BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fisher RA. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics 1936;7:179-88. [DOI: 10.1111/j.1469-1809.1936.tb02137.x] [Cited by in Crossref: 7779] [Cited by in F6Publishing: 2258] [Article Influence: 777.9] [Reference Citation Analysis]
Number Citing Articles
1 Gzyl H, ter Horst E, Molina G. Application of the method of maximum entropy in the mean to classification problems. Physica A: Statistical Mechanics and its Applications 2015;437:101-8. [DOI: 10.1016/j.physa.2015.05.105] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
2 Salman A, Shufan E, Sahu R, Mordechai S, Sebbag G. Insights on colorectal cancer relapse by infrared microscopy from anastomosis tissues: Further analysis. Vibrational Spectroscopy 2016;83:17-25. [DOI: 10.1016/j.vibspec.2016.01.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
3 Longobardi F, Innamorato V, Di Gioia A, Ventrella A, Lippolis V, Logrieco AF, Catucci L, Agostiano A. Geographical origin discrimination of lentils (Lens culinaris Medik.) using 1H NMR fingerprinting and multivariate statistical analyses. Food Chemistry 2017;237:743-8. [DOI: 10.1016/j.foodchem.2017.05.159] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
4 Schwarz RD. Trace Lines for Classification Decisions. Applied Measurement in Education 1998;11:311-30. [DOI: 10.1207/s15324818ame1104_2] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
5 Li W, Ruan Q, Wan J. Dimensionality reduction using graph-embedded probability-based semi-supervised discriminant analysis. Neurocomputing 2014;138:283-96. [DOI: 10.1016/j.neucom.2014.02.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
6 Cho H, Kim K. Fault diagnosis of batch processes using discriminant model. International Journal of Production Research 2007;42:597-612. [DOI: 10.1080/00207540310001602928] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
7 Bai Z, Zheng S, Zhang B, Hu G. Statistical analysis for rounded data. Journal of Statistical Planning and Inference 2009;139:2526-42. [DOI: 10.1016/j.jspi.2008.11.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
8 Verniest F, Greulich S. Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review. Ecological Modelling 2019;414:108732. [DOI: 10.1016/j.ecolmodel.2019.108732] [Reference Citation Analysis]
9 Fujita A, Takahashi DY, Patriota AG. A non-parametric method to estimate the number of clusters. Computational Statistics & Data Analysis 2014;73:27-39. [DOI: 10.1016/j.csda.2013.11.012] [Cited by in Crossref: 36] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
10 Li C, Shao Y, Wang Z, Deng N, Yang Z. Robust Bhattacharyya bound linear discriminant analysis through an adaptive algorithm. Knowledge-Based Systems 2019;183:104858. [DOI: 10.1016/j.knosys.2019.07.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
11 Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, Mcfarland DJ, Vaughan TM, Wolpaw JR. A comparison of classification techniques for the P300 Speller. J Neural Eng 2006;3:299-305. [DOI: 10.1088/1741-2560/3/4/007] [Cited by in Crossref: 489] [Cited by in F6Publishing: 231] [Article Influence: 30.6] [Reference Citation Analysis]
12 Cortizo JC, Giraldez I, Gaya MC. Wrapping the Naive Bayes Classifier to Relax the Effect of Dependences. In: Yin H, Tino P, Corchado E, Byrne W, Yao X, editors. Intelligent Data Engineering and Automated Learning - IDEAL 2007. Berlin: Springer Berlin Heidelberg; 2007. pp. 229-39. [DOI: 10.1007/978-3-540-77226-2_24] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Troisi J, Sarno L, Martinelli P, Di Carlo C, Landolfi A, Scala G, Rinaldi M, D’alessandro P, Ciccone C, Guida M. A metabolomics-based approach for non-invasive diagnosis of chromosomal anomalies. Metabolomics 2017;13. [DOI: 10.1007/s11306-017-1274-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
14 Najafian M, Russell M. Automatic accent identification as an analytical tool for accent robust automatic speech recognition. Speech Communication 2020;122:44-55. [DOI: 10.1016/j.specom.2020.05.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Aaij R, Adeva B, Adinolfi M, Affolder A, Ajaltouni Z, Akar S, Albrecht J, Alessio F, Alexander M, Ali S, Alkhazov G, Alvarez Cartelle P, Alves AA, Amato S, Amerio S, Amhis Y, An L, Anderlini L, Anderson J, Andreassen R, Andreotti M, Andrews JE, Appleby RB, Aquines Gutierrez O, Archilli F, Artamonov A, Artuso M, Aslanides E, Auriemma G, Baalouch M, Bachmann S, Back JJ, Badalov A, Baesso C, Baldini W, Barlow RJ, Barschel C, Barsuk S, Barter W, Batozskaya V, Battista V, Bay A, Beaucourt L, Beddow J, Bedeschi F, Bediaga I, Belogurov S, Belous K, Belyaev I, Ben-haim E, Bencivenni G, Benson S, Benton J, Berezhnoy A, Bernet R, Bettler M, van Beuzekom M, Bien A, Bifani S, Bird T, Bizzeti A, Bjørnstad PM, Blake T, Blanc F, Blouw J, Blusk S, Bocci V, Bondar A, Bondar N, Bonivento W, Borghi S, Borgia A, Borsato M, Bowcock TJV, Bowen E, Bozzi C, Brambach T, Brett D, Britsch M, Britton T, Brodzicka J, Brook NH, Brown H, Bursche A, Buytaert J, Cadeddu S, Calabrese R, Calvi M, Calvo Gomez M, Campana P, Campora Perez D, Carbone A, Carboni G, Cardinale R, Cardini A, Carson L, Carvalho Akiba K, Casse G, Cassina L, Castillo Garcia L, Cattaneo M, Cauet C, Cenci R, Charles M, Charpentier P, Chefdeville M, Chen S, Cheung S, Chiapolini N, Chrzaszcz M, Cid Vidal X, Ciezarek G, Clarke PEL, Clemencic M, Cliff HV, Closier J, Coco V, Cogan J, Cogneras E, Cogoni V, Cojocariu L, Collazuol G, Collins P, Comerma-montells A, Contu A, Cook A, Coombes M, Coquereau S, Corti G, Corvo M, Counts I, Couturier B, Cowan GA, Craik DC, Cruz Torres M, Cunliffe S, Currie R, D’ambrosio C, Dalseno J, David P, David PNY, Davis A, De Bruyn K, De Capua S, De Cian M, De Miranda JM, De Paula L, De Silva W, De Simone P, Dean C, Decamp D, Deckenhoff M, Del Buono L, Déléage N, Derkach D, Deschamps O, Dettori F, Di Canto A, Dijkstra H, Donleavy S, Dordei F, Dorigo M, Dosil Suárez A, Dossett D, Dovbnya A, Dreimanis K, Dujany G, Dupertuis F, Durante P, Dzhelyadin R, Dziurda A, Dzyuba A, Easo S, Egede U, Egorychev V, Eidelman S, Eisenhardt S, Eitschberger U, Ekelhof R, Eklund L, El Rifai I, Elsasser C, Ely S, Esen S, Evans H, Evans T, Falabella A, Färber C, Farinelli C, Farley N, Farry S, Fay R, Ferguson D, Fernandez Albor V, Ferreira Rodrigues F, Ferro-luzzi M, Filippov S, Fiore M, Fiorini M, Firlej M, Fitzpatrick C, Fiutowski T, Fol P, Fontana M, Fontanelli F, Forty R, Francisco O, Frank M, Frei C, Frosini M, Fu J, Furfaro E, Gallas Torreira A, Galli D, Gallorini S, Gambetta S, Gandelman M, Gandini P, Gao Y, García Pardiñas J, Garofoli J, Garra Tico J, Garrido L, Gascon D, Gaspar C, Gauld R, Gavardi L, Geraci A, Gersabeck E, Gersabeck M, Gershon T, Ghez P, Gianelle A, Gianì S, Gibson V, Giubega L, Gligorov VV, Göbel C, Golubkov D, Golutvin A, Gomes A, Gotti C, Grabalosa Gándara M, Graciani Diaz R, Granado Cardoso LA, Graugés E, Graverini E, Graziani G, Grecu A, Greening E, Gregson S, Griffith P, Grillo L, Grünberg O, Gui B, Gushchin E, Guz Y, Gys T, Hadjivasiliou C, Haefeli G, Haen C, Haines SC, Hall S, Hamilton B, Hampson T, Han X, Hansmann-menzemer S, Harnew N, Harnew ST, Harrison J, He J, Head T, Heijne V, Hennessy K, Henrard P, Henry L, Hernando Morata JA, van Herwijnen E, Heß M, Hicheur A, Hill D, Hoballah M, Hombach C, Hulsbergen W, Hunt P, Hussain N, Hutchcroft D, Hynds D, Idzik M, Ilten P, Jacobsson R, Jaeger A, Jalocha J, Jans E, Jaton P, Jawahery A, Jing F, John M, Johnson D, Jones CR, Joram C, Jost B, Jurik N, Kandybei S, Kanso W, Karacson M, Karbach TM, Karodia S, Kelsey M, Kenyon IR, Ketel T, Khanji B, Khurewathanakul C, Klaver S, Klimaszewski K, Kochebina O, Kolpin M, Komarov I, Koopman RF, Koppenburg P, Korolev M, Kozlinskiy A, Kravchuk L, Kreplin K, Kreps M, Krocker G, Krokovny P, Kruse F, Kucewicz W, Kucharczyk M, Kudryavtsev V, Kurek K, Kvaratskheliya T, La Thi VN, Lacarrere D, Lafferty G, Lai A, Lambert D, Lambert RW, Lanfranchi G, Langenbruch C, Langhans B, Latham T, Lazzeroni C, Le Gac R, van Leerdam J, Lees J, Lefèvre R, Leflat A, Lefrançois J, Leo S, Leroy O, Lesiak T, Leverington B, Li Y, Likhomanenko T, Liles M, Lindner R, Linn C, Lionetto F, Liu B, Lohn S, Longstaff I, Lopes JH, Lopez-march N, Lowdon P, Lucchesi D, Luo H, Lupato A, Luppi E, Lupton O, Machefert F, Machikhiliyan IV, Maciuc F, Maev O, Malde S, Malinin A, Manca G, Mapelli A, Maratas J, Marchand JF, Marconi U, Marin Benito C, Marino P, Märki R, Marks J, Martellotti G, Martín Sánchez A, Martinelli M, Martinez Santos D, Martinez Vidal F, Martins Tostes D, Massafferri A, Matev R, Mathe Z, Matteuzzi C, Maurin B, Mazurov A, Mccann M, Mccarthy J, Mcnab A, Mcnulty R, Mcskelly B, Meadows B, Meier F, Meissner M, Merk M, Milanes DA, Minard M, Moggi N, Molina Rodriguez J, Monteil S, Morandin M, Morawski P, Mordà A, Morello MJ, Moron J, Morris A, Mountain R, Muheim F, Müller K, Mussini M, Muster B, Naik P, Nakada T, Nandakumar R, Nasteva I, Needham M, Neri N, Neubert S, Neufeld N, Neuner M, Nguyen AD, Nguyen TD, Nguyen-mau C, Nicol M, Niess V, Niet R, Nikitin N, Nikodem T, Novoselov A, O’hanlon DP, Oblakowska-mucha A, Obraztsov V, Oggero S, Ogilvy S, Okhrimenko O, Oldeman R, Onderwater CJG, Orlandea M, Otalora Goicochea JM, Otto A, Owen P, Oyanguren A, Pal BK, Palano A, Palombo F, Palutan M, Panman J, Papanestis A, Pappagallo M, Pappalardo LL, Parkes C, Parkinson CJ, Passaleva G, Patel GD, Patel M, Patrignani C, Pearce A, Pellegrino A, Pepe Altarelli M, Perazzini S, Perret P, Perrin-terrin M, Pescatore L, Pesen E, Petridis K, Petrolini A, Picatoste Olloqui E, Pietrzyk B, Pilař T, Pinci D, Pistone A, Playfer S, Plo Casasus M, Polci F, Poluektov A, Polycarpo E, Popov A, Popov D, Popovici B, Potterat C, Price E, Price JD, Prisciandaro J, Pritchard A, Prouve C, Pugatch V, Puig Navarro A, Punzi G, Qian W, Rachwal B, Rademacker JH, Rakotomiaramanana B, Rama M, Rangel MS, Raniuk I, Rauschmayr N, Raven G, Redi F, Reichert S, Reid MM, dos Reis AC, Ricciardi S, Richards S, Rihl M, Rinnert K, Rives Molina V, Robbe P, Rodrigues AB, Rodrigues E, Rodriguez Perez P, Roiser S, Romanovsky V, Romero Vidal A, Rotondo M, Rouvinet J, Ruf T, Ruiz H, Ruiz Valls P, Saborido Silva JJ, Sagidova N, Sail P, Saitta B, Salustino Guimaraes V, Sanchez Mayordomo C, Sanmartin Sedes B, Santacesaria R, Santamarina Rios C, Santovetti E, Sarti A, Satriano C, Satta A, Saunders DM, Savrina D, Schiller M, Schindler H, Schlupp M, Schmelling M, Schmidt B, Schneider O, Schopper A, Schubiger M, Schune M, Schwemmer R, Sciascia B, Sciubba A, Semennikov A, Sepp I, Serra N, Serrano J, Sestini L, Seyfert P, Shapkin M, Shapoval I, Shcheglov Y, Shears T, Shekhtman L, Shevchenko V, Shires A, Silva Coutinho R, Simi G, Sirendi M, Skidmore N, Skillicorn I, Skwarnicki T, Smith NA, Smith E, Smith E, Smith J, Smith M, Snoek H, Sokoloff MD, Soler FJP, Soomro F, Souza D, Souza De Paula B, Spaan B, Spradlin P, Sridharan S, Stagni F, Stahl M, Stahl S, Steinkamp O, Stenyakin O, Stevenson S, Stoica S, Stone S, Storaci B, Stracka S, Straticiuc M, Straumann U, Stroili R, Subbiah VK, Sun L, Sutcliffe W, Swientek K, Swientek S, Syropoulos V, Szczekowski M, Szczypka P, Szumlak T, T’jampens S, Teklishyn M, Tellarini G, Teubert F, Thomas C, Thomas E, van Tilburg J, Tisserand V, Tobin M, Todd J, Tolk S, Tomassetti L, Tonelli D, Topp-joergensen S, Torr N, Tournefier E, Tourneur S, Tran MT, Tresch M, Trisovic A, Tsaregorodtsev A, Tsopelas P, Tuning N, Ubeda Garcia M, Ukleja A, Ustyuzhanin A, Uwer U, Vacca C, Vagnoni V, Valenti G, Vallier A, Vazquez Gomez R, Vazquez Regueiro P, Vázquez Sierra C, Vecchi S, Velthuis JJ, Veltri M, Veneziano G, Vesterinen M, Viaud B, Vieira D, Vieites Diaz M, Vilasis-cardona X, Vollhardt A, Volyanskyy D, Voong D, Vorobyev A, Vorobyev V, Voß C, de Vries JA, Waldi R, Wallace C, Wallace R, Walsh J, Wandernoth S, Wang J, Ward DR, Watson NK, Websdale D, Whitehead M, Wicht J, Wiedner D, Wilkinson G, Williams MP, Williams M, Wilschut HW, Wilson FF, Wimberley J, Wishahi J, Wislicki W, Witek M, Wormser G, Wotton SA, Wright S, Wyllie K, Xie Y, Xing Z, Xu Z, Yang Z, Yuan X, Yushchenko O, Zangoli M, Zavertyaev M, Zhang L, Zhang WC, Zhang Y, Zhelezov A, Zhokhov A, Zhong L; The LHCb collaboration. Search for the lepton flavour violating decay τ − → μ − μ + μ −. J High Energ Phys 2015;2015. [DOI: 10.1007/jhep02(2015)121] [Cited by in Crossref: 22] [Article Influence: 3.1] [Reference Citation Analysis]
16 Ricci S, Mannocci P, Farronato M, Hashemkhani S, Ielmini D. Forming‐Free Resistive Switching Memory Crosspoint Arrays for In‐Memory Machine Learning. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202200053] [Reference Citation Analysis]
17 Coyle L, Doyle D, Cunningham P. Representing Similarity for CBR in XML. In: Funk P, González Calero PA, editors. Advances in Case-Based Reasoning. Berlin: Springer Berlin Heidelberg; 2004. pp. 119-27. [DOI: 10.1007/978-3-540-28631-8_10] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Srivastava MS. Evaluation of misclassification errors. Can J Statistics 1973;1:35-50. [DOI: 10.2307/3314646] [Reference Citation Analysis]
19 Kirschner GL, Kowalski BR. The Application of Pattern Recognition to Drug Design. Drug Design. Elsevier; 1979. pp. 73-131. [DOI: 10.1016/b978-0-12-060308-4.50008-1] [Cited by in Crossref: 8] [Article Influence: 0.2] [Reference Citation Analysis]
20 Weiner JM, Marmorston J. STATISTICAL TECHNIQUES OF DIFFERENCE. Ann NY Acad Sci 1969;161:641-68. [DOI: 10.1111/j.1749-6632.1969.tb34096.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.2] [Reference Citation Analysis]
21 Singh RD, Aggarwal N. Video content authentication techniques: a comprehensive survey. Multimedia Systems 2018;24:211-40. [DOI: 10.1007/s00530-017-0538-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
22 Volpi M, Petropoulos GP, Kanevski M. Flooding extent cartography with Landsat TM imagery and regularized kernel Fisher's discriminant analysis. Computers & Geosciences 2013;57:24-31. [DOI: 10.1016/j.cageo.2013.03.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 2.9] [Reference Citation Analysis]
23 Lugo ZR, Pokorny C, Pellas F, Noirhomme Q, Laureys S, Müller-Putz G, Kübler A. Mental imagery for brain-computer interface control and communication in non-responsive individuals. Ann Phys Rehabil Med 2020;63:21-7. [PMID: 30978530 DOI: 10.1016/j.rehab.2019.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Orgass B, Poeck K. Assessment of Aphasia by Psychometric Methods. Cortex 1969;5:317-30. [DOI: 10.1016/s0010-9452(69)80011-0] [Cited by in Crossref: 8] [Article Influence: 0.2] [Reference Citation Analysis]
25 Gallant SI. Connectionist expert systems. Commun ACM 1988;31:152-69. [DOI: 10.1145/42372.42377] [Cited by in Crossref: 464] [Cited by in F6Publishing: 119] [Article Influence: 13.6] [Reference Citation Analysis]
26 Nansen C. The potential and prospects of proximal remote sensing of arthropod pests: Proximal remote sensing of arthropod pests. Pest Manag Sci 2016;72:653-9. [DOI: 10.1002/ps.4209] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
27 Brace CL, Tracer DP, Yaroch LA, Robb J, Brandt K, Nelson AR. Clines and clusters versus “Race:” a test in ancient Egypt and the case of a death on the Nile. Am J Phys Anthropol 1993;36:1-31. [DOI: 10.1002/ajpa.1330360603] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
28 Wei Y, Mcnicholas PD. Mixture model averaging for clustering. Adv Data Anal Classif 2015;9:197-217. [DOI: 10.1007/s11634-014-0182-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
29 Gapert R, Black S, Last J. Sex determination from the foramen magnum: discriminant function analysis in an eighteenth and nineteenth century British sample. Int J Legal Med 2009;123:25-33. [DOI: 10.1007/s00414-008-0256-0] [Cited by in Crossref: 70] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
30 Kasabov N. Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition. In: Liu J, Alippi C, Bouchon-meunier B, Greenwood GW, Abbass HA, editors. Advances in Computational Intelligence. Berlin: Springer Berlin Heidelberg; 2012. pp. 234-60. [DOI: 10.1007/978-3-642-30687-7_12] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
31 Gerber L, Reichman O, Roughgarden J. Food hoarding: future value in optimal foraging decisions. Ecological Modelling 2004;175:77-85. [DOI: 10.1016/j.ecolmodel.2003.10.022] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
32 Jing Y, Meng Q, Qi P, Zeng M, Liu Y. Signal processing inspired from the olfactory bulb for electronic noses. Meas Sci Technol 2017;28:015105. [DOI: 10.1088/1361-6501/28/1/015105] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
33 Gromski PS, Xu Y, Correa E, Ellis DI, Turner ML, Goodacre R. A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Anal Chim Acta 2014;829:1-8. [PMID: 24856395 DOI: 10.1016/j.aca.2014.03.039] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 8.8] [Reference Citation Analysis]
34 Masip D, Kuncheva LI, Vitrià J. An ensemble-based method for linear feature extraction for two-class problems. Pattern Anal Applic 2005;8:227-37. [DOI: 10.1007/s10044-005-0002-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
35 Bianco ML, Ferrer-gallego P, Grillo O, Laguna E, Venora G, Bacchetta G. Seed image analysis provides evidence of taxonomic differentiation within the Medicago L. sect. Dendrotelis (Fabaceae). Systematics and Biodiversity 2015;13:484-95. [DOI: 10.1080/14772000.2015.1046968] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
36 Asman P, Prabhu S, Bastos D, Tummala S, Bhavsar S, McHugh TM, Ince NF. Unsupervised machine learning can delineate central sulcus by using the spatiotemporal characteristic of somatosensory evoked potentials. J Neural Eng 2021;18. [PMID: 33836520 DOI: 10.1088/1741-2552/abf68a] [Reference Citation Analysis]
37 Lahousen M, Stettner H, Pickel H, Urdl W, Pürstner P. The predictive value of a combination of tumor markers in monitoring patients with ovarian cancer. Cancer 1987;60:2228-32. [DOI: 10.1002/1097-0142(19871101)60:9<2228::aid-cncr2820600921>3.0.co;2-n] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
38 Nakano A, Kanda T, Abe H. Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol. 1996;11:1143-1154. [PMID: 9034934 DOI: 10.1111/j.1440-1746.1996.tb00275.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
