BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hanlon DJ, Aldo PB, Devine L, Alvero AB, Engberg AK, Edelson R, Mor G. Enhanced stimulation of anti-ovarian cancer CD8(+) T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen. Am J Reprod Immunol 2011;65:597-609. [PMID: 21241402 DOI: 10.1111/j.1600-0897.2010.00968.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019;10:707. [PMID: 31024545 DOI: 10.3389/fimmu.2019.00707] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
2 Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer Nanoparticle-Mediated Delivery of Oxidized Tumor Lysate-Based Cancer Vaccines. Macromol Biosci 2021;:e2100356. [PMID: 34822219 DOI: 10.1002/mabi.202100356] [Reference Citation Analysis]
3 Kohnepoushi C, Nejati V, Delirezh N, Biparva P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunological Investigations 2019;48:794-808. [DOI: 10.1080/08820139.2019.1610889] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
4 He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020;15:416-48. [PMID: 32952667 DOI: 10.1016/j.ajps.2019.08.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
5 Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018;10:E242. [PMID: 30042343 DOI: 10.3390/cancers10080242] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 13.0] [Reference Citation Analysis]
6 Diesner SC, Wang XY, Jensen-Jarolim E, Untersmayr E, Gabor F. Use of lectin-functionalized particles for oral immunotherapy. Ther Deliv 2012;3:277-90. [PMID: 22834202 DOI: 10.4155/tde.11.146] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
7 Zhang L, Zhao S, Duan J, Hu Y, Gu N, Xu H, Yang XD. Enhancement of DC-mediated anti-leukemic immunity in vitro by WT1 antigen and CpG co-encapsulated in PLGA microparticles. Protein Cell 2013;4:887-9. [PMID: 24258060 DOI: 10.1007/s13238-013-3916-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
8 Gnainsky Y, Granot I, Aldo P, Barash A, Or Y, Mor G, Dekel N. Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action. Reproduction 2015;149:75-85. [PMID: 25349438 DOI: 10.1530/REP-14-0395] [Cited by in Crossref: 82] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
9 Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer 2018;9:1773-81. [PMID: 29805703 DOI: 10.7150/jca.24577] [Cited by in Crossref: 132] [Cited by in F6Publishing: 114] [Article Influence: 33.0] [Reference Citation Analysis]
10 Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018;10:E242. [PMID: 30042343 DOI: 10.3390/cancers10080242] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. Adv Mater 2020;32:e1901255. [PMID: 31206841 DOI: 10.1002/adma.201901255] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 20.7] [Reference Citation Analysis]
12 Nayama M, Collinet P, Salzet M, Vinatier D. [Immunological aspects of ovarian cancer: Therapeutic perspectives]. J Gynecol Obstet Biol Reprod (Paris) 2016;45:1020-36. [PMID: 27320132 DOI: 10.1016/j.jgyn.2016.05.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
13 Ophir E, Bobisse S, Coukos G, Harari A, Kandalaft LE. Personalized approaches to active immunotherapy in cancer. Biochim Biophys Acta 2016;1865:72-82. [PMID: 26241169 DOI: 10.1016/j.bbcan.2015.07.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
14 Cheng H, Ma R, Wang S, Wang Y, Li Y, Tang Z, Dou S, Wang Y, Zhu H, Ye X, Zhang T, Zhang Y, Li S, Zhao Y, Li Y, Cui H, Chang X. Preliminary Safety and Potential Effect of 6B11-OCIK Adoptive Cell Therapy Against Platinum-Resistant Recurrent or Refractory Ovarian Cancer. Front Immunol 2021;12:707468. [PMID: 34408750 DOI: 10.3389/fimmu.2021.707468] [Reference Citation Analysis]
15 Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res 2018;11:5769-86. [DOI: 10.1007/s12274-018-2124-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 8.8] [Reference Citation Analysis]
16 Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27470448 DOI: 10.1002/wnan.1421] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
