor C, Romero LC. Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation. Front Plant Sci 2018;9:1369. [PMID: 30283480 DOI: 10.3389/fpls.2018.01369] [Cited by in Crossref: 103] [Cited by in F6Publishing: 78] [Article Influence: 25.8] [Reference Citation Analysis]
67 Luo S, Calderón-urrea A, Yu J, Liao W, Xie J, Lv J, Feng Z, Tang Z. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil 2020;449:1-10. [DOI: 10.1007/s11104-020-04471-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
68 Kumar A, Patel JS, Meena VS, Srivastava R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatalysis and Agricultural Biotechnology 2019;20:101271. [DOI: 10.1016/j.bcab.2019.101271] [Cited by in Crossref: 30] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
69 Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 2011;414:481-6. [DOI: 10.1016/j.bbrc.2011.09.090] [Cited by in Crossref: 161] [Cited by in F6Publishing: 127] [Article Influence: 14.6] [Reference Citation Analysis]
70 Emamzadeh R, Hosseinkhani S, Hemati R, Sadeghizadeh M. RACE-based amplification of cDNA and expression of a luciferin-regenerating enzyme (LRE): An attempt towards persistent bioluminescent signal. Enzyme and Microbial Technology 2010;47:159-65. [DOI: 10.1016/j.enzmictec.2010.05.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
71 Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pei Y. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS One 2013;8:e77047. [PMID: 24194857 DOI: 10.1371/journal.pone.0077047] [Cited by in Crossref: 73] [Cited by in F6Publishing: 51] [Article Influence: 8.1] [Reference Citation Analysis]
72 Xie Y, Zhang C, Lai D, Sun Y, Samma MK, Zhang J, Shen W. Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. Journal of Plant Physiology 2014;171:53-62. [DOI: 10.1016/j.jplph.2013.09.018] [Cited by in Crossref: 83] [Cited by in F6Publishing: 64] [Article Influence: 10.4] [Reference Citation Analysis]
73 Talukdar D. Functional interplay between glutathione and hydrogen sulfide in regulation of thiol cascade during arsenate tolerance of common bean (Phaseolus vulgaris L.) genotypes. 3 Biotech 2015;5:819-29. [PMID: 28324537 DOI: 10.1007/s13205-015-0285-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
74 González-gordo S, Palma JM, Corpas FJ. Appraisal of H2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. Plant Physiology and Biochemistry 2020;155:579-88. [DOI: 10.1016/j.plaphy.2020.08.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
75 Singh RP, Shelke GM, Kumar A, Jha PN. Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front Microbiol 2015;6:937. [PMID: 26441873 DOI: 10.3389/fmicb.2015.00937] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
76 Hemmati R, Hosseinkhani S, Sajedi RH, Azad T, Tashakor A, Bakhtiari N, Ataei F. Luciferin-Regenerating Enzyme Mediates Firefly Luciferase Activation Through Direct Effects of D-Cysteine on Luciferase Structure and Activity. Photochem Photobiol 2015;91:828-36. [PMID: 25665080 DOI: 10.1111/php.12430] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
77 Shibuya N, Koike S, Tanaka M, Ishigami-yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 2013;4. [DOI: 10.1038/ncomms2371] [Cited by in Crossref: 306] [Cited by in F6Publishing: 290] [Article Influence: 34.0] [Reference Citation Analysis]
78 Shi H, Ye T, Han N, Bian H, Liu X, Chan Z. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis: Involvement of H 2 S in abiotic and biotic stresses. J Integr Plant Biol 2015;57:628-40. [DOI: 10.1111/jipb.12302] [Cited by in Crossref: 99] [Cited by in F6Publishing: 62] [Article Influence: 14.1] [Reference Citation Analysis]
79 Quirós-sauceda AE, Velderrain-rodríguez GR, Ovando-martínez M, Goñi MG, González-aguilar GA, Ayala-zavala JF. Hydrogen Sulfide. In: Siddiqui MW, Ayala Zavala JF, Hwang C, editors. Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Cham: Springer International Publishing; 2016. pp. 37-50. [DOI: 10.1007/978-3-319-23582-0_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
80 Hu K, Peng X, Yao G, Zhou Z, Yang F, Li W, Zhao Y, Li Y, Han Z, Chen X, Zhang H. Roles of a Cysteine Desulfhydrase LCD1 in Regulating Leaf Senescence in Tomato. Int J Mol Sci 2021;22:13078. [PMID: 34884883 DOI: 10.3390/ijms222313078] [Reference Citation Analysis]