39 Ball GH, Hall DJ. Some Implications of Interactive Graphic Computer Systems for Data Analysis and Statistics. Technometrics 1970;12:17-31. [DOI: 10.1080/00401706.1970.10488631] [Cited by in Crossref: 9] [Article Influence: 0.2] [Reference Citation Analysis]
40 Wendel J, Buttenfield BP, Stanislawski LV. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States. Cartography and Geographic Information Science 2015;43:233-49. [DOI: 10.1080/15230406.2015.1067829] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
41 Datta S. Feature selection and machine learning with mass spectrometry data. Methods Mol Biol 2013;1007:237-62. [PMID: 23666729 DOI: 10.1007/978-1-62703-392-3_10] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
42 Van Looy S, Vander Cruyssen B, Meeus J, Wyns B, Westhovens R, Durez P, Van den Bosch F, Vastesaeger N, Geldhof A, Boullart L, De Keyser F. Prediction of dose escalation for rheumatoid arthritis patients under infliximab treatment. Engineering Applications of Artificial Intelligence 2006;19:819-28. [DOI: 10.1016/j.engappai.2006.05.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
43 Lai KK, Yu L, Wang S, Zhou L. Neural Network Metalearning for Credit Scoring. In: Huang D, Li K, Irwin GW, editors. Intelligent Computing. Berlin: Springer Berlin Heidelberg; 2006. pp. 403-8. [DOI: 10.1007/11816157_47] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
44 Burt C. The unit hierarchy and its properties. Psychometrika 1938;3:151-68. [DOI: 10.1007/bf02288483] [Cited by in Crossref: 6] [Article Influence: 0.1] [Reference Citation Analysis]
45 Prasad A, Ghosh PK. Information theoretic optimal vocal tract region selection from real time magnetic resonance images for broad phonetic class recognition. Computer Speech & Language 2016;39:108-28. [DOI: 10.1016/j.csl.2016.03.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
46 Carbonneau RA, Caporossi G, Hansen P. Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression. Computers & Operations Research 2012;39:2748-62. [DOI: 10.1016/j.cor.2012.02.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
47 Marron D. ‘Lending by numbers’: credit scoring and the constitution of risk within American consumer credit. Economy and Society 2007;36:103-33. [DOI: 10.1080/03085140601089846] [Cited by in Crossref: 103] [Cited by in F6Publishing: 23] [Article Influence: 6.9] [Reference Citation Analysis]
48 Ji Z, Pang Y, He Y, Zhang H. Semi-supervised LPP algorithms for learning-to-rank-based visual search reranking. Information Sciences 2015;302:83-93. [DOI: 10.1016/j.ins.2014.10.037] [Cited by in Crossref: 21] [Article Influence: 3.0] [Reference Citation Analysis]
49 Collaboration TC. CMS Physics Technical Design Report, Volume II: Physics Performance. J Phys G: Nucl Part Phys 2007;34:995-1579. [DOI: 10.1088/0954-3899/34/6/s01] [Cited by in Crossref: 593] [Article Influence: 39.5] [Reference Citation Analysis]
50 Zhang C, Hu Y, Chan FT, Sadiq R, Deng Y. A new method to determine basic probability assignment using core samples. Knowledge-Based Systems 2014;69:140-9. [DOI: 10.1016/j.knosys.2014.06.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 2.4] [Reference Citation Analysis]
51 Yılmaz Ş, Bayrak Y, Çınar H. Discrimination of earthquakes and quarry blasts in the eastern Black Sea region of Turkey. J Seismol 2013;17:721-34. [DOI: 10.1007/s10950-012-9348-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
52 Dlamini DD, Zuwarimwe J, Francis J, Mchau GRA. Risk Factor Assessment of the Smallholder Baby Vegetable Production in Eswatini. Agriculture 2022;12:643. [DOI: 10.3390/agriculture12050643] [Reference Citation Analysis]
53 Yen GG, Meesad P. Constructing a fuzzy rule-based system using the ILFN network and Genetic Algorithm. Int J Neural Syst. 2001;11:427-443. [PMID: 11709810 DOI: 10.1142/s0129065701000618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
54 Lespinats S, Aupetit M, Meyer-baese A. ClassiMap: A New Dimension Reduction Technique for Exploratory Data Analysis of Labeled Data. Int J Patt Recogn Artif Intell 2015;29:1551008. [DOI: 10.1142/s0218001415510088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Bryan J. Excuse Me, Do You Have a Moment to Talk About Version Control? The American Statistician 2018;72:20-7. [DOI: 10.1080/00031305.2017.1399928] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
56 Aubert B, Barate R, Boutigny D, Couderc F, Karyotakis Y, Lees JP, Poireau V, Tisserand V, Zghiche A, Grauges E, Palano A, Pappagallo M, Pompili A, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Battaglia M, Breon AB, Brown DN, Button-shafer J, Cahn RN, Charles E, Day CT, Gill MS, Gritsan AV, Groysman Y, Jacobsen RG, Kadel RW, Kadyk J, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Ronan MT, Wenzel WA, Barrett M, Ford KE, Harrison TJ, Hart AJ, Hawkes CM, Morgan SE, Watson AT, Fritsch M, Goetzen K, Held T, Koch H, Lewandowski B, Pelizaeus M, Peters K, Schroeder T, Steinke M, Boyd JT, Burke JP, Chevalier N, Cottingham WN, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Knecht NS, Mattison TS, Mckenna JA, Khan A, Kyberd P, Saleem M, Teodorescu L, Blinov AE, Blinov VE, Bukin AD, Druzhinin VP, Golubev VB, Kravchenko EA, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Yushkov AN, Best D, Bondioli M, Bruinsma M, Chao M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Mommsen RK, Roethel W, Stoker DP, Buchanan C, Hartfiel BL, Weinstein AJR, Foulkes SD, Gary JW, Long O, Shen BC, Wang K, Zhang L, del Re D, Hadavand HK, Hill EJ, Macfarlane DB, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Cunha A, Dahmes B, Hong TM, Mazur MA, Richman JD, Verkerke W, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Nesom G, Schalk T, Schumm BA, Seiden A, Spradlin P, Williams DC, Wilson MG, Albert J, Chen E, Dubois-felsmann GP, Dvoretskii A, Hitlin DG, Narsky I, Piatenko T, Porter FC, Ryd A, Samuel A, Andreassen R, Jayatilleke S, Mancinelli G, Meadows BT, Sokoloff MD, Blanc F, Bloom P, Chen S, Ford WT, Hirschauer JF, Kreisel A, Nauenberg U, Olivas A, Rankin P, Ruddick WO, Smith JG, Ulmer KA, Wagner SR, Zhang J, Chen A, Eckhart EA, Soffer A, Toki WH, Wilson RJ, Zeng Q, Altenburg D, Feltresi E, Hauke A, Spaan B, Brandt T, Brose J, Dickopp M, Klose V, Lacker HM, Nogowski R, Otto S, Petzold A, Schott G, Schubert J, Schubert KR, Schwierz R, Sundermann JE, Bernard D, Bonneaud GR, Grenier P, Schrenk S, Thiebaux C, Vasileiadis G, Verderi M, Bard DJ, Clark PJ, Gradl W, Muheim F, Playfer S, Xie Y, Andreotti M, Azzolini V, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Piemontese L, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Patteri P, Peruzzi IM, Piccolo M, Zallo A, Buzzo A, Capra R, Contri R, Vetere ML, Macri M, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Brandenburg G, Chaisanguanthum KS, Morii M, Won E, Wu J, Dubitzky RS, Langenegger U, Marks J, Schenk S, Uwer U, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Flack RL, Gaillard JR, Morton GW, Nash JA, Nikolich MB, Taylor GP, Vazquez WP, Charles MJ, Mader WF, Mallik U, Mohapatra AK, Cochran J, Crawley HB, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Yi J, Arnaud N, Davier M, Giroux X, Grosdidier G, Höcker A, Diberder FL, Lepeltier V, Lutz AM, Oyanguren A, Petersen TC, Pierini M, Plaszczynski S, Rodier S, Roudeau P, Schune MH, Stocchi A, Wormser G, Cheng CH, Lange DJ, Simani MC, Wright DM, Bevan AJ, Chavez CA, Forster IJ, Fry JR, Gabathuler E, Gamet R, George KA, Hutchcroft DE, Parry RJ, Payne DJ, Schofield KC, Touramanis C, Cormack CM, Lodovico FD, Menges W, Sacco R, Brown CL, Cowan G, Flaecher HU, Green MG, Hopkins DA, Jackson PS, Mcmahon TR, Ricciardi S, Salvatore F, Brown D, Davis CL, Allison J, Barlow NR, Barlow RJ, Edgar CL, Hodgkinson MC, Kelly MP, Lafferty GD, Naisbit MT, Williams JC, Chen C, Hulsbergen WD, Jawahery A, Kovalskyi D, Lae CK, Roberts DA, Simi G, Blaylock G, Dallapiccola C, Hertzbach SS, Kofler R, Koptchev VB, Li X, Moore TB, Saremi S, Staengle H, Willocq S, Cowan R, Koeneke K, Sciolla G, Sekula SJ, Spitznagel M, Taylor F, Yamamoto RK, Kim H, Patel PM, Robertson SH, Lazzaro A, Lombardo V, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Reidy J, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Taras P, Viaud B, Nicholson H, Cavallo N, Nardo GD, Fabozzi F, Gatto C, Lista L, Monorchio D, Paolucci P, Piccolo D, Sciacca C, Baak M, Bulten H, Raven G, Snoek HL, Wilden L, Jessop CP, Losecco JM, Allmendinger T, Benelli G, Gan KK, Honscheid K, Hufnagel D, Jackson PD, Kagan H, Kass R, Pulliam T, Rahimi AM, Ter-antonyan R, Wong QK, Brau J, Frey R, Igonkina O, Lu M, Potter CT, Sinev NB, Strom D, Strube J, Torrence E, Galeazzi F, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, Benayoun M, Briand H, Chauveau J, David P, Del Buono L, de la Vaissière C, Hamon O, John MJJ, Leruste P, Malclès J, Ocariz J, Roos L, Therin G, Behera PK, Gladney L, Guo QH, Panetta J, Biasini M, Covarelli R, Pacetti S, Pioppi M, Angelini C, Batignani G, Bettarini S, Bucci F, Calderini G, Carpinelli M, Cenci R, Forti F, Giorgi MA, Lusiani A, Marchiori G, Morganti M, Neri N, Paoloni E, Rama M, Rizzo G, Walsh J, Haire M, Judd D, Wagoner DE, Biesiada J, Danielson N, Elmer P, Lau YP, Lu C, Olsen J, Smith AJS, Telnov AV, Bellini F, Cavoto G, D’orazio A, Di Marco E, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Gioi LL, Mazzoni MA, Morganti S, Piredda G, Polci F, Tehrani FS, Voena C, Schröder H, Wagner G, Waldi R, Adye T, Groot ND, Franek B, Gopal GP, Olaiya EO, Wilson FF, Aleksan R, Emery S, Gaidot A, Ganzhur SF, Giraud P, Graziani G, Hamel de Monchenault G, Kozanecki W, Legendre M, London GW, Mayer B, Vasseur G, Yèche C, Zito M, Purohit MV, Weidemann AW, Wilson JR, Yumiceva FX, Abe T, Allen MT, Aston D, Bakel N, Bartoldus R, Berger N, Boyarski AM, Buchmueller OL, Claus R, Coleman JP, Convery MR, Cristinziani M, Dingfelder JC, Dong D, Dorfan J, Dujmic D, Dunwoodie W, Fan S, Field RC, Glanzman T, Gowdy SJ, Hadig T, Halyo V, Hast C, Hryn’ova T, Innes WR, Kelsey MH, Kim P, Kocian ML, Leith DWGS, Libby J, Luitz S, Luth V, Lynch HL, Marsiske H, Messner R, Muller DR, O’grady CP, Ozcan VE, Perazzo A, Perl M, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Stelzer J, Su D, Sullivan MK, Suzuki K, Swain S, Thompson JM, Va’vra J, Weaver M, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Yi K, Young CC, Burchat PR, Edwards AJ, Majewski SA, Petersen BA, Roat C, Ahmed M, Ahmed S, Alam MS, Ernst JA, Saeed MA, Wappler FR, Zain SB, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Ritchie JL, Satpathy A, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Bona M, Gallo F, Gamba D, Bomben M, Bosisio L, Cartaro C, Cossutti F, Della Ricca G, Dittongo S, Grancagnolo S, Lanceri L, Vitale L, Martinez-vidal F, Panvini RS, Banerjee S, Bhuyan B, Brown CM, Fortin D, Hamano K, Kowalewski R, Roney JM, Sobie RJ, Back JJ, Harrison PF, Latham TE, Mohanty GB, Band HR, Chen X, Cheng B, Dasu S, Datta M, Eichenbaum AM, Flood KT, Graham M, Hollar JJ, Johnson JR, Kutter PE, Li H, Liu R, Mellado B, Mihalyi A, Pan Y, Prepost R, Tan P, von Wimmersperg-toeller JH, Wu SL, Yu Z, Neal H. Search for the decay B+τ+ντ. Phys Rev D 2006;73. [DOI: 10.1103/physrevd.73.057101] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
57 Li H, Liang Y, Xu Q. Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems 2009;95:188-98. [DOI: 10.1016/j.chemolab.2008.10.007] [Cited by in Crossref: 229] [Cited by in F6Publishing: 137] [Article Influence: 17.6] [Reference Citation Analysis]
58 de Campos Souza PV, Lughofer E. EFNN-NullUni: An evolving fuzzy neural network based on null-uninorm. Fuzzy Sets and Systems 2022. [DOI: 10.1016/j.fss.2022.01.010] [Reference Citation Analysis]
59 Marshall R. The separation of quark flavours ine + e − annihilation and its applications. Z Phys C - Particles and Fields 1984;26:291-9. [DOI: 10.1007/bf01421769] [Cited by in Crossref: 15] [Article Influence: 0.4] [Reference Citation Analysis]
60 Forsyth DM, Garel M, Mcleod SR. Estimating age and age class of harvested hog deer from eye lens mass using frequentist and Bayesian methods. Wildlife Biology 2016;22:137-43. [DOI: 10.2981/wlb.00185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 Umeh JC, Amali O, Umeh EU. Impact of urinary schistosomiasis on rural land use: empirical evidence from Nigeria. Soc Sci Med 2001;52:293-303. [PMID: 11144785 DOI: 10.1016/s0277-9536(00)00134-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
62 Rivas-perea P, Cota-ruiz J, Rosiles J. A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection. Int J Mach Learn & Cyber 2014;5:579-97. [DOI: 10.1007/s13042-013-0153-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
63 Van Gestel T, Baesens B, Martens D. From linear to non-linear kernel based classifiers for bankruptcy prediction. Neurocomputing 2010;73:2955-70. [DOI: 10.1016/j.neucom.2010.07.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
64 de Paula AS, Barreto C, Telmo MCM, Diotaiuti L, Galvão C. Historical Biogeography and the Evolution of Hematophagy in Rhodniini (Heteroptera: Reduviidae: Triatominae). Front Ecol Evol 2021;9:660151. [DOI: 10.3389/fevo.2021.660151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
65 Nansen C, Geremias LD, Xue Y, Huang F, Parra JR. Agricultural case studies of classification accuracy, spectral resolution, and model over-fitting. Appl Spectrosc 2013;67:1332-8. [PMID: 24160886 DOI: 10.1366/12-06933] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
66 Irizarry R. Fuzzy classification with an artificial chemical process. Chemical Engineering Science 2005;60:399-412. [DOI: 10.1016/j.ces.2004.07.123] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
67 Shen L, Bai L. A review on Gabor wavelets for face recognition. Pattern Anal Applic 2006;9:273-92. [DOI: 10.1007/s10044-006-0033-y] [Cited by in Crossref: 307] [Cited by in F6Publishing: 45] [Article Influence: 19.2] [Reference Citation Analysis]
68 Hara S, Kawahara Y, Washio T, von Bünau P, Tokunaga T, Yumoto K. Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Netw 2012;33:7-20. [PMID: 22551683 DOI: 10.1016/j.neunet.2012.04.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 5] [Article Influence: 3.1] [Reference Citation Analysis]
69 Singh P, Laxmi V, Gaur MS. NEAR-OPTIMAL GEOMETRIC FEATURE SELECTION FOR VISUAL SPEECH RECOGNITION. Int J Patt Recogn Artif Intell 2013;27:1350026. [DOI: 10.1142/s0218001413500262] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
70 Solberg HE. Discriminant analysis. CRC Crit Rev Clin Lab Sci 1978;9:209-42. [PMID: 401370 DOI: 10.3109/10408367809150920] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 1.6] [Reference Citation Analysis]
71 Gallas BD, Barrett HH. Validating the use of channels to estimate the ideal linear observer. J Opt Soc Am A Opt Image Sci Vis 2003;20:1725-38. [PMID: 12968645 DOI: 10.1364/josaa.20.001725] [Cited by in Crossref: 104] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
72 Collins RA, Green RD. Statistical methods for bankruptcy forecasting. Journal of Economics and Business 1982;34:349-54. [DOI: 10.1016/0148-6195(82)90040-6] [Cited by in Crossref: 69] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
73 Maddox WT, Ashby FG. Comparing decision bound and exemplar models of categorization. Perception & Psychophysics 1993;53:49-70. [DOI: 10.3758/bf03211715] [Cited by in Crossref: 216] [Cited by in F6Publishing: 91] [Article Influence: 7.4] [Reference Citation Analysis]
74 Trendafilov NT, Jolliffe IT. DALASS: Variable selection in discriminant analysis via the LASSO. Computational Statistics & Data Analysis 2007;51:3718-36. [DOI: 10.1016/j.csda.2006.12.046] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
75 Grasman J, van Deventer WB, van Laar V. Estimation of parameters in a Bertalanffy type of temperature dependent growth model using data on juvenile stone loach (Barbatula barbatula). Acta Biotheor 2012;60:393-405. [PMID: 23053466 DOI: 10.1007/s10441-012-9166-0] [Reference Citation Analysis]
76 Okada Y, Sugita Y, Ohshima K, Morioka M, Komaki S, Miyoshi J, Abe H. Signaling of ghrelin and its functional receptor, the growth hormone secretagogue receptor, promote tumor growth in glioblastomas: Ghrelin/GHS-R signaling in glioblastomas. Neuropathology 2016;36:535-43. [DOI: 10.1111/neup.12315] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
77 Jirina M, Jirina M. Utilization of singularity exponent in nearest neighbor based classifier. J Classif 2013;30:3-29. [DOI: 10.1007/s00357-013-9121-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
78 Milanez KDTM, Nóbrega TCA, Nascimento DS, Insausti M, Pontes MJC. Transfer of multivariate classification models applied to digital images and fluorescence spectroscopy data. Microchemical Journal 2017;133:669-75. [DOI: 10.1016/j.microc.2017.03.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
79 Zimmermann K, Varady M. Handwriter identification from one-bit quantized pressure patterns. Pattern Recognition 1985;18:63-72. [DOI: 10.1016/0031-3203(85)90007-x] [Cited by in Crossref: 18] [Article Influence: 0.5] [Reference Citation Analysis]
80 Theodosiou T, Angelis L, Vakali A, Thomopoulos G. Gene functional annotation by statistical analysis of biomedical articles. International Journal of Medical Informatics 2007;76:601-13. [DOI: 10.1016/j.ijmedinf.2006.04.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
81 Htike KK. Forests of unstable hierarchical clusters for pattern classification. Soft Comput 2018;22:1711-8. [DOI: 10.1007/s00500-016-2434-1] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
82 Anders CJ, Weber L, Neumann D, Samek W, Müller K, Lapuschkin S. Finding and removing Clever Hans: Using explanation methods to debug and improve deep models. Information Fusion 2022;77:261-95. [DOI: 10.1016/j.inffus.2021.07.015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Steel FLD. Investigation of Skeletal Remains of a Known Population. Med Sci Law 1960;1:54-62. [DOI: 10.1177/002580246100100106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
84 Nakanishi H, Sato Y. The performance of the linear and quadratic discriminant functions for three types of non-normal distribution. Communications in Statistics - Theory and Methods 2007;14:1181-200. [DOI: 10.1080/03610928508828970] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
85 Thomas LC. Consumer finance: challenges for operational research. Journal of the Operational Research Society 2017;61:41-52. [DOI: 10.1057/jors.2009.104] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 6.8] [Reference Citation Analysis]
