BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wan MH, Huang W, Latawiec D, Jiang K, Booth DM, Elliott V, Mukherjee R, Xia Q. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford). 2012;14:73-81. [PMID: 22221567 DOI: 10.1111/j.1477-2574.2011.00408.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Novak I, Praetorius J. Fundamentals of Bicarbonate Secretion in Epithelia. In: Hamilton KL, Devor DC, editors. Ion Channels and Transporters of Epithelia in Health and Disease. New York: Springer; 2016. pp. 187-263. [DOI: 10.1007/978-1-4939-3366-2_5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
2 Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 2015;13:28. [PMID: 26050734 DOI: 10.1186/s12964-015-0107-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
3 Hirota M, Shimosegawa T. Bile Acids and Pancreatic Disease. In: Tazuma S, Takikawa H, editors. Bile Acids in Gastroenterology. Tokyo: Springer Japan; 2017. pp. 169-76. [DOI: 10.1007/978-4-431-56062-3_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Zhang J, Chao L, Liu X, Shi Y, Zhang C, Kong L, Li R. The potential application of strategic released apigenin from polymeric carrier in pulmonary fibrosis. Experimental Lung Research 2017;43:359-69. [DOI: 10.1080/01902148.2017.1380086] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020;11:614591. [PMID: 33424638 DOI: 10.3389/fphys.2020.614591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hidalgo-Sastre A, Desztics J, Dantes Z, Schulte K, Ensarioglu HK, Bassey-Archibong B, Öllinger R, Engleiter T, Rayner L, Einwächter H, Daniel JM, Altaee ASA, Steiger K, Lesina M, Rad R, Reichert M, von Figura G, Siveke JT, Schmid RM, Lubeseder-Martellato C. Loss of Wasl improves pancreatic cancer outcome. JCI Insight 2020;5:127275. [PMID: 32434991 DOI: 10.1172/jci.insight.127275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Pan Y, Fang H, Lu F, Pan M, Chen F, Xiong P, Yao Y, Huang H. Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells. J Inflamm (Lond) 2017;14:7. [PMID: 28344516 DOI: 10.1186/s12950-017-0154-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
8 Zheng YS, Wu ZS, Zhang LY, Ke L, Li WQ, Li N, Li JS. Nicotine ameliorates experimental severe acute pancreatitis via enhancing immunoregulation of CD4+ CD25+ regulatory T cells. Pancreas 2015;44:500-6. [PMID: 25742430 DOI: 10.1097/MPA.0000000000000294] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
9 Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X, Pan S, Xue D, Wang G, Sun B. Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 2016;20:2349-61. [PMID: 27419805 DOI: 10.1111/jcmm.12928] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
10 Shi C, Hou C, Zhu X, Huang D, Peng Y, Tu M, Li Q, Miao Y. SRT1720 ameliorates sodium taurocholate-induced severe acute pancreatitis in rats by suppressing NF-κB signalling. Biomed Pharmacother 2018;108:50-7. [PMID: 30216799 DOI: 10.1016/j.biopha.2018.09.035] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
11 Du D, Yao L, Zhang R, Shi N, Shen Y, Yang X, Zhang X, Jin T, Liu T, Hu L, Xing Z, Criddle DN, Xia Q, Huang W, Sutton R. Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. J Ethnopharmacol 2018;224:261-72. [PMID: 29870787 DOI: 10.1016/j.jep.2018.06.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
12 Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Bai ZH, Su LJ, Pei HH. The toll-like receptor 4 antagonist transforming growth factor-β-activated kinase(TAK)-242 attenuates taurocholate-induced oxidative stress through regulating mitochondrial function in mice pancreatic acinar cells. J Surg Res 2016;206:298-306. [PMID: 27884323 DOI: 10.1016/j.jss.2016.08.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
13 Anchi P, Khurana A, Bale S, Godugu C. The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence: Plant-derived Products in Pancreatitis. Phytother Res 2017;31:591-623. [DOI: 10.1002/ptr.5792] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
14 郑英强, 黄娟, 曾凡才, 周翔宇. 雨蛙素及脂多糖在小鼠急性胰腺炎建模中的应用. 世界华人消化杂志 2014; 22(27): 4068-4074 [DOI: 10.11569/wcjd.v22.i27.4068] [Reference Citation Analysis]
15 Peng Y, Hong J, Raftery D, Xia Q, Du D. Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim Biophys Acta Mol Basis Dis 2021;1867:166123. [PMID: 33713791 DOI: 10.1016/j.bbadis.2021.166123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Katona M, Hegyi P, Kui B, Balla Z, Rakonczay Z Jr, Rázga Z, Tiszlavicz L, Maléth J, Venglovecz V. A novel, protective role of ursodeoxycholate in bile-induced pancreatic ductal injury. Am J Physiol Gastrointest Liver Physiol 2016;310:G193-204. [PMID: 26608189 DOI: 10.1152/ajpgi.00317.2015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