81 Fuentes-Lara LO, Medrano-Macías J, Pérez-Labrada F, Rivas-Martínez EN, García-Enciso EL, González-Morales S, Juárez-Maldonado A, Rincón-Sánchez F, Benavides-Mendoza A. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants. Molecules 2019;24:E2282. [PMID: 31248198 DOI: 10.3390/molecules24122282] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 7.7] [Reference Citation Analysis]
82 Ma Y, Niu J, Zhang W, Wu X. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating darkness-induced stomatal closure in Vicia faba. Functional Plant Biol 2018;45:553. [DOI: 10.1071/fp17274] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
83 Todorovic B, Glick BR. The interconversion of ACC deaminase and d-cysteine desulfhydrase by directed mutagenesis. Planta 2008;229:193-205. [DOI: 10.1007/s00425-008-0820-3] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
84 Khan MN, Siddiqui MH, Mukherjee S, Alamri S, Al-amri AA, Alsubaie QD, Al-munqedhi BM, Ali HM. Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots. Plant Physiology and Biochemistry 2021;159:211-25. [DOI: 10.1016/j.plaphy.2020.11.055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
85 Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. Environ Pollut 2021;290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Mallory EK, de Rochemonteix M, Ratner A, Acharya A, Re C, Bright RA, Altman RB. Extracting chemical reactions from text using Snorkel. BMC Bioinformatics 2020;21:217. [PMID: 32460703 DOI: 10.1186/s12859-020-03542-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
87 Qiao Z, Jing T, Liu Z, Zhang L, Jin Z, Liu D, Pei Y. H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. Plant Soil 2015;393:137-46. [DOI: 10.1007/s11104-015-2475-8] [Cited by in Crossref: 50] [Cited by in F6Publishing: 30] [Article Influence: 7.1] [Reference Citation Analysis]
88 Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2014;169:30-9. [PMID: 24095256 DOI: 10.1016/j.micres.2013.09.009] [Cited by in Crossref: 952] [Cited by in F6Publishing: 576] [Article Influence: 105.8] [Reference Citation Analysis]
89 Khairy H, Meinert C, Wübbeler JH, Poehlein A, Daniel R, Voigt B, Riedel K, Steinbüchel A. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism. PLoS One 2016;11:e0167539. [PMID: 27977722 DOI: 10.1371/journal.pone.0167539] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
90 Ekimova GA, Fedorov DN, Tani A, Doronina NV, Trotsenko YA. Distribution of 1-aminocyclopropane-1-carboxylate deaminase and d-cysteine desulfhydrase genes among type species of the genus Methylobacterium. Antonie van Leeuwenhoek 2018;111:1723-34. [DOI: 10.1007/s10482-018-1061-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
91 Khan MN, Mukherjee S, Al-Huqail AA, Basahi RA, Ali HM, Al-Munqedhi BMA, Siddiqui MH, Kalaji HM. Exogenous Potassium (K+) Positively Regulates Na+/H+ Antiport System, Carbohydrate Metabolism, and Ascorbate-Glutathione Cycle in H2S-Dependent Manner in NaCl-Stressed Tomato Seedling Roots. Plants (Basel) 2021;10:948. [PMID: 34068675 DOI: 10.3390/plants10050948] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020;9:E621. [PMID: 32679888 DOI: 10.3390/antiox9070621] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
93 Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 2014;9:e99168. [PMID: 24905353 DOI: 10.1371/journal.pone.0099168] [Cited by in Crossref: 111] [Cited by in F6Publishing: 69] [Article Influence: 13.9] [Reference Citation Analysis]
94 Sweetlove LJ, Fait A, Nunes-nesi A, Williams T, Fernie AR. The Mitochondrion: An Integration Point of Cellular Metabolism and Signalling. Critical Reviews in Plant Sciences 2007;26:17-43. [DOI: 10.1080/07352680601147919] [Cited by in Crossref: 75] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
95 Xia C, Hong L, Yang Y, Yanping X, Xing H, Gang D. Protein Changes in Response to Lead Stress of Lead-Tolerant and Lead-Sensitive Industrial Hemp Using SWATH Technology. Genes (Basel) 2019;10:E396. [PMID: 31121980 DOI: 10.3390/genes10050396] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