86 Khan S, Hussain M, Aboalsamh H, Bebis G. A comparison of different Gabor feature extraction approaches for mass classification in mammography. Multimed Tools Appl 2017;76:33-57. [DOI: 10.1007/s11042-015-3017-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 4.4] [Reference Citation Analysis]
87 Oliveri P, Malegori C, Casale M. Chemometrics: multivariate analysis of chemical data. Chemical Analysis of Food. Elsevier; 2020. pp. 33-76. [DOI: 10.1016/b978-0-12-813266-1.00002-4] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Nguyen-trang T, Nguyen-thoi T, Truong-khac T, Pham-chau AT, Ao H. An Efficient Hybrid Optimization Approach Using Adaptive Elitist Differential Evolution and Spherical Quadratic Steepest Descent and Its Application for Clustering. Scientific Programming 2019;2019:1-15. [DOI: 10.1155/2019/7151574] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
89 Niu G, Dai B, Yamada M, Sugiyama M. Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization. Neural Computation 2014;26:1717-62. [DOI: 10.1162/neco_a_00614] [Cited by in Crossref: 32] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
90 Alférez S, Merino A, Bigorra L, Mujica L, Ruiz M, Rodellar J. Automatic Recognition of Atypical Lymphoid Cells From Peripheral Blood by Digital Image Analysis. American Journal of Clinical Pathology 2015;143:168-76. [DOI: 10.1309/ajcp78ifstogzzjn] [Cited by in Crossref: 29] [Cited by in F6Publishing: 7] [Article Influence: 4.1] [Reference Citation Analysis]
91 Örkcü HH, Bal H. Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Systems with Applications 2011;38:3703-9. [DOI: 10.1016/j.eswa.2010.09.028] [Cited by in Crossref: 63] [Cited by in F6Publishing: 30] [Article Influence: 5.7] [Reference Citation Analysis]
92 Wiig Ø, Lie RW. Sex Identification in the Mink (Mustela vison Schreber) by Metrical Measurements of the Skull. Zool Scripta 1980;9:79-80. [DOI: 10.1111/j.1463-6409.1980.tb00652.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
93 Jung S. Continuum directions for supervised dimension reduction. Computational Statistics & Data Analysis 2018;125:27-43. [DOI: 10.1016/j.csda.2018.03.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
94 Cohen S, Intrator N. Automatic model selection in a hybrid perceptron/radial network. Information Fusion 2002;3:259-66. [DOI: 10.1016/s1566-2535(02)00088-x] [Cited by in Crossref: 13] [Article Influence: 0.7] [Reference Citation Analysis]
95 Luquet M, Parisey N, Hervé M, Desouhant E, Cortesero A, Peñalver‐cruz A, Lavandero B, Anton S, Jaloux B. Inferring insect feeding patterns from sugar profiles: a comparison of statistical methods. Ecol Entomol 2021;46:19-32. [DOI: 10.1111/een.12971] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Berrendero JR, Cárcamo J. The Tangent Classifier. The American Statistician 2012;66:185-94. [DOI: 10.1080/00031305.2012.710511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
97 Van Cooten S, Elmore KL, Barbé DE, Mccorquodale JA, Reed DJ. A Statistical Methodology to Discover Precipitation Microclimates in Southeast Louisiana: Implications for Coastal Watersheds*. Journal of Hydrometeorology 2009;10:1184-202. [DOI: 10.1175/2009jhm1076.1] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
98 Fulcomer MC, Schönemann PH, Molnar G. Classification by linear and quadratic discriminant scores. Behavior Research Methods & Instrumentation 1974;6:443-5. [DOI: 10.3758/bf03200398] [Cited by in Crossref: 5] [Article Influence: 0.1] [Reference Citation Analysis]
99 Spasojević S, Santos-victor J, Ilić T, Milanović S, Potkonjak V, Rodić A. A Vision-Based System for Movement Analysis in Medical Applications: The Example of Parkinson Disease. In: Nalpantidis L, Krüger V, Eklundh J, Gasteratos A, editors. Computer Vision Systems. Cham: Springer International Publishing; 2015. pp. 424-34. [DOI: 10.1007/978-3-319-20904-3_38] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
100 Žilinskas A, Žilinskas J. Parallel hybrid algorithm for global optimization of problems occurring in MDS-based visualization. Computers & Mathematics with Applications 2006;52:211-24. [DOI: 10.1016/j.camwa.2006.08.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
101 Lin W, Wu F, Shi J, Ding J, Zhang W. An adaptive approach to denoising tandem mass spectra. Proteomics 2011;11:3773-8. [DOI: 10.1002/pmic.201100145] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
102 Wicker D, Rizki MM, Tamburino LA. E-Net: Evolutionary neural network synthesis. Neurocomputing 2002;42:171-96. [DOI: 10.1016/s0925-2312(01)00599-9] [Cited by in Crossref: 17] [Article Influence: 0.9] [Reference Citation Analysis]
103 Jing P, Ji Z, Yu Y, Zhang Z. Visual search reranking with RElevant Local Discriminant Analysis. Neurocomputing 2016;173:172-80. [DOI: 10.1016/j.neucom.2014.12.118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
104 Dall' Acqua YG, Cunha Júnior LC, Nardini V, Lopes VG, Pessoa JDDC, de Almeida Teixeira GH. Discrimination of Euterpe oleracea Mart. (Açaí) and Euterpe edulis Mart. (Juçara) Intact Fruit Using Near-Infrared (NIR) Spectroscopy and Linear Discriminant Analysis: Discrimination of Euterpe Fruits. Journal of Food Processing and Preservation 2015;39:2856-65. [DOI: 10.1111/jfpp.12536] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
105 Njah H, Jamoussi S. Weighted ensemble learning of Bayesian network for gene regulatory networks. Neurocomputing 2015;150:404-16. [DOI: 10.1016/j.neucom.2014.05.078] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 2.9] [Reference Citation Analysis]
106 Gary Teng S, Ho SM, Shumar D. Enhancing supply chain operations through effective classification of warranty returns. Int J Qual & Reliability Mgmt 2005;22:137-48. [DOI: 10.1108/02656710510577206] [Cited by in Crossref: 8] [Article Influence: 0.5] [Reference Citation Analysis]
107 Aubert B, Barate R, Boutigny D, Couderc F, Gaillard J, Hicheur A, Karyotakis Y, Lees JP, Tisserand V, Zghiche A, Palano A, Pompili A, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Borgland AW, Breon AB, Brown DN, Button-shafer J, Cahn RN, Charles E, Day CT, Gill MS, Gritsan AV, Groysman Y, Jacobsen RG, Kadel RW, Kadyk J, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Ronan MT, Shelkov VG, Wenzel WA, Barrett M, Ford KE, Harrison TJ, Hart AJ, Hawkes CM, Morgan SE, Watson AT, Fritsch M, Goetzen K, Held T, Koch H, Lewandowski B, Pelizaeus M, Steinke M, Boyd JT, Chevalier N, Cottingham WN, Kelly MP, Latham TE, Wilson FF, Cuhadar-donszelmann T, Hearty C, Knecht NS, Mattison TS, Mckenna JA, Thiessen D, Khan A, Kyberd P, Teodorescu L, Blinov VE, Druzhinin VP, Golubev VB, Ivanchenko VN, Kravchenko EA, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Yushkov AN, Best D, Bruinsma M, Chao M, Eschrich I, Kirkby D, Lankford AJ, Mandelkern M, Mommsen RK, Roethel W, Stoker DP, Buchanan C, Hartfiel BL, Foulkes SD, Gary JW, Shen BC, Wang K, del Re D, Hadavand HK, Hill EJ, Macfarlane DB, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Dahmes B, Levy SL, Long O, Lu A, Mazur MA, Richman JD, Verkerke W, Beck TW, Eisner AM, Heusch CA, Lockman WS, Schalk T, Schmitz RE, Schumm BA, Seiden A, Spradlin P, Williams DC, Wilson MG, Albert J, Chen E, Dubois-felsmann GP, Dvoretskii A, Hitlin DG, Narsky I, Piatenko T, Porter FC, Ryd A, Samuel A, Yang S, Jayatilleke S, Mancinelli G, Meadows BT, Sokoloff MD, Abe T, Blanc F, Bloom P, Chen S, Ford WT, Nauenberg U, Olivas A, Rankin P, Smith JG, Zhang J, Zhang L, Chen A, Harton JL, Soffer A, Toki WH, Wilson RJ, Zeng QL, Altenburg D, Brandt T, Brose J, Dickopp M, Feltresi E, Hauke A, Lacker HM, Müller-pfefferkorn R, Nogowski R, Otto S, Petzold A, Schubert J, Schubert KR, Schwierz R, Spaan B, Sundermann JE, Bernard D, Bonneaud GR, Brochard F, Grenier P, Schrenk S, Thiebaux C, Vasileiadis G, Verderi M, Bard DJ, Clark PJ, Lavin D, Muheim F, Playfer S, Xie Y, Andreotti M, Azzolini V, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Piemontese L, Sarti A, Treadwell E, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Patteri P, Piccolo M, Zallo A, Buzzo A, Capra R, Contri R, Crosetti G, Lo Vetere M, Macri M, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Bailey S, Brandenburg G, Morii M, Won E, Dubitzky RS, Langenegger U, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Gaillard JR, Morton GW, Nash JA, Taylor GP, Charles MJ, Grenier GJ, Mallik U, Cochran J, Crawley HB, Lamsa J, Meyer WT, Prell S, Rosenberg EI, Yi J, Davier M, Grosdidier G, Höcker A, Laplace S, Le Diberder F, Lepeltier V, Lutz AM, Petersen TC, Plaszczynski S, Schune MH, Tantot L, Wormser G, Cheng CH, Lange DJ, Simani MC, Wright DM, Bevan AJ, Chavez CA, Coleman JP, Forster IJ, Fry JR, Gabathuler E, Gamet R, Parry RJ, Payne DJ, Sloane RJ, Touramanis C, Back JJ, Cormack CM, Harrison PF, Di Lodovico F, Mohanty GB, Brown CL, Cowan G, Flack RL, Flaecher HU, Green MG, Jackson PS, Mcmahon TR, Ricciardi S, Salvatore F, Winter MA, Brown D, Davis CL, Allison J, Barlow NR, Barlow RJ, Hart PA, Hodgkinson MC, Lafferty GD, Lyon AJ, Williams JC, Farbin A, Hulsbergen WD, Jawahery A, Kovalskyi D, Lae CK, Lillard V, Roberts DA, Blaylock G, Dallapiccola C, Flood KT, Hertzbach SS, Kofler R, Koptchev VB, Moore TB, Saremi S, Staengle H, Willocq S, Cowan R, Sciolla G, Taylor F, Yamamoto RK, Mangeol DJJ, Patel PM, Robertson SH, Lazzaro A, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Reidy J, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Taras P, Nicholson H, Cavallo N, Fabozzi F, Gatto C, Lista L, Monorchio D, Paolucci P, Piccolo D, Sciacca C, Baak M, Bulten H, Raven G, Wilden L, Jessop CP, Losecco JM, Gabriel TA, Allmendinger T, Brau B, Gan KK, Honscheid K, Hufnagel D, Kagan H, Kass R, Pulliam T, Rahimi AM, Ter-antonyan R, Wong QK, Brau J, Frey R, Igonkina O, Potter CT, Sinev NB, Strom D, Torrence E, Colecchia F, Dorigo A, Galeazzi F, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Tiozzo G, Voci C, Benayoun M, Briand H, Chauveau J, David P, de la Vaissière C, Del Buono L, Hamon O, John MJJ, Leruste P, Malcles J, Ocariz J, Pivk M, Roos L, T'jampens S, Therin G, Manfredi PF, Re V, Behera PK, Gladney L, Guo QH, Panetta J, Anulli F, Biasini M, Peruzzi IM, Pioppi M, Angelini C, Batignani G, Bettarini S, Bondioli M, Bucci F, Calderini G, Carpinelli M, Del Gamba V, Forti F, Giorgi MA, Lusiani A, Marchiori G, Martinez-vidal F, Morganti M, Neri N, Paoloni E, Rama M, Rizzo G, Sandrelli F, Walsh J, Haire M, Judd D, Paick K, Wagoner DE, Danielson N, Elmer P, Lau YP, Lu C, Miftakov V, Olsen J, Smith AJS, Telnov AV, Bellini F, Cavoto G, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Li Gioi L, Mazzoni MA, Morganti S, Pierini M, Piredda G, Safai Tehrani F, Voena C, Christ S, Wagner G, Waldi R, Adye T, De Groot N, Franek B, Geddes NI, Gopal GP, Olaiya EO, Aleksan R, Emery S, Gaidot A, Ganzhur SF, Giraud P, Hamel de Monchenault G, Kozanecki W, Langer M, Legendre M, London GW, Mayer B, Schott G, Vasseur G, Yèche C, Zito M, Purohit MV, Weidemann AW, Wilson JR, Yumiceva FX, Aston D, Bartoldus R, Berger N, Boyarski AM, Buchmueller OL, Convery MR, Cristinziani M, De Nardo G, Dong D, Dorfan J, Dujmic D, Dunwoodie W, Elsen EE, Fan S, Field RC, Glanzman T, Gowdy SJ, Hadig T, Halyo V, Hast C, Hryn'ova T, Innes WR, Kelsey MH, Kim P, Kocian ML, Leith DWGS, Libby J, Luitz S, Luth V, Lynch HL, Marsiske H, Messner R, Muller DR, O'grady CP, Ozcan VE, Perazzo A, Perl M, Petrak S, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Simi G, Snyder A, Soha A, Stelzer J, Su D, Sullivan MK, Va'vra J, Wagner SR, Weaver M, Weinstein AJR, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Young CC, Burchat PR, Edwards AJ, Meyer TI, Petersen BA, Roat C, Ahmed S, Alam MS, Ernst JA, Saeed MA, Saleem M, Wappler FR, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Kim H, Ritchie JL, Satpathy A, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Bona M, Gallo F, Gamba D, Borean C, Bosisio L, Cartaro C, Cossutti F, Della Ricca G, Dittongo S, Grancagnolo S, Lanceri L, Poropat P, Vitale L, Vuagnin G, Panvini RS, Banerjee S, Brown CM, Fortin D, Jackson PD, Kowalewski R, Roney JM, Band HR, Dasu S, Datta M, Eichenbaum AM, Graham M, Hollar JJ, Johnson JR, Kutter PE, Li H, Liu R, Mihalyi A, Mohapatra AK, Pan Y, Prepost R, Rubin AE, Sekula SJ, Tan P, von Wimmersperg-toeller JH, Wu J, Wu SL, Yu Z, Greene MG, Neal H. Branching Fractions and CP Asymmetries in B0K+KKS0 and B+K+KS0KS0. Phys Rev Lett 2004;93. [DOI: 10.1103/physrevlett.93.181805] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
108 Murtagh F, Hernández-pajares M. The Kohonen self-organizing map method: An assessment. Journal of Classification 1995;12:165-90. [DOI: 10.1007/bf03040854] [Cited by in Crossref: 72] [Article Influence: 2.7] [Reference Citation Analysis]
109 Lualdi M, Fasano M. Statistical analysis of proteomics data: A review on feature selection. Journal of Proteomics 2019;198:18-26. [DOI: 10.1016/j.jprot.2018.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 9.7] [Reference Citation Analysis]
110 O'neill TJ. Normal Discrimination with Unclassified Observations. Journal of the American Statistical Association 1978;73:821-6. [DOI: 10.1080/01621459.1978.10480106] [Cited by in Crossref: 51] [Cited by in F6Publishing: 18] [Article Influence: 1.2] [Reference Citation Analysis]
111 Aubert B, Bona M, Karyotakis Y, Lees JP, Poireau V, Prencipe E, Prudent X, Tisserand V, Garra Tico J, Grauges E, Lopez L, Palano A, Pappagallo M, Eigen G, Stugu B, Sun L, Abrams GS, Battaglia M, Brown DN, Cahn RN, Jacobsen RG, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Osipenkov IL, Ronan MT, Tackmann K, Tanabe T, Hawkes CM, Soni N, Watson AT, Koch H, Schroeder T, Walker D, Asgeirsson DJ, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Mattison TS, Mckenna JA, Barrett M, Khan A, Teodorescu L, Blinov VE, Bukin AD, Buzykaev AR, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Bondioli M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Martin EC, Stoker DP, Abachi S, Buchanan C, Gary JW, Liu F, Long O, Shen BC, Vitug GM, Yasin Z, Zhang L, Sharma V, Campagnari C, Hong TM, Kovalskyi D, Mazur MA, Richman JD, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Schalk T, Schumm BA, Seiden A, Wang L, Wilson MG, Winstrom LO, Cheng CH, Doll DA, Echenard B, Fang F, Hitlin DG, Narsky I, Piatenko T, Porter FC, Andreassen R, Mancinelli G, Meadows BT, Mishra K, Sokoloff MD, Blanc F, Bloom PC, Ford WT, Gaz A, Hirschauer JF, Kreisel A, Nagel M, Nauenberg U, Smith JG, Ulmer KA, Wagner SR, Ayad R, Soffer A, Toki WH, Wilson RJ, Altenburg DD, Feltresi E, Hauke A, Jasper H, Karbach M, Merkel J, Petzold A, Spaan B, Wacker K, Kobel MJ, Mader WF, Nogowski R, Schubert KR, Schwierz R, Sundermann JE, Volk A, Bernard D, Bonneaud GR, Latour E, Thiebaux C, Verderi M, Clark PJ, Gradl W, Playfer S, Watson JE, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cecchi A, Cibinetto G, Franchini P, Luppi E, Negrini M, Petrella A, Piemontese L, Santoro V, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Buzzo A, Contri R, Lo vetere M, Macri MM, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Chaisanguanthum KS, Morii M, Dubitzky RS, Marks J, Schenk S, Uwer U, Klose V, Lacker HM, Bard DJ, Dauncey PD, Nash JA, Vazquez WP, Tibbetts M, Behera PK, Chai X, Charles MJ, Mallik U, Cochran J, Crawley HB, Dong L, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Gao YY, Gritsan AV, Guo ZJ, Lae CK, Denig AG, Fritsch M, Schott G, Arnaud N, Béquilleux J, D’orazio A, Davier M, Fermino da Costa J, Grosdidier G, Höcker A, Lepeltier V, Le Diberder F, Lutz AM, Pruvot S, Roudeau P, Schune MH, Serrano J, Sordini V, Stocchi A, Wormser G, Lange DJ, Wright DM, Bingham I, Burke JP, Chavez CA, Fry JR, Gabathuler E, Gamet R, Hutchcroft DE, Payne DJ, Touramanis C, Bevan AJ, George KA, Di Lodovico F, Sacco R, Sigamani M, Cowan G, Flaecher HU, Hopkins DA, Paramesvaran S, Salvatore F, Wren AC, Brown DN, Davis CL, Alwyn KE, Barlow NR, Barlow RJ, Chia YM, Edgar CL, Lafferty GD, West TJ, Yi JI, Anderson J, Chen C, Jawahery A, Roberts DA, Simi G, Tuggle JM, Dallapiccola C, Hertzbach SS, Li X, Salvati E, Saremi S, Cowan R, Dujmic D, Fisher PH, Koeneke K, Sciolla G, Spitznagel M, Taylor F, Yamamoto RK, Zhao M, Mclachlin SE, Patel PM, Robertson SH, Lazzaro A, Lombardo V, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Sanders DA, Summers DJ, Zhao HW, Simard M, Taras P, Viaud FB, Nicholson H, De Nardo G, Lista L, Monorchio D, Onorato G, Sciacca C, Baak MA, Raven G, Snoek HL, Jessop CP, Knoepfel KJ, Losecco JM, Wang WF, Benelli G, Corwin LA, Honscheid K, Kagan H, Kass R, Morris JP, Rahimi AM, Regensburger JJ, Sekula SJ, Wong QK, Blount NL, Brau J, Frey R, Igonkina O, Kolb JA, Lu M, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Castelli G, Gagliardi N, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, del Amo Sanchez P, Ben-haim E, Briand H, Calderini G, Chauveau J, David P, Del Buono L, Hamon O, Leruste P, Ocariz J, Perez A, Prendki J, Gladney L, Biasini M, Covarelli R, Manoni E, Angelini C, Batignani G, Bettarini S, Carpinelli M, Cervelli A, Forti F, Giorgi MA, Lusiani A, Marchiori G, Morganti M, Neri N, Paoloni E, Rizzo G, Walsh JJ, Biesiada J, Lopes Pegna D, Lu C, Olsen J, Smith AJS, Telnov AV, Anulli F, Baracchini E, Cavoto G, del Re D, Di Marco E, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Jackson PD, Li Gioi L, Mazzoni MA, Morganti S, Piredda G, Polci F, Renga F, Voena C, Ebert M, Hartmann T, Schröder H, Waldi R, Adye T, Franek B, Olaiya EO, Roethel W, Wilson FF, Emery S, Escalier M, Esteve L, Gaidot A, Ganzhur SF, Hamel de Monchenault G, Kozanecki W, Vasseur G, Yèche C, Zito M, Chen XR, Liu H, Park W, Purohit MV, White RM, Wilson JR, Allen MT, Aston D, Bartoldus R, Bechtle P, Benitez JF, Cenci R, Coleman JP, Convery MR, Dingfelder JC, Dorfan J, Dubois-felsmann GP, Dunwoodie W, Field RC, Gabareen AM, Gowdy SJ, Graham MT, Grenier P, Hast C, Innes WR, Kaminski J, Kelsey MH, Kim H, Kim P, Kocian ML, Leith DWGS, Li S, Lindquist B, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Messner R, Muller DR, Neal H, Nelson S, O’grady CP, Ofte I, Perazzo A, Perl M, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Su D, Sullivan MK, Suzuki K, Swain SK, Thompson JM, Va’vra J, Wagner AP, Weaver M, West CA, Wisniewski WJ, Wittgen M, Wright DH, Wulsin HW, Yarritu AK, Yi K, Young CC, Ziegler V, Burchat PR, Edwards AJ, Majewski SA, Miyashita TS, Petersen BA, Wilden L, Ahmed S, Alam MS, Bula R, Ernst JA, Pan B, Saeed MA, Zain SB, Spanier SM, Wogsland BJ, Eckmann R, Ritchie JL, Ruland AM, Schilling CJ, Schwitters RF, Drummond BW, Izen JM, Lou XC, Bianchi F, Gamba D, Pelliccioni M, Bomben M, Bosisio L, Cartaro C, Della Ricca G, Lanceri L, Vitale L, Azzolini V, Lopez-march N, Martinez-vidal F, Milanes DA, Oyanguren A, Albert J, Banerjee S, Bhuyan B, Choi HHF, Hamano K, Kowalewski R, Lewczuk MJ, Nugent IM, Roney JM, Sobie RJ, Gershon TJ, Harrison PF, Ilic J, Latham TE, Mohanty GB, Band HR, Chen X, Dasu S, Flood KT, Pan Y, Pierini M, Prepost R, Vuosalo CO, Wu SL. Measurements of B(B¯0Λc+p¯) and B(BΛc+p¯π) and studies of Λc+π resonances. Phys Rev D 2008;78. [DOI: 10.1103/physrevd.78.112003] [Cited by in Crossref: 48] [Article Influence: 3.4] [Reference Citation Analysis]