17 Zhou X, Liu Z, Jang F, Xiang C, Li Y, He Y. Autocrine Sonic hedgehog attenuates inflammation in cerulein-induced acute pancreatitis in mice via upregulation of IL-10. PLoS One. 2012;7:e44121. [PMID: 22956998 DOI: 10.1371/journal.pone.0044121] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.8] [Reference Citation Analysis]
18 Feng W, Guo H, Xue T, Wang X, Tang C, Ying B, Gong H, Cui G. Anti-inflammation and anti-fibrosis with PEGylated, apigenin loaded PLGA nanoparticles in chronic pancreatitis disease. RSC Adv 2015;5:83628-35. [DOI: 10.1039/c5ra17686g] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
19 Ahmadi A, Nikkhoo B, Mokarizadeh A, Rahmani MR, Fakhari S, Mohammadi M, Jalili A. An optimised mouse model of chronic pancreatitis with a combination of ethanol and cerulein. Cent Eur J Immunol 2016;41:54-63. [PMID: 27095923 DOI: 10.5114/ceji.2016.58816] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
20 Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr. 2012;70:105-168. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Cited by in Crossref: 74] [Cited by in F6Publishing: 41] [Article Influence: 9.3] [Reference Citation Analysis]
21 Tran QT, Tran VH, Sendler M, Doller J, Wiese M, Bolsmann R, Wilden A, Glaubitz J, Modenbach JM, Thiel FG, de Freitas Chama LL, Weiss FU, Lerch MM, Aghdassi AA. Role of Bile Acids and Bile Salts in Acute Pancreatitis: From the Experimental to Clinical Studies. Pancreas 2021;50:3-11. [PMID: 33370017 DOI: 10.1097/MPA.0000000000001706] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Mukherjee R, Nunes Q, Huang W, Sutton R. Precision medicine for acute pancreatitis: current status and future opportunities. Precision Clinical Medicine 2019;2:81-6. [DOI: 10.1093/pcmedi/pbz010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
23 Feng W, Guo H, Xue T, Wang X, Tang C, Ying B, Gong H, Cui G. Polyelectrolyte multilayers assembled from IL-10 plasmid DNA and TGF-β siRNA facilitate chronic pancreatitis treatment. RSC Adv 2016;6:60171-9. [DOI: 10.1039/c6ra06681j] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
24 Schmidt AI, Kühlbrey C, Lauch R, Wolff-Vorbeck G, Chikhladze S, Hopt UT, Wittel UA. The predominance of a naive T helper cell subset in the immune response of experimental acute pancreatitis. Pancreatology 2017;17:209-18. [PMID: 28258935 DOI: 10.1016/j.pan.2017.02.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
25 Tsaroucha A, Kaldis V, Vailas M, Schizas D, Lambropoulou M, Papalois A, Tsigalou C, Gaitanidis A, Pitiakoudis M, Simopoulos C. The positive effect of eugenol on acute pancreatic tissue injury: a rat experimental model. Pan Afr Med J 2021;38:132. [PMID: 33912302 DOI: 10.11604/pamj.2021.38.132.20202] [Reference Citation Analysis]
26 Heindl M, Tuennemann J, Sommerer I, Mössner J, Hoffmeister A. Loss of Bace1 in mice does not alter the severity of caerulein induced pancreatitis. PLoS One 2015;10:e0125556. [PMID: 25961820 DOI: 10.1371/journal.pone.0125556] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
27 Xiao WQ, Yin GJ, Fan YT, Qiu L, Cang XF, Yu G, Hu YL, Xing M, Wu de Q, Wang XP. Catalpol ameliorates sodium taurocholate-induced acute pancreatitis in rats via inhibiting activation of nuclear factor kappa B. Int J Mol Sci. 2014;15:11957-11972. [PMID: 25000266 DOI: 10.3390/ijms150711957] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
28 Cosker F, Lima FJ, Lahlou S, Magalhães PJ. Cytoprotective effect of 1-nitro-2-phenylethane in mice pancreatic acinar cells subjected to taurocholate: putative role of guanylyl cyclase-derived 8-nitro-cyclic-GMP. Biochem Pharmacol 2014;91:191-201. [PMID: 25107700 DOI: 10.1016/j.bcp.2014.07.030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
29 Liang HY, Chen T, Wang T, Huang Z, Yan HT, Tang LJ. Time course of intestinal barrier function injury in a sodium taurocholate-induced severe acute pancreatitis in rat model: Intestinal barrier injury in SAP. Journal of Digestive Diseases 2014;15:386-93. [DOI: 10.1111/1751-2980.12148] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
30 Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther 2017; 8(1): 10-25 [PMID: 28217371 DOI: 10.4292/wjgpt.v8.i1.10] [Cited by in CrossRef: 96] [Cited by in F6Publishing: 88] [Article Influence: 24.0] [Reference Citation Analysis]
31 Huang W, Szatmary P, Wan M, Bharucha S, Awais M, Tang W, Criddle DN, Xia Q, Sutton R. Translational Insights Into Peroxisome Proliferator-Activated Receptors in Experimental Acute Pancreatitis. Pancreas 2016;45:167-78. [PMID: 26580452 DOI: 10.1097/MPA.0000000000000472] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
32 Armstrong JA, Cash N, Soares PM, Souza MH, Sutton R, Criddle DN. Oxidative stress in acute pancreatitis: lost in translation? Free Radic Res. 2013;47:917-933. [PMID: 23952531 DOI: 10.3109/10715762.2013.835046] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]