96 Papanatsiou M, Scuffi D, Blatt MR, García-Mata C. Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiol 2015;168:29-35. [PMID: 25770153 DOI: 10.1104/pp.114.256057] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
97 Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. Front Plant Sci 2020;11:571288. [PMID: 33072147 DOI: 10.3389/fpls.2020.571288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
98 Calderwood A, Kopriva S. Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule. Nitric Oxide 2014;41:72-8. [DOI: 10.1016/j.niox.2014.02.005] [Cited by in Crossref: 123] [Cited by in F6Publishing: 96] [Article Influence: 15.4] [Reference Citation Analysis]
99 Ziogas V, Tanou G, Belghazi M, Filippou P, Fotopoulos V, Grigorios D, Molassiotis A. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. Plant Mol Biol 2015;89:433-50. [PMID: 26404728 DOI: 10.1007/s11103-015-0379-x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 7.6] [Reference Citation Analysis]
100 Zhang H, Hu L-, Li P, Hu K-, Jiang C-, Luo J-. Hydrogen sulfide alleviated chromium toxicity in wheat. Biologia plant 2010;54:743-7. [DOI: 10.1007/s10535-010-0133-9] [Cited by in Crossref: 98] [Cited by in F6Publishing: 65] [Article Influence: 8.2] [Reference Citation Analysis]
101 Liu Z, Fang H, Pei Y, Jin Z, Zhang L, Liu D. WRKY transcription factors down-regulate the expression of H 2 S-generating genes, LCD and DES in Arabidopsis thaliana. Science Bulletin 2015;60:995-1001. [DOI: 10.1007/s11434-015-0787-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
102 Khan MN, AlZuaibr FM, Al-Huqail AA, Siddiqui MH, M Ali H, Al-Muwayhi MA, Al-Haque HN. Hydrogen Sulfide-Mediated Activation of O-Acetylserine (Thiol) Lyase and l/d-Cysteine Desulfhydrase Enhance Dehydration Tolerance in Eruca sativa Mill. Int J Mol Sci 2018;19:E3981. [PMID: 30544896 DOI: 10.3390/ijms19123981] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
103 Kimura H. Hydrogen sulfide and polysulfides as signaling molecules. Proc Jpn Acad Ser B Phys Biol Sci 2015;91:131-59. [PMID: 25864468 DOI: 10.2183/pjab.91.131] [Cited by in Crossref: 75] [Cited by in F6Publishing: 67] [Article Influence: 10.7] [Reference Citation Analysis]
104 Liu Z, Cao C, Li Y, Yang G, Pei Y. Light regulates hydrogen sulfide signalling during skoto- and photo-morphogenesis in foxtail millet. Functional Plant Biol 2019;46:916. [DOI: 10.1071/fp19079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Hou L, Zhu D, Ma Q, Zhang D, Liu X. H 2 S synthetase AtD-CDes involves in ethylene and drought regulated stomatal movement. Science Bulletin 2016;61:1171-5. [DOI: 10.1007/s11434-016-1128-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
106 Hell R, Wirtz M. Metabolism of Cysteine in Plants and Phototrophic Bacteria. In: Hell R, Dahl C, Knaff D, Leustek T, editors. Sulfur Metabolism in Phototrophic Organisms. Dordrecht: Springer Netherlands; 2008. pp. 59-91. [DOI: 10.1007/978-1-4020-6863-8_4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
107 Zhang H, Wang MJ, Hu LY, Wang SH, Hu KD, Bao LJ, Luo JP. Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russ J Plant Physiol 2010;57:532-9. [DOI: 10.1134/s1021443710040114] [Cited by in Crossref: 63] [Article Influence: 5.3] [Reference Citation Analysis]
108 Gotor C, García I, Aroca Á, Laureano-marín AM, Arenas-alfonseca L, Jurado-flores A, Moreno I, Romero LC, Kopriva S. Signaling by hydrogen sulfide and cyanide through post-translational modification. Journal of Experimental Botany 2019;70:4251-65. [DOI: 10.1093/jxb/erz225] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 16.3] [Reference Citation Analysis]
109 Hell R, Wirtz M. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana. Arabidopsis Book 2011;9:e0154. [PMID: 22303278 DOI: 10.1199/tab.0154] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 5.4] [Reference Citation Analysis]
110 Mcdonnell L, Plett JM, Andersson-gunnerås S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S. Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiologia Plantarum 2009;136:94-109. [DOI: 10.1111/j.1399-3054.2009.01208.x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]