112 Sarafraz Z, Sarafraz H, Sayeh MR. Real-time classifier based on adaptive competitive self-organizing algorithm. Adaptive Behavior 2018;26:21-31. [DOI: 10.1177/1059712318760695] [Reference Citation Analysis]
113 Pieters S, Vander Heyden Y, Roger JM, D'Hondt M, Hansen L, Palagos B, De Spiegeleer B, Remon JP, Vervaet C, De Beer T. Raman spectroscopy and multivariate analysis for the rapid discrimination between native-like and non-native states in freeze-dried protein formulations. Eur J Pharm Biopharm 2013;85:263-71. [PMID: 23665447 DOI: 10.1016/j.ejpb.2013.03.035] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
114 Özkan K, Ergin S, Işık Ş, Işıklı İ. A new classification scheme of plastic wastes based upon recycling labels. Waste Management 2015;35:29-35. [DOI: 10.1016/j.wasman.2014.09.030] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
115 Differt D, Möller R. Insect models of illumination-invariant skyline extraction from UV and green channels. J Theor Biol 2015;380:444-62. [PMID: 26113191 DOI: 10.1016/j.jtbi.2015.06.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
116 Roces-diaz JV, Díaz-varela ER, Barrio-anta M, Álvarez-álvarez P. Sweet chestnut agroforestry systems in North-western Spain: Classification, spatial distribution and an ecosystem services assessment. Forest Syst 2018;27:e03S. [DOI: 10.5424/fs/2018271-11973] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
117 Aydın F. A class-driven approach to dimension embedding. Expert Systems with Applications 2022;195:116650. [DOI: 10.1016/j.eswa.2022.116650] [Reference Citation Analysis]
118 Slaght JC, Surmach SG, Gutiérrez R. Riparian old-growth forests provide critical nesting and foraging habitat for Blakiston's fish owl Bubo blakistoni in Russia. Oryx 2013;47:553-60. [DOI: 10.1017/s0030605312000956] [Cited by in Crossref: 8] [Article Influence: 0.9] [Reference Citation Analysis]
119 Amador JJ. Sequential clustering by statistical methodology. Pattern Recognition Letters 2005;26:2152-63. [DOI: 10.1016/j.patrec.2005.04.003] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
120 Chang J, Li N, Xu K, Bao W, Yu D. Recent research progress on unstart mechanism, detection and control of hypersonic inlet. Progress in Aerospace Sciences 2017;89:1-22. [DOI: 10.1016/j.paerosci.2016.12.001] [Cited by in Crossref: 100] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
121 Castelli WP, Doyle JT, Gordon T, Hames CG, Hjortland MC, Hulley SB, Kagan A, Zukel WJ. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation 1977;55:767-72. [PMID: 191215 DOI: 10.1161/01.cir.55.5.767] [Cited by in Crossref: 1023] [Cited by in F6Publishing: 132] [Article Influence: 22.7] [Reference Citation Analysis]
122 Urquhart R. Graph theoretical clustering based on limited neighbourhood sets. Pattern Recognition 1982;15:173-87. [DOI: 10.1016/0031-3203(82)90069-3] [Cited by in Crossref: 124] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
123 Brunsdon C, Fotheringham S, Charlton M. Geographically Weighted Discriminant Analysis. Geographical Analysis 2007;39:376-96. [DOI: 10.1111/j.1538-4632.2007.00709.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
124 Maloof MA, Michalski RS. Incremental learning with partial instance memory. Artificial Intelligence 2004;154:95-126. [DOI: 10.1016/j.artint.2003.04.001] [Cited by in Crossref: 68] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
125 Heydari F, Rafsanjani MK. A Review on Lung Cancer Diagnosis Using Data Mining Algorithms. Curr Med Imaging 2021;17:16-26. [PMID: 32586255 DOI: 10.2174/1573405616666200625153017] [Reference Citation Analysis]
126 Glackin C, Maguire L, Mcdaid L, Sayers H. Receptive field optimisation and supervision of a fuzzy spiking neural network. Neural Networks 2011;24:247-56. [DOI: 10.1016/j.neunet.2010.11.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
127 Estiri H, Abounia Omran B, Murphy SN. kluster: An Efficient Scalable Procedure for Approximating the Number of Clusters in Unsupervised Learning. Big Data Research 2018;13:38-51. [DOI: 10.1016/j.bdr.2018.05.003] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
128 Vitale R, Saccenti E. Comparison of dimensionality assessment methods in Principal Component Analysis based on permutation tests. Chemometrics and Intelligent Laboratory Systems 2018;181:79-94. [DOI: 10.1016/j.chemolab.2018.08.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
129 Aubert B, Karyotakis Y, Lees JP, Poireau V, Prencipe E, Prudent X, Tisserand V, Garra Tico J, Grauges E, Martinelli M, Palano A, Pappagallo M, Eigen G, Stugu B, Sun L, Battaglia M, Brown DN, Kerth LT, Kolomensky YG, Lynch G, Osipenkov IL, Tackmann K, Tanabe T, Hawkes CM, Soni N, Watson AT, Koch H, Schroeder T, Asgeirsson DJ, Fulsom BG, Hearty C, Mattison TS, Mckenna JA, Barrett M, Khan A, Randle-conde A, Blinov VE, Bukin AD, Buzykaev AR, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Bondioli M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Martin EC, Stoker DP, Abachi S, Buchanan C, Atmacan H, Gary JW, Liu F, Long O, Vitug GM, Yasin Z, Zhang L, Sharma V, Campagnari C, Hong TM, Kovalskyi D, Mazur MA, Richman JD, Beck TW, Eisner AM, Heusch CA, Kroseberg J, Lockman WS, Martinez AJ, Schalk T, Schumm BA, Seiden A, Wang L, Winstrom LO, Cheng CH, Doll DA, Echenard B, Fang F, Hitlin DG, Narsky I, Piatenko T, Porter FC, Andreassen R, Mancinelli G, Meadows BT, Mishra K, Sokoloff MD, Bloom PC, Ford WT, Gaz A, Hirschauer JF, Nagel M, Nauenberg U, Smith JG, Wagner SR, Ayad R, Soffer A, Toki WH, Wilson RJ, Feltresi E, Hauke A, Jasper H, Karbach TM, Merkel J, Petzold A, Spaan B, Wacker K, Kobel MJ, Nogowski R, Schubert KR, Schwierz R, Volk A, Bernard D, Bonneaud GR, Latour E, Verderi M, Clark PJ, Playfer S, Watson JE, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cecchi A, Cibinetto G, Fioravanti E, Franchini P, Luppi E, Munerato M, Negrini M, Petrella A, Piemontese L, Santoro V, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Contri R, Guido E, Lo Vetere M, Monge MR, Passaggio S, Patrignani C, Robutti E, Tosi S, Chaisanguanthum KS, Morii M, Adametz A, Marks J, Schenk S, Uwer U, Bernlochner FU, Klose V, Lacker HM, Bard DJ, Dauncey PD, Tibbetts M, Behera PK, Charles MJ, Mallik U, Cochran J, Crawley HB, Dong L, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Gao YY, Gritsan AV, Guo ZJ, Arnaud N, Béquilleux J, D’orazio A, Davier M, Derkach D, Firmino da Costa J, Grosdidier G, Le Diberder F, Lepeltier V, Lutz AM, Malaescu B, Pruvot S, Roudeau P, Schune MH, Serrano J, Sordini V, Stocchi A, Wormser G, Lange DJ, Wright DM, Bingham I, Burke JP, Chavez CA, Fry JR, Gabathuler E, Gamet R, Hutchcroft DE, Payne DJ, Touramanis C, Bevan AJ, Clarke CK, Di Lodovico F, Sacco R, Sigamani M, Cowan G, Paramesvaran S, Wren AC, Brown DN, Davis CL, Denig AG, Fritsch M, Gradl W, Hafner A, Alwyn KE, Bailey D, Barlow RJ, Jackson G, Lafferty GD, West TJ, Yi JI, Anderson J, Chen C, Jawahery A, Roberts DA, Simi G, Tuggle JM, Dallapiccola C, Salvati E, Saremi S, Cowan R, Dujmic D, Fisher PH, Henderson SW, Sciolla G, Spitznagel M, Yamamoto RK, Zhao M, Patel PM, Robertson SH, Schram M, Lazzaro A, Lombardo V, Palombo F, Stracka S, Bauer JM, Cremaldi L, Godang R, Kroeger R, Sonnek P, Summers DJ, Zhao HW, Simard M, Taras P, Nicholson H, De Nardo G, Lista L, Monorchio D, Onorato G, Sciacca C, Raven G, Snoek HL, Jessop CP, Knoepfel KJ, Losecco JM, Wang WF, Corwin LA, Honscheid K, Kagan H, Kass R, Morris JP, Rahimi AM, Regensburger JJ, Sekula SJ, Wong QK, Blount NL, Brau J, Frey R, Igonkina O, Kolb JA, Lu M, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Castelli G, Gagliardi N, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, del Amo Sanchez P, Ben-haim E, Briand H, Chauveau J, Hamon O, Leruste P, Marchiori G, Ocariz J, Perez A, Prendki J, Sitt S, Gladney L, Biasini M, Manoni E, Angelini C, Batignani G, Bettarini S, Calderini G, Carpinelli M, Cervelli A, Forti F, Giorgi MA, Lusiani A, Morganti M, Neri N, Paoloni E, Rizzo G, Walsh JJ, Lopes Pegna D, Lu C, Olsen J, Smith AJS, Telnov AV, Anulli F, Baracchini E, Cavoto G, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Jackson PD, Li Gioi L, Mazzoni MA, Morganti S, Piredda G, Renga F, Voena C, Ebert M, Hartmann T, Schröder H, Waldi R, Adye T, Franek B, Olaiya EO, Wilson FF, Emery S, Esteve L, Hamel de Monchenault G, Kozanecki W, Vasseur G, Yèche C, Zito M, Allen MT, Aston D, Bartoldus R, Benitez JF, Cenci R, Coleman JP, Convery MR, Dingfelder JC, Dorfan J, Dubois-felsmann GP, Dunwoodie W, Field RC, Gabareen AM, Graham MT, Grenier P, Hast C, Innes WR, Kaminski J, Kelsey MH, Kim H, Kim P, Kocian ML, Leith DWGS, Li S, Lindquist B, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Messner R, Muller DR, Neal H, Nelson S, O’grady CP, Ofte I, Perl M, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Su D, Sullivan MK, Suzuki K, Swain SK, Thompson JM, Va’vra J, Wagner AP, Weaver M, West CA, Wisniewski WJ, Wittgen M, Wright DH, Wulsin HW, Yarritu AK, Yi K, Young CC, Ziegler V, Chen XR, Liu H, Park W, Purohit MV, White RM, Wilson JR, Burchat PR, Edwards AJ, Miyashita TS, Ahmed S, Alam MS, Ernst JA, Pan B, Saeed MA, Zain SB, Spanier SM, Wogsland BJ, Eckmann R, Ritchie JL, Ruland AM, Schilling CJ, Schwitters RF, Wray BC, Drummond BW, Izen JM, Lou XC, Bianchi F, Gamba D, Pelliccioni M, Bomben M, Bosisio L, Cartaro C, Della Ricca G, Lanceri L, Vitale L, Azzolini V, Lopez-march N, Martinez-vidal F, Milanes DA, Oyanguren A, Albert J, Banerjee S, Bhuyan B, Choi HHF, Hamano K, King GJ, Kowalewski R, Lewczuk MJ, Nugent IM, Roney JM, Sobie RJ, Gershon TJ, Harrison PF, Ilic J, Latham TE, Mohanty GB, Puccio EMT, Band HR, Chen X, Dasu S, Flood KT, Pan Y, Prepost R, Vuosalo CO, Wu SL. Search for the rare leptonic decays B+l+νl ( l=e,μ ). Phys Rev D 2009;79. [DOI: 10.1103/physrevd.79.091101] [Cited by in Crossref: 14] [Article Influence: 1.1] [Reference Citation Analysis]
130 Diéguez-Santana K, Rivera-Borroto OM, Puris A, Pham-The H, Le-Thi-Thu H, Rasulev B, Casañola-Martin GM. Beyond model interpretability using LDA and decision trees for α-amylase and α-glucosidase inhibitor classification studies. Chem Biol Drug Des 2019;94:1414-21. [PMID: 30908888 DOI: 10.1111/cbdd.13518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
131 Rencher AC, Scott DT. Assessing the contribution of individual variables following rejection of a multivariate hypothesis. Communications in Statistics - Simulation and Computation 1990;19:535-53. [DOI: 10.1080/03610919008812874] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
132 Peng C, Chang P, Adachi I, Aihara H, Aushev T, Aziz T, Bakich AM, Balagura V, Barberio E, Belous K, Bhardwaj V, Bondar A, Bozek A, Bračko M, Browder TE, Chang M, Chao Y, Chen A, Chen K, Chen P, Cheon BG, Chiang C, Chistov R, Cho I, Choi Y, Dalseno J, Danilov M, Das A, Dash M, Drutskoy A, Dungel W, Eidelman S, Gabyshev N, Goldenzweig P, Golob B, Ha H, Haba J, Hayashii H, Horii Y, Hoshi Y, Hou W, Hyun HJ, Iijima T, Inami K, Itoh R, Iwabuchi M, Iwasaki M, Iwasaki Y, Joshi NJ, Julius T, Kang JH, Kawasaki T, Kim HJ, Kim HO, Kim JH, Kim MJ, Kim SK, Kim YJ, Kinoshita K, Ko BR, Kodyš P, Korpar S, Križan P, Krokovny P, Kuhr T, Kwon Y, Kyeong S, Lee MJ, Lee S, Li J, Limosani A, Liu C, Liventsev D, Louvot R, Matyja A, Mconie S, Miyabayashi K, Miyata H, Mizuk R, Mohanty GB, Nakao M, Nakazawa H, Natkaniec Z, Neubauer S, Nishida S, Nishimura K, Nitoh O, Ogawa S, Ohshima T, Okuno S, Olsen SL, Pakhlova G, Park CW, Park H, Park HK, Pestotnik R, Petrič M, Piilonen LE, Röhrken M, Ryu S, Sakai Y, Schneider O, Schwanda C, Schwartz AJ, Senyo K, Sevior ME, Shapkin M, Shen CP, Shiu J, Shwartz B, Smerkol P, Sokolov A, Starič M, Sumisawa K, Sumiyoshi T, Tanaka M, Taylor GN, Teramoto Y, Trabelsi K, Uehara S, Unno Y, Uno S, Varner G, Varvell KE, Vervink K, Wang CH, Wang P, Watanabe M, Watanabe Y, Wedd R, Wicht J, Won E, Yabsley BD, Yamashita Y, Yuan CZ, Zhang CC, Zhang ZP, Zhilich V, Zhulanov V, Zivko T, Zyukova O. Search for Bs0hh decays at the Υ(5S) resonance. Phys Rev D 2010;82. [DOI: 10.1103/physrevd.82.072007] [Cited by in Crossref: 14] [Article Influence: 1.2] [Reference Citation Analysis]
133 Kappatos V, Dermatas E. Feature Selection for Robust Classification of Crack and Drop Signals. Structural Health Monitoring 2009;8:59-70. [DOI: 10.1177/1475921708094790] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
134 Marty T, Vanstone B, Hahn T. News media analytics in finance: a survey. Account Finance 2020;60:1385-434. [DOI: 10.1111/acfi.12466] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
135 Pal R, Kupka K, Aneja AP, Militky J. Business health characterization: A hybrid regression and support vector machine analysis. Expert Systems with Applications 2016;49:48-59. [DOI: 10.1016/j.eswa.2015.11.027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
136 Seo B, Kim D. Root selection in normal mixture models. Computational Statistics & Data Analysis 2012;56:2454-70. [DOI: 10.1016/j.csda.2012.01.022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
137 Fatemi MH, Ghorbanzad’e M. Classification of drugs according to their milk/plasma concentration ratio. European Journal of Medicinal Chemistry 2010;45:5051-5. [DOI: 10.1016/j.ejmech.2010.08.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
138 Cossignani L, Blasi F, Bosi A, D'Arco G, Maurelli S, Simonetti MS, Damiani P. Detection of cow milk in donkey milk by chemometric procedures on triacylglycerol stereospecific analysis results. J Dairy Res 2011;78:335-42. [PMID: 21774859 DOI: 10.1017/S0022029911000495] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
139 Gibson JP. Economic weights and index selection of milk production traits when multiple production quotas apply. Anim Sci 1989;49:171-81. [DOI: 10.1017/s0003356100032293] [Cited by in Crossref: 24] [Article Influence: 2.0] [Reference Citation Analysis]
140 Pedro Duarte Silva A. Optimization approaches to Supervised Classification. European Journal of Operational Research 2017;261:772-88. [DOI: 10.1016/j.ejor.2017.02.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
141 Francisco-fernández M, Tarrío-saavedra J, Mallik A, Naya S. A comprehensive classification of wood from thermogravimetric curves. Chemometrics and Intelligent Laboratory Systems 2012;118:159-72. [DOI: 10.1016/j.chemolab.2012.07.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
142 Mestiri S, Hamdi M. Credit Risk Prediction: A comparative study between logistic regression and logistic regression with random effects. International Journal of Management Science and Engineering Management 2013;7:200-4. [DOI: 10.1080/17509653.2012.10671224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
143 Xi Z, Hopkinson C, Rood SB, Peddle DR. See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 2020;168:1-16. [DOI: 10.1016/j.isprsjprs.2020.08.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
144 Gómez-silva M, Izquierdo E, Escalera A, Armingol J. Transferring learning from multi-person tracking to person re-identification. ICA 2019;26:329-44. [DOI: 10.3233/ica-190603] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
145 Barate R, Buskulic D, Decamp D, Ghez P, Goy C, Lees J, Lucotte A, Minard M, Nief J, Pietrzyk B, Casado M, Chmeissani M, Comas P, Crespo J, Delfino M, Fernandez E, Fernandez-bosman M, Garrido L, Juste A, Martinez M, Miquel R, Mir L, Orteu S, Padilla C, Park I, Pascual A, Perlas J, Riu I, Sanchez F, Teubert F, Colaleo A, Creanza D, de Palma M, Gelao G, Iaselli G, Maggi G, Maggi M, Marinelli N, Nuzzo S, Ranieri A, Raso G, Ruggieri F, Selvaggi G, Silvestris L, Tempesta P, Tricomi A, Zito G, Huang X, Lin J, Ouyang Q, Wang T, Xie Y, Xu R, Xue S, Zhang J, Zhang L, Zhao W, Abbaneo D, Alemany R, Bazarko A, Becker U, Bright-thomas P, Cattaneo M, Cerutti F, Dissertori G, Drevermann H, Forty R, Frank M, Hagelberg R, Hansen J, Harvey J, Janot P, Jost B, Kneringer E, Knobloch J, Lehraus I, Lutters G, Mato P, Minten A, Moneta L, Pacheco A, Pusztaszeri J, Ranjard F, Rizzo G, Rolandi L, Rousseau D, Schlatter D, Schmitt M, Schneider O, Tejessy W, Tomalin I, Wachsmuth H, Wagner A, Ajaltouni Z, Barrès A, Boyer C, Falvard A, Ferdi C, Gay P, Guicheney C, Henrard P, Jousset J, Michel B, Monteil S, Montret J, Pallin D, Perret P, Podlyski F, Proriol J, Rosnet P, Rossignol J, Fearnley T, Hansen J, Hansen J, Hansen P, Nilsson B, Rensch B, Wäänänen A, Daskalakis G, Kyriakis A, Markou C, Simopoulou E, Vayaki A, Blondel A, Brient J, Machefert F, Rougé A, Rumpf M, Valassi A, Videau H, Focardi E, Parrini G, Zachariadou K, Cavanaugh R, Corden M, Georgiopoulos C, Huehn T, Jaffe D, Antonelli A, Bencivenni G, Bologna G, Bossi F, Campana P, Capon G, Casper D, Chiarella V, Felici G, Laurelli P, Mannocchi G, Murtas F, Murtas G, Passalacqua L, Pepe-altarelli M, Curtis L, Dorris S, Halley A, Knowles I, Lynch J, O'shea V, Raine C, Scarr J, Smith K, Teixeira-dias P, Thompson A, Thomson E, Thomson F, Turnbull R, Geweniger C, Graefe G, Hanke P, Hansper G, Hepp V, Kluge E, Putzer A, Schmidt M, Sommer J, Tittel K, Werner S, Wunsch M, Beuselinck R, Binnie D, Cameron W, Dornan P, Girone M, Goodsir S, Martin E, Morawitz P, Moutoussi A, Nash J, Sedgbeer J, Spagnolo P, Stacey A, Williams M, Ghete V, Girtler P, Kuhn D, Rudolph G, Betteridge A, Bowdery C, Colrain P, Crawford G, Finch A, Foster F, Hughes G, Jones R, Sloan T, Whelan E, Williams M, Hoffmann C, Jakobs K, Kleinknecht K, Quast G, Renk B, Rohne E, Sander H, van Gemmeren P, Zeitnitz C, Aubert J, Benchouk C, Bonissent A, Bujosa G, Calvet D, Carr J, Coyle P, Diaconu C, Konstantinidis N, Leroy O, Motsch F, Payre P, Talby M, Sadouki A, Thulasidas M, Tilquin A, Trabelsi K, Aleppo M, Ragusa F, Berlich R, Blum W, Büscher V, Dietl H, Ganis G, Gotzhein C, Kroha H, Lütjens G, Lutz G, Männer W, Moser H, Richter R, Rosado-schlosser A, Schael S, Settles R, Seywerd H, Denis R, Stenzel H, Wiedenmann W, Wolf G, Boucrot J, Callot O, Chen S, Cordier A, Davier M, Duflot L, Grivaz J, Heusse P, Höcker A, Jacholkowska A, Jacquet M, Kim D, Le Diberder F, Lefrançois J, Lutz A, Nikolic I, Schune M, Serin L, Simion S, Tournefier E, Veillet J, Videau I, Zerwas D, Azzurri P, Bagliesi G, Bettarini S, Bozzi C, Calderini G, Ciulli V, Dell'orso R, Fantechi R, Ferrante I, Giassi A, Gregorio A, Ligabue F, Lusiani A, Marrocchesi P, Messineo A, Palla F, Sanguinetti G, Sciabà A, Steinberger J, Tenchini R, Vannini C, Venturi A, Verdini P, Blair G, Bryant L, Chambers J, Gao Y, Green M, Medcalf T, Perrodo P, Strong J, von Wimmersperg-toeller J, Botterill D, Clifft R, Edgecock T, Haywood S, Maley P, Norton P, Thompson J, Wright A, Bloch-devaux B, Colas P, Fabbro B, Kozanecki W, Lançon E, Lemaire M, Locci E, Perez P, Rander J, Renardy J, Rosowsky A, Roussarie A, Schuller J, Schwindling J, Trabelsi A, Vallage B, Black S, Dann J, Kim H, Litke A, Mcneil M, Taylor G, Booth C, Boswell R, Brew C, Cartwright S, Combley F, Kelly M, Lehto M, Newton W, Reeve J, Thompson L, Affholderbach K, Böhrer A, Brandt S, Cowan G, Foss J, Grupen C, Saraiva P, Smolik L, Stephan F, Apollonio M, Bosisio L, Della Marina R, Giannini G, Gobbo B, Musolino G, Putz J, Rothberg J, Wasserbaech S, Williams R, Armstrong S, Charles E, Elmer P, Ferguson D, González S, Greening T, Hayes O, Hu H, Jin S, Mcnamara P, Nachtman J, Nielsen J, Orejudos W, Pan Y, Saadi Y, Scott I, Walsh J, Wu SL, Wu X, Yamartino J, Zobernig G. Search for sleptons in e+e− collisions at centre-of-mass energies of 161 GeV and 172 GeV. Physics Letters B 1997;407:377-88. [DOI: 10.1016/s0370-2693(97)00892-7] [Cited by in Crossref: 9] [Article Influence: 0.4] [Reference Citation Analysis]