17 Ma C, MacDonald JK, Nguyen TM, Vande Casteele N, Linggi B, Lefevre P, Wang Y, Feagan BG, Jairath V. Pharmacological Interventions for the Prevention and Treatment of Immune Checkpoint Inhibitor-Associated Enterocolitis: A Systematic Review. Dig Dis Sci 2021. [PMID: 33770330 DOI: 10.1007/s10620-021-06948-w] [Reference Citation Analysis]
18 Dhakal S, Hiremath J, Bondra K, Lakshmanappa YS, Shyu DL, Ouyang K, Kang KI, Binjawadagi B, Goodman J, Tabynov K, Krakowka S, Narasimhan B, Lee CW, Renukaradhya GJ. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release 2017;247:194-205. [PMID: 28057521 DOI: 10.1016/j.jconrel.2016.12.039] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 10.4] [Reference Citation Analysis]
19 Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015;115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Cited by in Crossref: 418] [Cited by in F6Publishing: 397] [Article Influence: 59.7] [Reference Citation Analysis]
20 Jahan ST, Sadat SMA, Yarahmadi M, Haddadi A. Potentiating Antigen Specific Immune Response by Targeted Delivery of the PLGA-Based Model Cancer Vaccine. Mol Pharmaceutics 2019;16:498-509. [DOI: 10.1021/acs.molpharmaceut.8b00700] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
21 Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161:505-22. [PMID: 22353619 DOI: 10.1016/j.jconrel.2012.01.043] [Cited by in Crossref: 1832] [Cited by in F6Publishing: 1700] [Article Influence: 183.2] [Reference Citation Analysis]
22 Corradetti B, Pisano S, Conlan RS, Ferrari M. Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. J Pharmacol Exp Ther 2019;370:636-46. [PMID: 30737357 DOI: 10.1124/jpet.118.254979] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
23 Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. Journal of Controlled Release 2012;161:25-37. [DOI: 10.1016/j.jconrel.2012.05.010] [Cited by in Crossref: 127] [Cited by in F6Publishing: 120] [Article Influence: 12.7] [Reference Citation Analysis]
24 Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J 2014;16:1194-203. [PMID: 25224145 DOI: 10.1208/s12248-014-9662-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
25 Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. Journal of Drug Targeting 2015;23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
26 Duwa R, Jeong J, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. Journal of Industrial and Engineering Chemistry 2021;94:62-77. [DOI: 10.1016/j.jiec.2020.11.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
27 Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018;10:E242. [PMID: 30042343 DOI: 10.3390/cancers10080242] [Reference Citation Analysis]
28 Chesson CB, Zloza A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer. Nanomedicine (Lond) 2017;12:2693-706. [PMID: 29098928 DOI: 10.2217/nnm-2017-0254] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
29 Ghisoni E, Imbimbo M, Zimmermann S, Valabrega G. Ovarian Cancer Immunotherapy: Turning up the Heat. Int J Mol Sci 2019;20:E2927. [PMID: 31208030 DOI: 10.3390/ijms20122927] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 19.0] [Reference Citation Analysis]
30 Alvero AB, Montagna MK, Craveiro V, Liu L, Mor G. Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype. Am J Reprod Immunol 2012;67:256-65. [PMID: 21917055 DOI: 10.1111/j.1600-0897.2011.01068.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
31 Ebrahimi F, Ramezani Dana H. Poly lactic acid (PLA) polymers: from properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1944140] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Chin AL, Wang X, Tong R. Aliphatic Polyester-Based Materials for Enhanced Cancer Immunotherapy. Macromol Biosci 2021;21:e2100087. [PMID: 33909344 DOI: 10.1002/mabi.202100087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Joshi VB, Geary SM, Gross BP, Wongrakpanich A, Norian LA, Salem AK. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev Vaccines 2014;13:9-15. [PMID: 24219096 DOI: 10.1586/14760584.2014.851606] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]