146 Luaces O, del Coz JJ, Quevedo JR, Alonso J, Ranilla J, Bahamonde A. Autonomous clustering for machine learning. In: Mira J, Sánchez-andrés JV, editors. Foundations and Tools for Neural Modeling. Berlin: Springer Berlin Heidelberg; 1999. pp. 497-506. [DOI: 10.1007/bfb0098207] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
147 Givens GH, Beveridge JR, Lui YM, Bolme DS, Draper BA, Phillips PJ. Biometric face recognition: from classical statistics to future challenges: Biometric face recognition. WIREs Comput Stat 2013;5:288-308. [DOI: 10.1002/wics.1262] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
148 Bradley PE. On the Logistic Behaviour of the Topological Ultrametricity of Data. J Classif 2019;36:266-76. [DOI: 10.1007/s00357-018-9281-y] [Reference Citation Analysis]
149 Nansen C, Coelho A Jr, Vieira JM, Parra JR. Reflectance-based identification of parasitized host eggs and adult Trichogramma specimens. J Exp Biol 2014;217:1187-92. [PMID: 24363420 DOI: 10.1242/jeb.095661] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
150 Chen F, Li F. Comparison of the Hybrid Credit Scoring Models Based on Various Classifiers: . International Journal of Intelligent Information Technologies 2010;6:56-74. [DOI: 10.4018/jiit.2010070104] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
151 Bouveyron C, Brunet C. Probabilistic Fisher discriminant analysis: A robust and flexible alternative to Fisher discriminant analysis. Neurocomputing 2012;90:12-22. [DOI: 10.1016/j.neucom.2011.11.027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
152 Yamauchi M. New results from Belle. Nuclear Physics B - Proceedings Supplements 2003;117:83-97. [DOI: 10.1016/s0920-5632(03)01412-9] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
153 Hacid H, Yoshida T. Neighborhood graphs for indexing and retrieving multi-dimensional data. J Intell Inf Syst 2010;34:93-111. [DOI: 10.1007/s10844-009-0081-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
154 Öğütçü Z, Horasan G, Kalafat D. Investigation of microseismic activity sources in Konya and its vicinity, central Turkey. Nat Hazards 2011;58:497-509. [DOI: 10.1007/s11069-010-9683-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
155 Mohammadi M, Raahemi B, Akbari A, Nassersharif B, Moeinzadeh H. Improving linear discriminant analysis with artificial immune system-based evolutionary algorithms. Information Sciences 2012;189:219-32. [DOI: 10.1016/j.ins.2011.11.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
156 Hudak MJ. RCE CLASSIFIERS: THEORY AND PRACTICE. Cybernetics and Systems 1992;23:483-515. [DOI: 10.1080/01969729208927478] [Cited by in Crossref: 28] [Article Influence: 0.9] [Reference Citation Analysis]
157 Anderson S, Frolov VV, Kubota Y, Lee SJ, Poling R, Smith A, Stepaniak CJ, Urheim J, Ahmed S, Alam MS, Athar SB, Jian L, Ling L, Saleem M, Timm S, Wappler F, Anastassov A, Eckhart E, Gan KK, Gwon C, Hart T, Honscheid K, Hufnagel D, Kagan H, Kass R, Pedlar TK, Thayer JB, von Toerne E, Zoeller MM, Richichi SJ, Severini H, Skubic P, Undrus A, Savinov V, Chen S, Hinson JW, Lee J, Miller DH, Shibata EI, Shipsey IPJ, Pavlunin V, Cronin-hennessy D, Kwon Y, Lyon AL, Park W, Thorndike EH, Coan TE, Gao YS, Maravin Y, Narsky I, Stroynowski R, Ye J, Wlodek T, Artuso M, Benslama K, Boulahouache C, Bukin K, Dambasuren E, Majumder G, Mountain R, Skwarnicki T, Stone S, Wang JC, Wolf A, Kopp S, Kostin M, Mahmood AH, Csorna SE, Danko I, Mclean KW, Xu Z, Godang R, Bonvicini G, Cinabro D, Dubrovin M, Mcgee S, Bornheim A, Eigen G, Lipeles E, Pappas SP, Shapiro A, Sun WM, Weinstein AJ, Jaffe DE, Mahapatra R, Masek G, Paar HP, Eppich A, Morrison RJ, Briere RA, Chen GP, Ferguson T, Vogel H, Alexander JP, Bebek C, Berger BE, Berkelman K, Blanc F, Boisvert V, Cassel DG, Drell PS, Duboscq JE, Ecklund KM, Ehrlich R, Gaidarev P, Gibbons L, Gittelman B, Gray SW, Hartill DL, Heltsley BK, Hsu L, Jones CD, Kandaswamy J, Kreinick DL, Lohner M, Magerkurth A, Mahlke-krüger H, Meyer TO, Mistry NB, Nordberg E, Palmer M, Patterson JR, Peterson D, Riley D, Romano A, Schwarthoff H, Thayer JG, Urner D, Valant-spaight B, Viehhauser G, Warburton A, Avery P, Prescott C, Rubiera AI, Stoeck H, Yelton J, Brandenburg G, Ershov A, Kim DY, Wilson R, Eisenstein BI, Ernst J, Gladding GE, Gollin GD, Hans RM, Johnson E, Karliner I, Marsh MA, Plager C, Sedlack C, Selen M, Thaler JJ, Williams J, Edwards KW, Sadoff AJ, Ammar R, Bean A, Besson D, Zhao X. Improved Upper Limits on the Flavor-Changing Neutral Current Decays BK+ and BK*(892)+. Phys Rev Lett 2001;87. [DOI: 10.1103/physrevlett.87.181803] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
158 Caine S, Heraud P, Tobin MJ, Mcnaughton D, Bernard CC. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. NeuroImage 2012;59:3624-40. [DOI: 10.1016/j.neuroimage.2011.11.033] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 6.2] [Reference Citation Analysis]
159 Fox AS. Application of Paper Chromatography to Taxonomic Studies. Science 1956;123:143-143. [DOI: 10.1126/science.123.3187.143] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 0.2] [Reference Citation Analysis]
160 Cochran WG. On the Performance of the Linear Discriminant Function. Technometrics 1964;6:179-90. [DOI: 10.1080/00401706.1964.10490162] [Cited by in Crossref: 31] [Cited by in F6Publishing: 12] [Article Influence: 0.5] [Reference Citation Analysis]
161 Averbuch A, Zheludev V, Neittaanmäki P, Wartiainen P, Huoman K, Janson K. Acoustic detection and classification of river boats. Applied Acoustics 2011;72:22-34. [DOI: 10.1016/j.apacoust.2010.09.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 2.1] [Reference Citation Analysis]
162 Chen S, Yu P, Tang Y. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology 2010;385:13-22. [DOI: 10.1016/j.jhydrol.2010.01.021] [Cited by in Crossref: 132] [Cited by in F6Publishing: 55] [Article Influence: 11.0] [Reference Citation Analysis]
163 Friedman JH, Rafsky LC. Graphics for the Multivariate Two-Sample Problem. Journal of the American Statistical Association 1981;76:277-87. [DOI: 10.1080/01621459.1981.10477643] [Cited by in Crossref: 32] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
164 Rivero D, Dorado J, Rabuñal J, Pazos A. Generation and simplification of Artificial Neural Networks by means of Genetic Programming. Neurocomputing 2010;73:3200-23. [DOI: 10.1016/j.neucom.2010.05.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
165 Savič T, Pavešić N. Personal recognition based on an image of the palmar surface of the hand. Pattern Recognition 2007;40:3152-63. [DOI: 10.1016/j.patcog.2007.03.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
166 Miklody D, Blankertz B. Cognitive Workload of Tugboat Captains in Realistic Scenarios: Adaptive Spatial Filtering for Transfer Between Conditions. Front Hum Neurosci 2022;16:818770. [DOI: 10.3389/fnhum.2022.818770] [Reference Citation Analysis]
167 Aubert B, Barate R, Bona M, Boutigny D, Couderc F, Karyotakis Y, Lees JP, Poireau V, Tisserand V, Zghiche A, Grauges E, Palano A, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Battaglia M, Brown DN, Button-shafer J, Cahn RN, Charles E, Gill MS, Groysman Y, Jacobsen RG, Kadyk JA, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Ronan MT, Wenzel WA, del Amo Sanchez P, Barrett M, Ford KE, Harrison TJ, Hart AJ, Hawkes CM, Morgan SE, Watson AT, Goetzen K, Held T, Koch H, Lewandowski B, Pelizaeus M, Peters K, Schroeder T, Steinke M, Boyd JT, Burke JP, Cottingham WN, Walker D, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Knecht NS, Mattison TS, Mckenna JA, Khan A, Kyberd P, Saleem M, Sherwood DJ, Teodorescu L, Blinov VE, Bukin AD, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Best DS, Bondioli M, Bruinsma M, Chao M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Mommsen RK, Roethel W, Stoker DP, Abachi S, Buchanan C, Foulkes SD, Gary JW, Long O, Shen BC, Wang K, Zhang L, Hadavand HK, Hill EJ, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Cunha A, Dahmes B, Hong TM, Kovalskyi D, Richman JD, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Nesom G, Schalk T, Schumm BA, Seiden A, Spradlin P, Williams DC, Wilson MG, Albert J, Chen E, Dvoretskii A, Hitlin DG, Narsky I, Piatenko T, Porter FC, Ryd A, Samuel A, Andreassen R, Mancinelli G, Meadows BT, Sokoloff MD, Blanc F, Bloom PC, Chen S, Ford WT, Hirschauer JF, Kreisel A, Nauenberg U, Olivas A, Ruddick WO, Smith JG, Ulmer KA, Wagner SR, Zhang J, Chen A, Eckhart EA, Soffer A, Toki WH, Wilson RJ, Winklmeier F, Zeng Q, Altenburg DD, Feltresi E, Hauke A, Jasper H, Petzold A, Spaan B, Brandt T, Klose V, Lacker HM, Mader WF, Nogowski R, Schubert J, Schubert KR, Schwierz R, Sundermann JE, Volk A, Bernard D, Bonneaud GR, Grenier P, Latour E, Thiebaux C, Verderi M, Bard DJ, Clark PJ, Gradl W, Muheim F, Playfer S, Robertson AI, Xie Y, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Petrella A, Piemontese L, Prencipe E, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Buzzo A, Capra R, Contri R, Lo Vetere M, Macri MM, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Brandenburg G, Chaisanguanthum KS, Morii M, Wu J, Dubitzky RS, Marks J, Schenk S, Uwer U, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Flack RL, Nash J.A, Nikolich MB, Vazquez WP, Chai X, Charles MJ, Mallik U, Meyer NT, Ziegler V, Cochran J, Crawley HB, Dong L, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Gritsan AV, Fritsch M, Schott G, Arnaud N, Davier M, Grosdidier G, Höcker A, Le Diberder F, Lepeltier V, Lutz AM, Oyanguren A, Pruvot S, Rodier S, Roudeau P, Schune MH, Stocchi A, Wang WF, Wormser G, Cheng CH, Lange DJ, Wright DM, Chavez CA, Forster IJ, Fry JR, Gabathuler E, Gamet R, George KA, Hutchcroft DE, Payne DJ, Schofield KC, Touramanis C, Bevan AJ, Di Lodovico F, Menges W, Sacco R, Cowan G, Flaecher HU, Hopkins DA, Jackson PS, Mcmahon TR, Ricciardi S, Salvatore F, Wren AC, Brown DN, Davis CL, Allison J, Barlow NR, Barlow RJ, Chia YM, Edgar CL, Lafferty GD, Naisbit MT, Williams JC, Yi JI, Chen C, Hulsbergen WD, Jawahery A, Lae CK, Roberts DA, Simi G, Blaylock G, Dallapiccola C, Hertzbach SS, Li X, Moore TB, Saremi S, Staengle H, Willocq SY, Cowan R, Sciolla G, Sekula SJ, Spitznagel M, Taylor F, Yamamoto RK, Kim H, Patel PM, Robertson SH, Lazzaro A, Lombardo V, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Taras P, Viaud FB, Nicholson H, Cavallo N, De Nardo G, Fabozzi F, Gatto C, Lista L, Monorchio D, Paolucci P, Piccolo D, Sciacca C, Baak M, Raven G, Snoek HL, Jessop CP, Losecco JM, Allmendinger T, Benelli G, Gan KK, Honscheid K, Hufnagel D, Jackson PD, Kagan H, Kass R, Rahimi AM, Ter-antonyan R, Wong QK, Blount NL, Brau J, Frey R, Igonkina O, Lu M, Potter CT, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Galeazzi F, Gaz A, Margoni M, Morandin M, Pompili A, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, Benayoun M, Chauveau J, David P, Del Buono L, de la Vaissière C, Hamon O, Hartfiel BL, John MJJ, Malclès J, Ocariz J, Roos L, Therin G, Behera PK, Gladney L, Panetta J, Biasini M, Covarelli R, Pioppi M, Angelini C, Batignani G, Bettarini S, Bucci F, Calderini G, Carpinelli M, Cenci R, Forti F, Giorgi MA, Lusiani A, Marchiori G, Mazur MA, Morganti M, Neri N, Rizzo G, Walsh J, Haire M, Judd D, Wagoner DE, Biesiada J, Danielson N, Elmer P, Lau YP, Lu C, Olsen J, Smith AJS, Telnov AV, Bellini F, Cavoto G, D’orazio A, del Re D, Di Marco E, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Li Gioi L, Mazzoni MA, Morganti S, Piredda G, Polci F, Tehrani FS, Voena C, Ebert M, Schröder H, Waldi R, Adye T, De Groot N, Franek B, Olaiya EO, Wilson FF, Emery S, Gaidot A, Ganzhur SF, Hamel de Monchenault G, Kozanecki W, Legendre M, Vasseur G, Yèche C, Zito M, Chen XR, Liu H, Park W, Purohit MV, Wilson JR, Allen MT, Aston D, Bartoldus R, Bechtle P, Berger N, Boyarski AM, Claus R, Coleman JP, Convery MR, Cristinziani M, Dingfelder JC, Dorfan J, Dubois-felsmann GP, Dujmic D, Dunwoodie W, Field RC, Glanzman T, Gowdy SJ, Graham MT, Halyo V, Hast C, Hryn’ova T, Innes WR, Kelsey MH, Kim P, Leith DWGS, Li S, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Messner R, Muller DR, O’grady CP, Ozcan VE, Perazzo A, Perl M, Pulliam T, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Stelzer J, Su D, Sullivan MK, Suzuki K, Swain SK, Thompson JM, Va’vra J, van Bakel N, Weaver M, Weinstein AJR, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Yi K, Young CC, Burchat PR, Edwards AJ, Majewski SA, Petersen BA, Roat C, Wilden L, Ahmed S, Alam MS, Bula R, Ernst JA, Jain V, Pan B, Saeed MA, Wappler FR, Zain SB, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Ritchie JL, Satpathy A, Schilling CJ, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Gallo F, Gamba D, Bomben M, Bosisio L, Cartaro C, Cossutti F, Della Ricca G, Dittongo S, Grancagnolo S, Lanceri L, Vitale L, Azzolini V, Martinez-vidal F, Banerjee S, Bhuyan B, Brown CM, Fortin D, Hamano K, Kowalewski R, Nugent IM, Roney JM, Sobie RJ, Back JJ, Harrison PF, Latham TE, Mohanty GB, Pappagallo M, Band HR, Chen X, Cheng B, Dasu S, Datta M, Flood KT, Hollar JJ, Kutter PE, Mellado B, Mihalyi A, Pan Y, Pierini M, Prepost R, Wu SL, Yu Z, Neal H. Search for the decay of a B0 or B¯0 meson to K¯*0K0 or K*0K¯0. Phys Rev D 2006;74. [DOI: 10.1103/physrevd.74.072008] [Cited by in Crossref: 8] [Article Influence: 0.5] [Reference Citation Analysis]
168 Moran CJ, O'Neill MW, Armbruster JW, Gibb AC. Can members of the south-western Gila robusta species complex be distinguished by morphological features? J Fish Biol 2017;91:302-16. [PMID: 28589694 DOI: 10.1111/jfb.13348] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
169 Todeschini R. Data correlation, number of significant principal components and shape of molecules. The K correlation index. Analytica Chimica Acta 1997;348:419-30. [DOI: 10.1016/s0003-2670(97)00290-0] [Cited by in Crossref: 46] [Article Influence: 1.8] [Reference Citation Analysis]
170 Ghorbanzadeh M, Zhang J, Andersson PL. Binary classification model to predict developmental toxicity of industrial chemicals in zebrafish. J Chemometrics 2016;30:298-307. [DOI: 10.1002/cem.2791] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
171 Arsalane A, El Barbri N, Tabyaoui A, Klilou A, Rhofir K. The assessment of fresh and spoiled beef meat using a prototype device based on GigE Vision camera and DSP. Food Measure 2019;13:1730-8. [DOI: 10.1007/s11694-019-00090-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
172 Anderson MJ, Willis TJ. CANONICAL ANALYSIS OF PRINCIPAL COORDINATES: A USEFUL METHOD OF CONSTRAINED ORDINATION FOR ECOLOGY. Ecology 2003;84:511-25. [DOI: 10.1890/0012-9658(2003)084[0511:caopca]2.0.co;2] [Reference Citation Analysis]
173 Lin G, Chang M, Wu J. A Hybrid Statistical Downscaling Method Based on the Classification of Rainfall Patterns. Water Resour Manage 2017;31:377-401. [DOI: 10.1007/s11269-016-1532-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
174 Thaler J, Van Tilburg K. Maximizing boosted top identification by minimizing N-subjettiness. J High Energ Phys 2012;2012. [DOI: 10.1007/jhep02(2012)093] [Cited by in Crossref: 232] [Article Influence: 23.2] [Reference Citation Analysis]
175 Steane MA, Mcnicholas PD, Yada RY. Model-Based Classification via Mixtures of Multivariate t -Factor Analyzers. Communications in Statistics - Simulation and Computation 2011;41:510-23. [DOI: 10.1080/03610918.2011.595984] [Cited by in Crossref: 24] [Article Influence: 2.2] [Reference Citation Analysis]
176 Marques J, Genant HK, Lillholm M, Dam EB. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Magn Reson Med 2013;70:568-75. [PMID: 22941674 DOI: 10.1002/mrm.24477] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
177 de Almeida VE, de Sousa Fernandes DD, Diniz PHGD, de Araújo Gomes A, Véras G, Galvão RKH, Araujo MCU. Scores selection via Fisher's discriminant power in PCA-LDA to improve the classification of food data. Food Chem 2021;363:130296. [PMID: 34144419 DOI: 10.1016/j.foodchem.2021.130296] [Reference Citation Analysis]
178 Tzung-pei Hong, Jyh-bin Chen. Finding relevant attributes and membership functions. Fuzzy Sets and Systems 1999;103:389-404. [DOI: 10.1016/s0165-0114(97)00187-5] [Cited by in Crossref: 94] [Article Influence: 4.1] [Reference Citation Analysis]
179 Hardy WE, Spurlock SR, Parrish DR, Benoist LA. An Analysis of Factors that Affect the Quality of Federal Land Bank Loans. J Agric Appl Econ 1987;19:175-82. [DOI: 10.1017/s0081305200025449] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
180 Aguilera-morillo MC, Aguilera AM. Multi-class classification of biomechanical data: A functional LDA approach based on multi-class penalized functional PLS. Statistical Modelling 2019. [DOI: 10.1177/1471082x17871157] [Reference Citation Analysis]
181 Dhillon IS, Modha DS, Spangler W. Class visualization of high-dimensional data with applications. Computational Statistics & Data Analysis 2002;41:59-90. [DOI: 10.1016/s0167-9473(02)00144-5] [Cited by in Crossref: 27] [Article Influence: 1.4] [Reference Citation Analysis]
182 Green RC, Wang L, Alam M. Training neural networks using Central Force Optimization and Particle Swarm Optimization: Insights and comparisons. Expert Systems with Applications 2012;39:555-63. [DOI: 10.1016/j.eswa.2011.07.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 14] [Article Influence: 4.9] [Reference Citation Analysis]
183 Kaplan RM, Litrownik AJ. Some statistical methods for the assessment of multiple outcome criteria in behavioral research. Behavior Therapy 1977;8:383-92. [DOI: 10.1016/s0005-7894(77)80073-7] [Cited by in Crossref: 24] [Article Influence: 0.5] [Reference Citation Analysis]
184 Bertsimas D, Brown DB, Caramanis C. Theory and Applications of Robust Optimization. SIAM Rev 2011;53:464-501. [DOI: 10.1137/080734510] [Cited by in Crossref: 1200] [Cited by in F6Publishing: 136] [Article Influence: 109.1] [Reference Citation Analysis]
185 Iworiso J, Vrontos S. On the directional predictability of equity premium using machine learning techniques. Journal of Forecasting 2019;39:449-69. [DOI: 10.1002/for.2632] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
186 Penrose LS. SOME NOTES ON DISCRIMINATION. Annals of Eugenics 1946;13:228-37. [DOI: 10.1111/j.1469-1809.1946.tb02364.x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
187 Fetterly KA, Favazza CP. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer. Phys Med Biol 2016;61:5606-20. [PMID: 27385086 DOI: 10.1088/0031-9155/61/15/5606] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
188 Li C, Shao Y, Deng N. Robust L1-norm two-dimensional linear discriminant analysis. Neural Networks 2015;65:92-104. [DOI: 10.1016/j.neunet.2015.01.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
189 Zhong D. Neighborhood discriminant embedding in face recognition. Opt Eng 2010;49:077203. [DOI: 10.1117/1.3465582] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
190 Mirzaei S, Kang J, Chu K. A comparative study on long short-term memory and gated recurrent unit neural networks in fault diagnosis for chemical processes using visualization. Journal of the Taiwan Institute of Chemical Engineers 2022;130:104028. [DOI: 10.1016/j.jtice.2021.08.016] [Reference Citation Analysis]
191 Liu Y, Yi Z, Wu H, Ye M, Chen K. A tabu search approach for the minimum sum-of-squares clustering problem. Information Sciences 2008;178:2680-704. [DOI: 10.1016/j.ins.2008.01.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
192 Chen S, Chang C. A NEW METHOD TO CONSTRUCT MEMBERSHIP FUNCTIONS AND GENERATE WEIGHTED FUZZY RULES FROM TRAINING INSTANCES. Cybernetics and Systems 2005;36:397-414. [DOI: 10.1080/01969720490929562] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
193 Cugini P, Leone G, Strazzera P, Kawasaki T. Stepwise multivariate discriminant analysis (SMDA) for paired and unpaired biomedical data using microcomputers. Computers in Biology and Medicine 1988;18:39-55. [DOI: 10.1016/0010-4825(88)90055-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
194 Chen S, Yu J, Wang S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes. Journal of Process Control 2020;87:54-67. [DOI: 10.1016/j.jprocont.2020.01.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 3] [Article Influence: 15.0] [Reference Citation Analysis]
195 Nazari Samani A, Khosravi H, Mesbahzadeh T, Azarakhshi M, Rahdari MR. Determination of sand dune characteristics through geomorphometry and wind data analysis in central Iran (Kashan Erg). Arab J Geosci 2016;9. [DOI: 10.1007/s12517-016-2746-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
196 Herter S, Youssef S, Becker MM, Fischer SCL. Machine Learning Based Preprocessing to Ensure Validity of Cross-Correlated Ultrasound Signals for Time-of-Flight Measurements. J Nondestruct Eval 2021;40. [DOI: 10.1007/s10921-020-00745-7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
197 Hou-liu J, Browne RP. Factor and hybrid components for model-based clustering. Adv Data Anal Classif. [DOI: 10.1007/s11634-021-00483-2] [Reference Citation Analysis]
198 Edelman S, Intrator N. Learning as Extraction of Low-Dimensional Representations. Perceptual Learning. Elsevier; 1997. pp. 353-80. [DOI: 10.1016/s0079-7421(08)60288-1] [Cited by in Crossref: 18] [Article Influence: 0.7] [Reference Citation Analysis]
199 Zheng W, Qian F. Promptly assessing probability of barge–bridge collision damage of piers through probabilistic-based classification of machine learning. J Civil Struct Health Monit 2017;7:57-78. [DOI: 10.1007/s13349-017-0208-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
200 Zhang L, Yang WH. Perturbation analysis for the trace quotient problem. Linear and Multilinear Algebra 2013;61:1629-40. [DOI: 10.1080/03081087.2012.750655] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
201 Denton JW, Hung MS, Osyk BA. A neural network approach to the classification problem. Expert Systems with Applications 1990;1:417-24. [DOI: 10.1016/0957-4174(90)90050-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
202 Meesad P, Yen GG. Pattern classification by a neurofuzzy network: application to vibration monitoring. ISA Transactions 2000;39:293-308. [DOI: 10.1016/s0019-0578(00)00027-6] [Cited by in Crossref: 27] [Article Influence: 1.2] [Reference Citation Analysis]
203 Embrechts MJ, Gatti CJ, Linton J, Roysam B. Hierarchical Clustering for Large Data Sets. In: Georgieva P, Mihaylova L, Jain LC, editors. Advances in Intelligent Signal Processing and Data Mining. Berlin: Springer Berlin Heidelberg; 2013. pp. 197-233. [DOI: 10.1007/978-3-642-28696-4_8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
204 Kautkar SN, Atkinson GA, Smith ML. Face recognition in 2D and 2.5D using ridgelets and photometric stereo. Pattern Recognition 2012;45:3317-27. [DOI: 10.1016/j.patcog.2012.03.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
205 Patil K, Chouhan U. Relevance of Machine Learning Techniques and Various Protein Features in Protein Fold Classification: A Review. CBIO 2019;14:688-97. [DOI: 10.2174/1574893614666190204154038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
206 Kolomiets OA, Lachenmeier DW, Hoffmann U, Siesler HW. Quantitative Determination of Quality Parameters and Authentication of Vodka Using near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy 2010;18:59-67. [DOI: 10.1255/jnirs.866] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
207 Szepannek G, Bischl B, Weihs C. On the combination of locally optimal pairwise classifiers. Engineering Applications of Artificial Intelligence 2009;22:79-85. [DOI: 10.1016/j.engappai.2008.04.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
208 Guénoche A, Hansen P, Jaumard B. Efficient algorithms for divisive hierarchical clustering with the diameter criterion. Journal of Classification 1991;8:5-30. [DOI: 10.1007/bf02616245] [Cited by in Crossref: 75] [Article Influence: 2.4] [Reference Citation Analysis]
209 Eyton J. Urban land use classification and modelling using cover-type frequencies. Applied Geography 1993;13:111-21. [DOI: 10.1016/0143-6228(93)90053-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
210 Üney F, Türkay M. A mixed-integer programming approach to multi-class data classification problem. European Journal of Operational Research 2006;173:910-20. [DOI: 10.1016/j.ejor.2005.04.049] [Cited by in Crossref: 40] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
211 Safo SE, Long Q. Sparse linear discriminant analysis in structured covariates space. Statistical Analysis and Data Mining: The ASA Data Science Journal 2018;12:56-69. [DOI: 10.1002/sam.11376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
212 Guo Y, Sengur A. NCM: Neutrosophic c-means clustering algorithm. Pattern Recognition 2015;48:2710-24. [DOI: 10.1016/j.patcog.2015.02.018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 19] [Article Influence: 12.6] [Reference Citation Analysis]
213 Samadani A, Ghodsi A, Kulić D. Discriminative functional analysis of human movements. Pattern Recognition Letters 2013;34:1829-39. [DOI: 10.1016/j.patrec.2012.12.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
214 Park PS, Kshirsagar AM. Distances between normal populations when covariance matrices are unequal. Communications in Statistics - Theory and Methods 1994;23:3549-56. [DOI: 10.1080/03610929408831463] [Cited by in Crossref: 6] [Article Influence: 0.2] [Reference Citation Analysis]
215 Balaha HM, El-gendy EM, Saafan MM. A complete framework for accurate recognition and prognosis of COVID-19 patients based on deep transfer learning and feature classification approach. Artif Intell Rev. [DOI: 10.1007/s10462-021-10127-8] [Reference Citation Analysis]
216 Veronese G, Pepe A. Life satisfaction and trauma in clinical and non-clinical children living in a war-torn environment: A discriminant analysis. J Health Psychol 2020;25:459-71. [PMID: 28810496 DOI: 10.1177/1359105317720004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
217 Rocha EP, Danchin A, Viari A. Universal replication biases in bacteria. Mol Microbiol 1999;32:11-6. [PMID: 10216855 DOI: 10.1046/j.1365-2958.1999.01334.x] [Cited by in Crossref: 119] [Cited by in F6Publishing: 122] [Article Influence: 5.2] [Reference Citation Analysis]
218 Kabata Z. Lernaeocera obtusa n.sp., a hitherto undescribed parasite of the haddock ( Gadus aeglefinus L.). J Mar Biol Ass 1957;36:569-92. [DOI: 10.1017/s0025315400025856] [Cited by in Crossref: 10] [Article Influence: 0.8] [Reference Citation Analysis]
219 Caruso BS. GIS-Based Stream Classification in a Mountain Watershed for Jurisdictional Evaluation. J Am Water Resour Assoc 2014;50:1304-24. [DOI: 10.1111/jawr.12189] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
220 Silva DFG, Coelho CDJ, Romanek C, Gardingo JR, Silva ARD, Graczyki BL, Oliveira EAT, Matiello RR. Genetic dissimilarity and definition of recombination clusters among green corn half-sib progenies. Bragantia 2016;75:401-10. [DOI: 10.1590/1678-4499.343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
221 Wu XH, Wan XX, Wu B, Wu F. Classification of Apple Using near Infrared Spectroscopy Based on Fuzzy Discriminant Analysis. AMR 2013;710:524-8. [DOI: 10.4028/www.scientific.net/amr.710.524] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
222 Guo S, Guo D, Chen L, Jiang Q. A centroid-based gene selection method for microarray data classification. J Theor Biol 2016;400:32-41. [PMID: 27056739 DOI: 10.1016/j.jtbi.2016.03.034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
223 Belatreche A, Maguire LP, Mcginnity M, Wu QX. EVOLUTIONARY DESIGN OF SPIKING NEURAL NETWORKS. New Math and Nat Computation 2011;02:237-53. [DOI: 10.1142/s179300570600049x] [Cited by in Crossref: 13] [Article Influence: 1.2] [Reference Citation Analysis]
224 Akogul S, Erisoglu M. An Approach for Determining the Number of Clusters in a Model-Based Cluster Analysis. Entropy 2017;19:452. [DOI: 10.3390/e19090452] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 6.8] [Reference Citation Analysis]
225 Odorico R. Neural 2.00 — A program for neural net and statistical pattern recognition. Computer Physics Communications 1996;96:314-30. [DOI: 10.1016/0010-4655(96)00010-0] [Cited by in Crossref: 6] [Article Influence: 0.2] [Reference Citation Analysis]
226 Maldonado S, Peters G, Weber R. Credit scoring using three-way decisions with probabilistic rough sets. Information Sciences 2020;507:700-14. [DOI: 10.1016/j.ins.2018.08.001] [Cited by in Crossref: 30] [Article Influence: 15.0] [Reference Citation Analysis]
227 Neophytou C, Aravanopoulos FA, Fink S, Dounavi A. Interfertile oaks in an island environment. II. Limited hybridization between Quercus alnifolia Poech and Q. coccifera L. in a mixed stand. Eur J Forest Res 2011;130:623-35. [DOI: 10.1007/s10342-010-0454-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
228 Gebre-mariam H, Larter EN. Genetic response to index selection for grain yield, kernel weight and per cent protein in four wheat crosses. Plant Breeding 1996;115:459-64. [DOI: 10.1111/j.1439-0523.1996.tb00957.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
229 Smith CAB. SOME EXAMPLES OF DISCRIMINATION. Annals of Eugenics 1946;13:272-82. [DOI: 10.1111/j.1469-1809.1946.tb02368.x] [Cited by in Crossref: 173] [Cited by in F6Publishing: 85] [Article Influence: 17.3] [Reference Citation Analysis]
230 An W, Liang M. A new intrusion detection method based on SVM with minimum within-class scatter: A new intrusion detection method. Security Comm Networks 2013;6:1064-74. [DOI: 10.1002/sec.666] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
231 Vishwakarma D, Kapoor R. Hybrid classifier based human activity recognition using the silhouette and cells. Expert Systems with Applications 2015;42:6957-65. [DOI: 10.1016/j.eswa.2015.04.039] [Cited by in Crossref: 37] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
232 Sujatha K, Pappa N. Combustion monitoring of a water tube boiler using a discriminant radial basis network. ISA Trans 2011;50:101-10. [PMID: 20864104 DOI: 10.1016/j.isatra.2010.08.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
233 Harper AM, Meuzelaar HL, Metcalf GS, Pope DL. NUMERICAL TECHNIQUES FOR PROCESSING PYROLYSIS MASS SPECTRAL DATA. Analytical Pyrolysis. Elsevier; 1984. pp. 157-95. [DOI: 10.1016/b978-0-408-01417-5.50010-x] [Cited by in Crossref: 4] [Article Influence: 0.1] [Reference Citation Analysis]
234 Daniel J, Gill D. Comparison of algorithms for replacing missing data in discriminant analysis. Communications in Statistics - Theory and Methods 1992;21:1567-78. [DOI: 10.1080/03610929208830864] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
235 The DELPHI Collaboration. Final results from DELPHI on the searches for SM and MSSM neutral Higgs bosons. Eur Phys J C 2004;32:145-83. [DOI: 10.1140/epjc/s2003-01394-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
236 Chang YY, Wu HL, Wang T, Chen Y, Yang J, Fu HY, Yang XL, Li XF, Zhang G, Yu RQ. Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods. Spectrochim Acta A Mol Biomol Spectrosc 2021;269:120737. [PMID: 34959035 DOI: 10.1016/j.saa.2021.120737] [Reference Citation Analysis]
237 Edelman GJ, van Leeuwen TG, Aalders MC. Visualization of Latent Blood Stains Using Visible Reflectance Hyperspectral Imaging and Chemometrics. J Forensic Sci 2015;60:S188-92. [DOI: 10.1111/1556-4029.12591] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
238 Stöckel S, Meisel S, Elschner M, Rösch P, Popp J. Raman-spektroskopische Detektion von Anthrax-Endosporen in Pulverproben. Angew Chem 2012;124:5433-6. [DOI: 10.1002/ange.201201266] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
239 Odajima K, Hayashi Y, Tianxia G, Setiono R. Greedy rule generation from discrete data and its use in neural network rule extraction. Neural Networks 2008;21:1020-8. [DOI: 10.1016/j.neunet.2008.01.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
240 Lahousen M, Stettner H, Pürstner P. 20 A tumour-marker combination versus second-look surgery in ovarian cancer. I. Clinical experience. Baillière's Clinical Obstetrics and Gynaecology 1989;3:201-8. [DOI: 10.1016/s0950-3552(89)80055-0] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
241 Biancolillo A, Marini F, Roger J. SO‐CovSel: A novel method for variable selection in a multiblock framework. Journal of Chemometrics 2020;34. [DOI: 10.1002/cem.3120] [Cited by in Crossref: 23] [Cited by in F6Publishing: 6] [Article Influence: 11.5] [Reference Citation Analysis]
242 O’hagan A, Murphy TB, Gormley IC, Mcnicholas PD, Karlis D. Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics & Data Analysis 2016;93:18-30. [DOI: 10.1016/j.csda.2014.09.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 3] [Article Influence: 6.8] [Reference Citation Analysis]
243 Norton D, Ventura D. Improving liquid state machines through iterative refinement of the reservoir. Neurocomputing 2010;73:2893-904. [DOI: 10.1016/j.neucom.2010.08.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
244 Otsuka J, Miyazaki K, Horimoto K. Divergence pattern and selective mode in protein evolution: The example of vertebrate myoglobins and hemoglobin chains. J Mol Evol 1993;36:153-81. [DOI: 10.1007/bf00166251] [Cited by in Crossref: 3] [Article Influence: 0.1] [Reference Citation Analysis]
245 Vidmar G, Pohar M. Augmented convex hull plots: Rationale, implementation in R and biomedical applications. Computer Methods and Programs in Biomedicine 2005;78:69-74. [DOI: 10.1016/j.cmpb.2004.12.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
246 Fouad IA. A robust and reliable online P300-based BCI system using Emotiv EPOC + headset. J Med Eng Technol 2021;45:94-114. [PMID: 33460328 DOI: 10.1080/03091902.2020.1853840] [Reference Citation Analysis]
247 Otsubo M, Sato K, Yamaji A. Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering. Journal of Structural Geology 2006;28:991-7. [DOI: 10.1016/j.jsg.2006.03.008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
248 Lindgren F, Geladi P, Berglund A, Sjöström M, Wold S. Interactive variable selection (IVS) for PLS. Part II: Chemical applications. J Chemometrics 1995;9:331-42. [DOI: 10.1002/cem.1180090502] [Cited by in Crossref: 60] [Cited by in F6Publishing: 46] [Article Influence: 2.2] [Reference Citation Analysis]
249 Tavassoli M, Faramarzi GR, Farzipoor Saen R. Ranking electricity distribution units using slacks-based measure, strong complementary slackness condition, and discriminant analysis. International Journal of Electrical Power & Energy Systems 2015;64:1214-20. [DOI: 10.1016/j.ijepes.2014.09.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
250 Sugiyama M. Learning Under Non-stationarity: Covariate Shift Adaptation by Importance Weighting. In: Gentle JE, Härdle WK, Mori Y, editors. Handbook of Computational Statistics. Berlin: Springer Berlin Heidelberg; 2012. pp. 927-52. [DOI: 10.1007/978-3-642-21551-3_31] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
251 van Meegen C, Schnackenberg S, Ligges U. Unequal Priors in Linear Discriminant Analysis. J Classif 2020;37:598-615. [DOI: 10.1007/s00357-019-09336-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
252 Roth KL, Roberts DA, Dennison PE, Alonzo M, Peterson SH, Beland M. Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sensing of Environment 2015;167:135-51. [DOI: 10.1016/j.rse.2015.05.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
253 Gu Z, Yang J, Zhang L. Push–Pull marginal discriminant analysis for feature extraction. Pattern Recognition Letters 2010;31:2345-52. [DOI: 10.1016/j.patrec.2010.07.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
254 Hultqvist K, Johansson K, Malmgren T, Keränen R. Higgs boson search with discriminant analysis methods. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1999;432:176-87. [DOI: 10.1016/s0168-9002(99)00452-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
255 Peterson V, Rufiner HL, Spies RD. Generalized sparse discriminant analysis for event-related potential classification. Biomedical Signal Processing and Control 2017;35:70-8. [DOI: 10.1016/j.bspc.2017.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
256 Campello R, Hruschka E. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems 2006;157:2858-75. [DOI: 10.1016/j.fss.2006.07.006] [Cited by in Crossref: 158] [Cited by in F6Publishing: 21] [Article Influence: 9.9] [Reference Citation Analysis]
257 Dželihodžić A, Đonko D, Kevrić J. Improved Credit Scoring Model Based on Bagging Neural Network. Int J Info Tech Dec Mak 2018;17:1725-41. [DOI: 10.1142/s0219622018500293] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
258 Papana A, Spyridou A. Bankruptcy Prediction: The Case of the Greek Market. Forecasting 2020;2:505-25. [DOI: 10.3390/forecast2040027] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
259 Brusco MJ, Steinley D. Exact and approximate algorithms for variable selection in linear discriminant analysis. Computational Statistics & Data Analysis 2011;55:123-31. [DOI: 10.1016/j.csda.2010.05.027] [Cited by in Crossref: 13] [Article Influence: 1.2] [Reference Citation Analysis]
260 Forina M, Armanino C, Leardi R, Drava G. A class-modelling technique based on potential functions. J Chemometrics 1991;5:435-53. [DOI: 10.1002/cem.1180050504] [Cited by in Crossref: 111] [Cited by in F6Publishing: 82] [Article Influence: 3.6] [Reference Citation Analysis]
261 Ramey JA, Young PD. A comparison of regularization methods applied to the linear discriminant function with high-dimensional microarray data. Journal of Statistical Computation and Simulation 2013;83:581-96. [DOI: 10.1080/00949655.2011.625946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
262 Kusari S, Zühlke S, Borsch T, Spiteller M. Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 2009;70:1222-32. [DOI: 10.1016/j.phytochem.2009.07.022] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 3.2] [Reference Citation Analysis]
263 Olsen JØ. A two-stage procedure for phone based speaker verification. Pattern Recognition Letters 1997;18:889-97. [DOI: 10.1016/s0167-8655(97)00069-x] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
264 Sato JR, Thomaz CE, Cardoso EF, Fujita A, Martin MDGM, Amaro E. Hyperplane navigation: A method to set individual scores in fMRI group datasets. NeuroImage 2008;42:1473-80. [DOI: 10.1016/j.neuroimage.2008.06.024] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
265 Masip D, Vitrià J. Boosted discriminant projections for nearest neighbor classification. Pattern Recognition 2006;39:164-70. [DOI: 10.1016/j.patcog.2005.06.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
266 Mary-huard T, Robin S, Daudin J. A penalized criterion for variable selection in classification. Journal of Multivariate Analysis 2007;98:695-705. [DOI: 10.1016/j.jmva.2006.06.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
267 Aaij R, Adeva B, Adinolfi M, Affolder A, Ajaltouni Z, Akar S, Albrecht J, Alessio F, Alexander M, Ali S, Alkhazov G, Alvarez Cartelle P, Alves A, Amato S, Amerio S, Amhis Y, An L, Anderlini L, Anderson J, Andreassen R, Andreotti M, Andrews J, Appleby R, Aquines Gutierrez O, Archilli F, d’Argent P, Artamonov A, Artuso M, Aslanides E, Auriemma G, Baalouch M, Bachmann S, Back J, Badalov A, Baesso C, Baldini W, Barlow R, Barschel C, Barsuk S, Barter W, Batozskaya V, Battista V, Bay A, Beaucourt L, Beddow J, Bedeschi F, Bediaga I, Bel L, Belogurov S, Belyaev I, Ben-haim E, Bencivenni G, Benson S, Benton J, Berezhnoy A, Bernet R, Bertolin A, Bettler M, van Beuzekom M, Bien A, Bifani S, Bird T, Birnkraut A, Bizzeti A, Blake T, Blanc F, Blouw J, Blusk S, Bocci V, Bondar A, Bondar N, Bonivento W, Borghi S, Borgia A, Borsato M, Bowcock T, Bowen E, Bozzi C, Brett D, Britsch M, Britton T, Brodzicka J, Brook N, Bursche A, Buytaert J, Cadeddu S, Calabrese R, Calvi M, Calvo Gomez M, Campana P, Campora Perez D, Capriotti L, Carbone A, Carboni G, Cardinale R, Cardini A, Carniti P, Carson L, Carvalho Akiba K, Casanova Mohr R, Casse G, Cassina L, Castillo Garcia L, Cattaneo M, Cauet C, Cavallero G, Cenci R, Charles M, Charpentier P, Chefdeville M, Chen S, Cheung S, Chiapolini N, Chrzaszcz M, Cid Vidal X, Ciezarek G, Clarke P, Clemencic M, Cliff H, Closier J, Coco V, Cogan J, Cogneras E, Cogoni V, Cojocariu L, Collazuol G, Collins P, Comerma-montells A, Contu A, Cook A, Coombes M, Coquereau S, Corti G, Corvo M, Counts I, Couturier B, Cowan G, Craik D, Crocombe A, Cruz Torres M, Cunliffe S, Currie R, D’ambrosio C, Dalseno J, David P, David P, Davis A, De Bruyn K, De Capua S, De Cian M, De Miranda J, De Paula L, De Silva W, De Simone P, Dean C, Decamp D, Deckenhoff M, Del Buono L, Déléage N, Derkach D, Deschamps O, Dettori F, Dey B, Di Canto A, Di Ruscio F, Dijkstra H, Donleavy S, Dordei F, Dorigo M, Dosil Suárez A, Dossett D, Dovbnya A, Dreimanis K, Dujany G, Dupertuis F, Durante P, Dzhelyadin R, Dziurda A, Dzyuba A, Easo S, Egede U, Egorychev V, Eidelman S, Eisenhardt S, Eitschberger U, Ekelhof R, Eklund L, El Rifai I, Elsasser C, Ely S, Esen S, Evans H, Evans T, Falabella A, Färber C, Farinelli C, Farley N, Farry S, Fay R, Ferguson D, Fernandez Albor V, Ferrari F, Ferreira Rodrigues F, Ferro-luzzi M, Filippov S, Fiore M, Fiorini M, Firlej M, Fitzpatrick C, Fiutowski T, Fol P, Fontana M, Fontanelli F, Forty R, Francisco O, Frank M, Frei C, Frosini M, Fu J, Furfaro E, Gallas Torreira A, Galli D, Gallorini S, Gambetta S, Gandelman M, Gandini P, Gao Y, García Pardiñas J, Garofoli J, Garra Tico J, Garrido L, Gascon D, Gaspar C, Gastaldi U, Gauld R, Gavardi L, Gazzoni G, Geraci A, Gerick D, Gersabeck E, Gersabeck M, Gershon T, Ghez P, Gianelle A, Gianì S, Gibson V, Giubega L, Gligorov V, Göbel C, Golubkov D, Golutvin A, Gomes A, Gotti C, Grabalosa Gándara M, Graciani Diaz R, Granado Cardoso L, Graugés E, Graverini E, Graziani G, Grecu A, Greening E, Gregson S, Griffith P, Grillo L, Grünberg O, Gui B, Gushchin E, Guz Y, Gys T, Hadjivasiliou C, Haefeli G, Haen C, Haines S, Hall S, Hamilton B, Hampson T, Han X, Hansmann-menzemer S, Harnew N, Harnew S, Harrison J, He J, Head T, Heijne V, Hennessy K, Henrard P, Henry L, Hernando Morata J, van Herwijnen E, Heß M, Hicheur A, Hill D, Hoballah M, Hombach C, Hulsbergen W, Humair T, Hussain N, Hutchcroft D, Hynds D, Idzik M, Ilten P, Jacobsson R, Jaeger A, Jalocha J, Jans E, Jawahery A, Jing F, John M, Johnson D, Jones C, Joram C, Jost B, Jurik N, Kandybei S, Kanso W, Karacson M, Karbach T, Karodia S, Kelsey M, Kenyon I, Kenzie M, Ketel T, Khanji B, Khurewathanakul C, Klaver S, Klimaszewski K, Kochebina O, Kolpin M, Komarov I, Koopman R, Koppenburg P, Korolev M, Kravchuk L, Kreplin K, Kreps M, Krocker G, Krokovny P, Kruse F, Kucewicz W, Kucharczyk M, Kudryavtsev V, Kurek K, Kvaratskheliya T, La Thi V, Lacarrere D, Lafferty G, Lai A, Lambert D, Lambert R, Lanfranchi G, Langenbruch C, Langhans B, Latham T, Lazzeroni C, Le Gac R, van Leerdam J, Lees J, Lefèvre R, Leflat A, Lefrançois J, Leroy O, Lesiak T, Leverington B, Li Y, Likhomanenko T, Liles M, Lindner R, Linn C, Lionetto F, Liu B, Lohn S, Longstaff I, Lopes J, Lucchesi D, Luo H, Lupato A, Luppi E, Lupton O, Machefert F, Machikhiliyan I, Maciuc F, Maev O, Malde S, Malinin A, Manca G, Mancinelli G, Manning P, Mapelli A, Maratas J, Marchand J, Marconi U, Marin Benito C, Marino P, Märki R, Marks J, Martellotti G, Martinelli M, Martinez Santos D, Martinez Vidal F, Martins Tostes D, Massafferri A, Matev R, Mathe Z, Matteuzzi C, Mauri A, Maurin B, Mazurov A, Mccann M, Mccarthy J, Mcnab A, Mcnulty R, Mcskelly B, Meadows B, Meier F, Meissner M, Merk M, Milanes D, Minard M, Mitzel D, Molina Rodriguez J, Monteil S, Morandin M, Morawski P, Mordà A, Morello M, Moron J, Morris A, Mountain R, Muheim F, Müller J, Müller K, Müller V, Mussini M, Muster B, Naik P, Nakada T, Nandakumar R, Nasteva I, Needham M, Neri N, Neubert S, Neufeld N, Neuner M, Nguyen A, Nguyen T, Nguyen-mau C, Nicol M, Niess V, Niet R, Nikitin N, Nikodem T, Novoselov A, O’hanlon D, Oblakowska-mucha A, Obraztsov V, Ogilvy S, Okhrimenko O, Oldeman R, Onderwater C, Osorio Rodrigues B, Otalora Goicochea J, Otto A, Owen P, Oyanguren A, Pal B, Palano A, Palombo F, Palutan M, Panman J, Papanestis A, Pappagallo M, Pappalardo L, Parkes C, Parkinson C, Passaleva G, Patel G, Patel M, Patrignani C, Pearce A, Pellegrino A, Penso G, Pepe Altarelli M, Perazzini S, Perret P, Pescatore L, Petridis K, Petrolini A, Petruzzo M, Picatoste Olloqui E, Pietrzyk B, Pilař T, Pinci D, Pistone A, Playfer S, Plo Casasus M, Polci F, Poluektov A, Polyakov I, Polycarpo E, Popov A, Popov D, Popovici B, Potterat C, Price E, Price J, Prisciandaro J, Pritchard A, Prouve C, Pugatch V, Puig Navarro A, Punzi G, Qian W, Quagliani R, Rachwal B, Rademacker J, Rakotomiaramanana B, Rama M, Rangel M, Raniuk I, Rauschmayr N, Raven G, Redi F, Reichert S, Reid M, dos Reis A, Ricciardi S, Richards S, Rihl M, Rinnert K, Rives Molina V, Robbe P, Rodrigues A, Rodrigues E, Rodriguez Perez P, Roiser S, Romanovsky V, Romero Vidal A, Rotondo M, Rouvinet J, Ruf T, Ruiz H, Ruiz Valls P, Saborido Silva J, Sagidova N, Sail P, Saitta B, Salustino Guimaraes V, Sanchez Mayordomo C, Sanmartin Sedes B, Santacesaria R, Santamarina Rios C, Santovetti E, Sarti A, Satriano C, Satta A, Saunders D, Savrina D, Schiller M, Schindler H, Schlupp M, Schmelling M, Schmelzer T, Schmidt B, Schneider O, Schopper A, Schune M, Schwemmer R, Sciascia B, Sciubba A, Semennikov A, Sepp I, Serra N, Serrano J, Sestini L, Seyfert P, Shapkin M, Shapoval I, Shcheglov Y, Shears T, Shekhtman L, Shevchenko V, Shires A, Silva Coutinho R, Simi G, Sirendi M, Skidmore N, Skillicorn I, Skwarnicki T, Smith E, Smith E, Smith J, Smith M, Snoek H, Sokoloff M, Soler F, Soomro F, Souza D, Souza De Paula B, Spaan B, Spradlin P, Sridharan S, Stagni F, Stahl M, Stahl S, Steinkamp O, Stenyakin O, Sterpka F, Stevenson S, Stoica S, Stone S, Storaci B, Stracka S, Straticiuc M, Straumann U, Stroili R, Sun L, Sutcliffe W, Swientek K, Swientek S, Syropoulos V, Szczekowski M, Szczypka P, Szumlak T, T’jampens S, Tekampe T, Teklishyn M, Tellarini G, Teubert F, Thomas C, Thomas E, van Tilburg J, Tisserand V, Tobin M, Todd J, Tolk S, Tomassetti L, Tonelli D, Topp-joergensen S, Torr N, Tournefier E, Tourneur S, Trabelsi K, Tran M, Tresch M, Trisovic A, Tsaregorodtsev A, Tsopelas P, Tuning N, Ubeda Garcia M, Ukleja A, Ustyuzhanin A, Uwer U, Vacca C, Vagnoni V, Valenti G, Vallier A, Vazquez Gomez R, Vazquez Regueiro P, Vázquez Sierra C, Vecchi S, Velthuis J, Veltri M, Veneziano G, Vesterinen M, Viaud B, Vieira D, Vieites Diaz M, Vilasis-cardona X, Vollhardt A, Volyanskyy D, Voong D, Vorobyev A, Vorobyev V, Voß C, de Vries J, Waldi R, Wallace C, Wallace R, Walsh J, Wandernoth S, Wang J, Ward D, Watson N, Websdale D, Whitehead M, Wiedner D, Wilkinson G, Wilkinson M, Williams M, Williams M, Wilson F, Wimberley J, Wishahi J, Wislicki W, Witek M, Wormser G, Wotton S, Wright S, Wyllie K, Xie Y, Xing Z, Xu Z, Yang Z, Yuan X, Yushchenko O, Zangoli M, Zavertyaev M, Zhang L, Zhang W, Zhang Y, Zhelezov A, Zhokhov A, Zhong L; LHCb Collaboration. Dalitz plot analysis of B0D¯0π+π decays. Phys Rev D 2015;92. [DOI: 10.1103/physrevd.92.032002] [Cited by in Crossref: 53] [Article Influence: 7.6] [Reference Citation Analysis]
268 Loesch DZ, Lafranchi M, Scott D. Anthropometry in Martin-Bell syndrome. Am J Med Genet 1988;30:149-64. [DOI: 10.1002/ajmg.1320300113] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 0.9] [Reference Citation Analysis]
269 McCrimmon CM, Riba A, Garner C, Maser AL, Phillips DJ, Steenari M, Shrey DW, Lopour BA. Automated detection of ripple oscillations in long-term scalp EEG from patients with infantile spasms. J Neural Eng 2021;18. [PMID: 33217752 DOI: 10.1088/1741-2552/abcc7e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
270 Borrel A, Huang R, Sakamuru S, Xia M, Simeonov A, Mansouri K, Houck KA, Judson RS, Kleinstreuer NC. High-Throughput Screening to Predict Chemical-Assay Interference. Sci Rep 2020;10:3986. [PMID: 32132587 DOI: 10.1038/s41598-020-60747-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
271 Pelot R, Wu Y. Classification of recreational boat types based on trajectory patterns. Pattern Recognition Letters 2007;28:1987-94. [DOI: 10.1016/j.patrec.2007.05.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
272 Chen C, Yao T, Kuo C, Chen C. RETRACTED: Evolutionary design of constructive multilayer feedforward neural network. Journal of Vibration and Control 2013;19:2413-20. [DOI: 10.1177/1077546312456726] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
273 Mudereri BT, Dube T, Niassy S, Kimathi E, Landmann T, Khan Z, Abdel-rahman EM. Is it possible to discern Striga weed (Striga hermonthica) infestation levels in maize agro-ecological systems using in-situ spectroscopy? International Journal of Applied Earth Observation and Geoinformation 2020;85:102008. [DOI: 10.1016/j.jag.2019.102008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
274 Nakamori T, Kubo H, Yoshida T, Tanimori T, Enomoto R, Bicknell GV, Clay RW, Edwards PG, Gunji S, Hara S, Hara T, Hattori T, Hayashi S, Higashi Y, Hirai Y, Inoue K, Kabuki S, Kajino F, Katagiri H, Kawachi A, Kifune T, Kiuchi R, Kushida J, Matsubara Y, Mizukami T, Mizumoto Y, Mizuniwa R, Mori M, Muraishi H, Muraki Y, Naito T, Nakano S, Nishida D, Nishijima K, Ohishi M, Sakamoto Y, Seki A, Stamatescu V, Suzuki T, Swaby DL, Thornton G, Tokanai F, Tsuchiya K, Watanabe S, Yamada Y, Yamazaki E, Yanagita S, Yoshikoshi T, Yukawa Y. Observation of an Extended Very High Energy Gamma‐Ray Emission from MSH 15‐52 with CANGAROO‐III. ApJ 2008;677:297-305. [DOI: 10.1086/529029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
275 Rodger JA. Discovery of medical Big Data analytics: Improving the prediction of traumatic brain injury survival rates by data mining Patient Informatics Processing Software Hybrid Hadoop Hive. Informatics in Medicine Unlocked 2015;1:17-26. [DOI: 10.1016/j.imu.2016.01.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 7] [Article Influence: 6.4] [Reference Citation Analysis]
276 Hartono P. Classification and dimensional reduction using restricted radial basis function networks. Neural Comput & Applic 2018;30:905-15. [DOI: 10.1007/s00521-016-2726-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
277 Wong K, Peng C, Li Y, Chan T. Herd Clustering: A synergistic data clustering approach using collective intelligence. Applied Soft Computing 2014;23:61-75. [DOI: 10.1016/j.asoc.2014.05.034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
278 Chen S, Kao C, Yu C. GENERATING FUZZY RULES FROM TRAINING DATA CONTAINING NOISE FOR HANDLING CLASSIFICATION PROBLEMS. Cybernetics and Systems 2010;33:723-48. [DOI: 10.1080/01969720213935] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
279 Savoji M, Burge R. On different methods based on the Karhunen-Loeve expansion and used in image analysis. Computer Vision, Graphics, and Image Processing 1985;29:259-69. [DOI: 10.1016/0734-189x(85)90121-5] [Cited by in Crossref: 8] [Article Influence: 0.2] [Reference Citation Analysis]
280 Marcotte P, Savard G. Novel approaches to the discrimination problem. ZOR - Methods and Models of Operations Research 1992;36:517-45. [DOI: 10.1007/bf01416243] [Cited by in Crossref: 6] [Article Influence: 0.2] [Reference Citation Analysis]
281 Park ES, Spiegelman C, Ahn J. A nonparametric approach based on a Markov like property for classification. Chemometrics and Intelligent Laboratory Systems 2011;108:87-92. [DOI: 10.1016/j.chemolab.2011.06.004] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
282 Tutmez B. Spatial dependence-based fuzzy regression clustering. Applied Soft Computing 2012;12:1-13. [DOI: 10.1016/j.asoc.2011.09.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
283 Hoornaert S, Ballings M, Malthouse EC, Van den Poel D. Identifying New Product Ideas: Waiting for the Wisdom of the Crowd or Screening Ideas in Real Time: IDENTIFYING NEW PRODUCT IDEAS. J Prod Innov Manag 2017;34:580-97. [DOI: 10.1111/jpim.12396] [Cited by in Crossref: 60] [Cited by in F6Publishing: 3] [Article Influence: 12.0] [Reference Citation Analysis]
284 Melnykov V. On the distribution of posterior probabilities in finite mixture models with application in clustering. Journal of Multivariate Analysis 2013;122:175-89. [DOI: 10.1016/j.jmva.2013.07.014] [Cited by in Crossref: 11] [Article Influence: 1.2] [Reference Citation Analysis]
285 Tejedor J, Echeverría A, Wang D, Vipperla R. Evolutionary discriminative confidence estimation for spoken term detection. Multimed Tools Appl 2013;62:5-34. [DOI: 10.1007/s11042-011-0913-z] [Reference Citation Analysis]
286 Chang C. A boosting approach for supervised Mahalanobis distance metric learning. Pattern Recognition 2012;45:844-62. [DOI: 10.1016/j.patcog.2011.07.026] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
287 Barash IM, Pasternack BS, Venet L, Wolff WI. Quantitative thermography as a predictor of breast cancer. Cancer 1973;31:769-76. [DOI: 10.1002/1097-0142(197304)31:4<769::aid-cncr2820310402>3.0.co;2-7] [Cited by in Crossref: 13] [Article Influence: 0.3] [Reference Citation Analysis]
288 Dyson M, Thomas E, Casini L, Burle B. Online extraction and single trial analysis of regions contributing to erroneous feedback detection. Neuroimage 2015;121:146-58. [PMID: 26093326 DOI: 10.1016/j.neuroimage.2015.06.041] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
289 Aubert B, Barate R, Boutigny D, Couderc F, Karyotakis Y, Lees JP, Poireau V, Tisserand V, Zghiche A, Grauges E, Palano A, Pappagallo M, Pompili A, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Battaglia M, Breon AB, Brown DN, Button-shafer J, Cahn RN, Charles E, Day CT, Gill MS, Gritsan AV, Groysman Y, Jacobsen RG, Kadel RW, Kadyk J, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Ronan MT, Wenzel WA, Barrett M, Ford KE, Harrison TJ, Hart AJ, Hawkes CM, Morgan SE, Watson AT, Fritsch M, Goetzen K, Held T, Koch H, Lewandowski B, Pelizaeus M, Peters K, Schroeder T, Steinke M, Boyd JT, Burke JP, Chevalier N, Cottingham WN, Kelly MP, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Knecht NS, Mattison TS, Mckenna JA, Khan A, Kyberd P, Saleem M, Teodorescu L, Blinov AE, Blinov VE, Bukin AD, Druzhinin VP, Golubev VB, Kravchenko EA, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Yushkov AN, Best D, Bondioli M, Bruinsma M, Chao M, Eschrich I, Kirkby D, Lankford AJ, Mandelkern M, Mommsen RK, Roethel W, Stoker DP, Buchanan C, Hartfiel BL, Weinstein AJR, Foulkes SD, Gary JW, Long O, Shen BC, Wang K, Zhang L, del Re D, Hadavand HK, Hill EJ, Macfarlane DB, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Cunha A, Dahmes B, Hong TM, Mazur MA, Richman JD, Verkerke W, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Nesom G, Schalk T, Schumm BA, Seiden A, Spradlin P, Williams DC, Wilson MG, Albert J, Chen E, Dubois-felsmann GP, Dvoretskii A, Hitlin DG, Narsky I, Piatenko T, Porter FC, Ryd A, Samuel A, Andreassen R, Jayatilleke S, Mancinelli G, Meadows BT, Sokoloff MD, Blanc F, Bloom P, Chen S, Ford WT, Nauenberg U, Olivas A, Rankin P, Ruddick WO, Smith JG, Ulmer KA, Wagner SR, Zhang J, Chen A, Eckhart EA, Soffer A, Toki WH, Wilson RJ, Zeng Q, Altenburg D, Feltresi E, Hauke A, Spaan B, Brandt T, Brose J, Dickopp M, Klose V, Lacker HM, Nogowski R, Otto S, Petzold A, Schott G, Schubert J, Schubert KR, Schwierz R, Sundermann JE, Bernard D, Bonneaud GR, Grenier P, Schrenk S, Thiebaux C, Vasileiadis G, Verderi M, Bard DJ, Clark PJ, Gradl W, Muheim F, Playfer S, Xie Y, Andreotti M, Azzolini V, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Piemontese L, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Patteri P, Peruzzi IM, Piccolo M, Zallo A, Buzzo A, Capra R, Contri R, Vetere ML, Macri M, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Bailey S, Brandenburg G, Chaisanguanthum KS, Morii M, Won E, Wu J, Dubitzky RS, Langenegger U, Marks J, Schenk S, Uwer U, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Flack RL, Gaillard JR, Morton GW, Nash JA, Nikolich MB, Taylor GP, Vazquez WP, Charles MJ, Mader WF, Mallik U, Mohapatra AK, Cochran J, Crawley HB, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Yi J, Arnaud N, Davier M, Giroux X, Grosdidier G, Höcker A, Diberder FL, Lepeltier V, Lutz AM, Oyanguren A, Petersen TC, Pierini M, Plaszczynski S, Rodier S, Roudeau P, Schune MH, Stocchi A, Wormser G, Cheng CH, Lange DJ, Simani MC, Wright DM, Bevan AJ, Chavez CA, Coleman JP, Forster IJ, Fry JR, Gabathuler E, Gamet R, George KA, Hutchcroft DE, Parry RJ, Payne DJ, Schofield KC, Touramanis C, Cormack CM, Lodovico FD, Sacco R, Brown CL, Cowan G, Flaecher HU, Green MG, Hopkins DA, Jackson PS, Mcmahon TR, Ricciardi S, Salvatore F, Brown D, Davis CL, Allison J, Barlow NR, Barlow RJ, Hodgkinson MC, Lafferty GD, Naisbit MT, Williams JC, Chen C, Farbin A, Hulsbergen WD, Jawahery A, Kovalskyi D, Lae CK, Lillard V, Roberts DA, Simi G, Blaylock G, Dallapiccola C, Hertzbach SS, Kofler R, Koptchev VB, Li X, Moore TB, Saremi S, Staengle H, Willocq S, Cowan R, Koeneke K, Sciolla G, Sekula SJ, Spitznagel M, Taylor F, Yamamoto RK, Kim H, Patel PM, Robertson SH, Lazzaro A, Lombardo V, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Reidy J, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Taras P, Viaud B, Nicholson H, Cavallo N, Nardo GD, Fabozzi F, Gatto C, Lista L, Monorchio D, Paolucci P, Piccolo D, Sciacca C, Baak M, Bulten H, Raven G, Snoek HL, Wilden L, Jessop CP, Losecco JM, Allmendinger T, Benelli G, Gan KK, Honscheid K, Hufnagel D, Jackson PD, Kagan H, Kass R, Pulliam T, Rahimi AM, Ter-antonyan R, Wong QK, Brau J, Frey R, Igonkina O, Lu M, Potter CT, Sinev NB, Strom D, Strube J, Torrence E, Dorigo A, Galeazzi F, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, Benayoun M, Briand H, Chauveau J, David P, Buono LD, de la Vaissière C, Hamon O, John MJJ, Leruste P, Malclès J, Ocariz J, Roos L, Therin G, Behera PK, Gladney L, Guo QH, Panetta J, Biasini M, Covarelli R, Pacetti S, Pioppi M, Angelini C, Batignani G, Bettarini S, Bucci F, Calderini G, Carpinelli M, Cenci R, Forti F, Giorgi MA, Lusiani A, Marchiori G, Morganti M, Neri N, Paoloni E, Rama M, Rizzo G, Walsh J, Haire M, Judd D, Wagoner DE, Biesiada J, Danielson N, Elmer P, Lau YP, Lu C, Olsen J, Smith AJS, Telnov AV, Bellini F, Cavoto G, D’orazio A, Marco ED, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Gioi LL, Mazzoni MA, Morganti S, Piredda G, Polci F, Tehrani FS, Voena C, Schröder H, Wagner G, Waldi R, Adye T, Groot ND, Franek B, Gopal GP, Olaiya EO, Wilson FF, Aleksan R, Emery S, Gaidot A, Ganzhur SF, Giraud P, Graziani G, de Monchenault GH, Kozanecki W, Legendre M, London GW, Mayer B, Vasseur G, Yèche C, Zito M, Purohit MV, Weidemann AW, Wilson JR, Yumiceva FX, Abe T, Allen MT, Aston D, Bartoldus R, Berger N, Boyarski AM, Buchmueller OL, Claus R, Convery MR, Cristinziani M, Dingfelder JC, Dong D, Dorfan J, Dujmic D, Dunwoodie W, Fan S, Field RC, Glanzman T, Gowdy SJ, Hadig T, Halyo V, Hast C, Hryn’ova T, Innes WR, Kelsey MH, Kim P, Kocian ML, Leith DWGS, Libby J, Luitz S, Luth V, Lynch HL, Marsiske H, Messner R, Muller DR, O’grady CP, Ozcan VE, Perazzo A, Perl M, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Stelzer J, Su D, Sullivan MK, Suzuki K, Swain S, Thompson JM, Va’vra J, Weaver M, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Yi K, Young CC, Burchat PR, Edwards AJ, Majewski SA, Petersen BA, Roat C, Ahmed M, Ahmed S, Alam MS, Ernst JA, Saeed MA, Wappler FR, Zain SB, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Ritchie JL, Satpathy A, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Bona M, Gallo F, Gamba D, Bomben M, Bosisio L, Cartaro C, Cossutti F, Ricca GD, Dittongo S, Grancagnolo S, Lanceri L, Vitale L, Martinez-vidal F, Panvini RS, Banerjee S, Bhuyan B, Brown CM, Fortin D, Hamano K, Kowalewski R, Roney JM, Sobie RJ, Back JJ, Harrison PF, Latham TE, Mohanty GB, Band HR, Chen X, Cheng B, Dasu S, Datta M, Eichenbaum AM, Flood KT, Graham M, Hollar JJ, Johnson JR, Kutter PE, Li H, Liu R, Mellado B, Mihalyi A, Pan Y, Prepost R, Tan P, von Wimmersperg-toeller JH, Wu SL, Yu Z, Neal H. Measurement of the B+pp¯K+ branching fraction and study of the decay dynamics. Phys Rev D 2005;72. [DOI: 10.1103/physrevd.72.051101] [Cited by in Crossref: 63] [Article Influence: 3.7] [Reference Citation Analysis]
290 Trabelsi M, Faure É, Quignard J, Boussaïd M, Focant B, Mâamouri F. Atherina punctata and Atherina lagunae (Pisces, Atherinidae), new species in the Mediterranean Sea. 1. Biometric investigations of three Atherinid species. Comptes Rendus Biologies 2002;325:967-75. [DOI: 10.1016/s1631-0691(02)01506-8] [Cited by in Crossref: 21] [Article Influence: 1.1] [Reference Citation Analysis]
291 Ahuja S, Jain S, Ram K. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model-when shake flasks mimic 15,000-L bioreactors better. Biotechnol Progress 2015;31:1370-80. [DOI: 10.1002/btpr.2134] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
292 Biancolillo A, Preys S, Gaci B, Le-Quere JL, Laboure H, Deuscher Z, Cheynier V, Sommerer N, Fayeulle N, Costet P, Hue C, Boulanger R, Alary K, Lebrun M, Christine Lahon M, Morel G, Maraval I, Davrieux F, Roger JM. Multi-block classification of chocolate and cocoa samples into sensory poles. Food Chem 2021;340:127904. [PMID: 32890856 DOI: 10.1016/j.foodchem.2020.127904] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
293 Zhu Z, Jia S, He S, Sun Y, Ji Z, Shen L. Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Information Sciences 2015;298:274-87. [DOI: 10.1016/j.ins.2014.11.045] [Cited by in Crossref: 74] [Cited by in F6Publishing: 11] [Article Influence: 10.6] [Reference Citation Analysis]
294 Lachenbruch PA, Kupper LL. Discriminant analysis when one population is a mixture of normals. Biom J 1973;15:191-7. [DOI: 10.1002/bimj.19730150305] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.1] [Reference Citation Analysis]
295 Iva S, Oscar G, Marie B, Martin P, Gianfranco V. Phenotypic evaluation of flax seeds by image analysis. Industrial Crops and Products 2013;47:232-8. [DOI: 10.1016/j.indcrop.2013.03.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
296 Bouveyron C, Brunet C. Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Stat Comput 2012;22:301-24. [DOI: 10.1007/s11222-011-9249-9] [Cited by in Crossref: 50] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
297 Oliveri P, Simonetti R. Chemometrics for Food Authenticity Applications. Advances in Food Authenticity Testing. Elsevier; 2016. pp. 701-28. [DOI: 10.1016/b978-0-08-100220-9.00025-4] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
298 Sueyoshi T, Goto M. A use of DEA–DA to measure importance of R&D expenditure in Japanese information technology industry. Decision Support Systems 2013;54:941-52. [DOI: 10.1016/j.dss.2012.09.017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
299 Weiden PL, Bean MA, Schultz P. Perioperative blood transfusion does not increase the risk of colorectal cancer recurrence. Cancer 1987;60:870-4. [DOI: 10.1002/1097-0142(19870815)60:4<870::aid-cncr2820600425>3.0.co;2-0] [Cited by in Crossref: 80] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
300 Anderson MJ, Willis TJ. CANONICAL ANALYSIS OF PRINCIPAL COORDINATES: A USEFUL METHOD OF CONSTRAINED ORDINATION FOR ECOLOGY. Ecology 2003;84:511-25. [DOI: 10.1890/0012-9658(2003)084[0511:caopca]2.0.co;2] [Cited by in Crossref: 1481] [Cited by in F6Publishing: 1] [Article Influence: 77.9] [Reference Citation Analysis]
301 Kors J, Hoffmann A. Induction of decision rules that fulfil user-specified performance requirements. Pattern Recognition Letters 1997;18:1187-95. [DOI: 10.1016/s0167-8655(97)00114-1] [Cited by in Crossref: 7] [Article Influence: 0.3] [Reference Citation Analysis]
302 del Amo Sanchez P, Lees JP, Poireau V, Prencipe E, Tisserand V, Garra Tico J, Grauges E, Martinelli M, Palano A, Pappagallo M, Eigen G, Stugu B, Sun L, Battaglia M, Brown DN, Hooberman B, Kerth LT, Kolomensky YG, Lynch G, Osipenkov IL, Tanabe T, Hawkes CM, Watson AT, Koch H, Schroeder T, Asgeirsson DJ, Hearty C, Mattison TS, Mckenna JA, Khan A, Randle-conde A, Blinov VE, Buzykaev AR, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Yushkov AN, Bondioli M, Curry S, Kirkby D, Lankford AJ, Mandelkern M, Martin EC, Stoker DP, Atmacan H, Gary JW, Liu F, Long O, Vitug GM, Campagnari C, Hong TM, Kovalskyi D, Richman JD, Eisner AM, Heusch CA, Kroseberg J, Lockman WS, Martinez AJ, Schalk T, Schumm BA, Seiden A, Winstrom LO, Cheng CH, Doll DA, Echenard B, Hitlin DG, Ongmongkolkul P, Porter FC, Rakitin AY, Andreassen R, Dubrovin MS, Mancinelli G, Meadows BT, Sokoloff MD, Bloom PC, Ford WT, Gaz A, Hirschauer JF, Nagel M, Nauenberg U, Smith JG, Wagner SR, Ayad R, Toki WH, Karbach TM, Merkel J, Petzold A, Spaan B, Wacker K, Kobel MJ, Schubert KR, Schwierz R, Bernard D, Verderi M, Clark PJ, Playfer S, Watson JE, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cecchi A, Cibinetto G, Fioravanti E, Franchini P, Luppi E, Munerato M, Negrini M, Petrella A, Piemontese L, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Nicolaci M, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Contri R, Guido E, Lo Vetere M, Monge MR, Passaggio S, Patrignani C, Robutti E, Tosi S, Bhuyan B, Morii M, Adametz A, Marks J, Schenk S, Uwer U, Bernlochner FU, Lacker HM, Lueck T, Volk A, Dauncey PD, Tibbetts M, Behera PK, Mallik U, Chen C, Cochran J, Crawley HB, Dong L, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Gao YY, Gritsan AV, Guo ZJ, Arnaud N, Davier M, Derkach D, Firmino da Costa J, Grosdidier G, Le Diberder F, Lutz AM, Malaescu B, Perez A, Roudeau P, Schune MH, Serrano J, Sordini V, Stocchi A, Wang L, Wormser G, Lange DJ, Wright DM, Bingham I, Burke JP, Chavez CA, Coleman JP, Fry JR, Gabathuler E, Gamet R, Hutchcroft DE, Payne DJ, Touramanis C, Bevan AJ, Di Lodovico F, Sacco R, Sigamani M, Cowan G, Paramesvaran S, Wren AC, Brown DN, Davis CL, Denig AG, Fritsch M, Gradl W, Hafner A, Alwyn KE, Bailey D, Barlow RJ, Jackson G, Lafferty GD, West TJ, Anderson J, Cenci R, Jawahery A, Roberts DA, Simi G, Tuggle JM, Dallapiccola C, Salvati E, Cowan R, Dujmic D, Fisher PH, Sciolla G, Zhao M, Lindemann D, Patel PM, Robertson SH, Schram M, Biassoni P, Lazzaro A, Lombardo V, Palombo F, Stracka S, Cremaldi L, Godang R, Kroeger R, Sonnek P, Summers DJ, Zhao HW, Nguyen X, Simard M, Taras P, De Nardo G, Monorchio D, Onorato G, Sciacca C, Raven G, Snoek HL, Jessop CP, Knoepfel KJ, Losecco JM, Wang WF, Corwin LA, Honscheid K, Kass R, Morris JP, Rahimi AM, Blount NL, Brau J, Frey R, Igonkina O, Kolb JA, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Castelli G, Feltresi E, Gagliardi N, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Ben-haim E, Bonneaud GR, Briand H, Calderini G, Chauveau J, Hamon O, Leruste P, Marchiori G, Ocariz J, Prendki J, Sitt S, Biasini M, Manoni E, Angelini C, Batignani G, Bettarini S, Carpinelli M, Casarosa G, Cervelli A, Forti F, Giorgi MA, Lusiani A, Neri N, Paoloni E, Rizzo G, Walsh JJ, Lopes Pegna D, Lu C, Olsen J, Smith AJS, Telnov AV, Anulli F, Baracchini E, Cavoto G, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Li Gioi L, Mazzoni MA, Piredda G, Renga F, Ebert M, Hartmann T, Leddig T, Schröder H, Waldi R, Adye T, Franek B, Olaiya EO, Wilson FF, Emery S, Hamel de Monchenault G, Vasseur G, Yèche C, Zito M, Allen MT, Aston D, Bard DJ, Bartoldus R, Benitez JF, Cartaro C, Convery MR, Dorfan J, Dubois-felsmann GP, Dunwoodie W, Field RC, Franco Sevilla M, Fulsom BG, Gabareen AM, Graham MT, Grenier P, Hast C, Innes WR, Kelsey MH, Kim H, Kim P, Kocian ML, Leith DWGS, Li S, Lindquist B, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Muller DR, Neal H, Nelson S, O’grady CP, Ofte I, Perl M, Pulliam T, Ratcliff BN, Roodman A, Salnikov AA, Santoro V, Schindler RH, Schwiening J, Snyder A, Su D, Sullivan MK, Sun S, Suzuki K, Thompson JM, Va’vra J, Wagner AP, Weaver M, West CA, Wisniewski WJ, Wittgen M, Wright DH, Wulsin HW, Yarritu AK, Young CC, Ziegler V, Chen XR, Park W, Purohit MV, White RM, Wilson JR, Sekula SJ, Bellis M, Burchat PR, Edwards AJ, Miyashita TS, Ahmed S, Alam MS, Ernst JA, Pan B, Saeed MA, Zain SB, Guttman N, Soffer A, Lund P, Spanier SM, Eckmann R, Ritchie JL, Ruland AM, Schilling CJ, Schwitters RF, Wray BC, Izen JM, Lou XC, Bianchi F, Gamba D, Pelliccioni M, Bomben M, Lanceri L, Vitale L, Lopez-march N, Martinez-vidal F, Milanes DA, Oyanguren A, Albert J, Banerjee S, Choi HHF, Hamano K, King GJ, Kowalewski R, Lewczuk MJ, Nugent IM, Roney JM, Sobie RJ, Gershon TJ, Harrison PF, Ilic J, Latham TE, Puccio EMT, Band HR, Chen X, Dasu S, Flood KT, Pan Y, Prepost R, Vuosalo CO, Wu SL. Search for B+D+K0 and B+D+K*0 decays. Phys Rev D 2010;82. [DOI: 10.1103/physrevd.82.092006] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
303 Furdea A, Ruf CA, Halder S, De Massari D, Bogdan M, Rosenstiel W, Matuz T, Birbaumer N. A new (semantic) reflexive brain-computer interface: in search for a suitable classifier. J Neurosci Methods 2012;203:233-40. [PMID: 21963400 DOI: 10.1016/j.jneumeth.2011.09.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
304 Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Review of Medical Devices 2014;3:215-34. [DOI: 10.1586/17434440.3.2.215] [Cited by in Crossref: 158] [Cited by in F6Publishing: 147] [Article Influence: 19.8] [Reference Citation Analysis]
305 Kay J, Phillips WA. Activation Functions, Computational Goals, and Learning Rules for Local Processors with Contextual Guidance. Neural Computation 1997;9:895-910. [DOI: 10.1162/neco.1997.9.4.895] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 1.6] [Reference Citation Analysis]
306 Twala B, Phorah M. Predicting incomplete gene microarray data with the use of supervised learning algorithms. Pattern Recognition Letters 2010;31:2061-9. [DOI: 10.1016/j.patrec.2010.05.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
307 Zi X, Chen H. Robust tests of the equality of two high-dimensional covariance matrices. Communications in Statistics - Theory and Methods 2022;51:3120-41. [DOI: 10.1080/03610926.2020.1788085] [Reference Citation Analysis]
308 Al-jarallah R, Aly EAA. Nonparametric Tests for Comparing Several Coefficients of Variation. Communications in Statistics - Theory and Methods 2014;43:3602-13. [DOI: 10.1080/03610926.2012.697966] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
309 Anderson JR, Matessa M. An Incremental Bayesian Algorithm for Categorization. Concept Formation. Elsevier; 1991. pp. 45-70. [DOI: 10.1016/b978-1-4832-0773-5.50008-0] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
310 Siedlecki W, Siedlecka K, Sklansky J. An overview of mapping techniques for exploratory pattern analysis. Pattern Recognition 1988;21:411-29. [DOI: 10.1016/0031-3203(88)90001-5] [Cited by in Crossref: 51] [Cited by in F6Publishing: 23] [Article Influence: 1.5] [Reference Citation Analysis]
311 Hodson FR. Cluster analysis and archaeology: Some new developments and applications. World Archaeology 1970;1:299-320. [DOI: 10.1080/00438243.1970.9979449] [Cited by in Crossref: 42] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
312 Deypir M, Alizadeh S, Zoughi T, Boostani R. Boosting a multi-linear classifier with application to visual lip reading. Expert Systems with Applications 2011;38:941-8. [DOI: 10.1016/j.eswa.2010.07.078] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
313 Li Y, Wessels LF, de Ridder D, Reinders MJ. Classification in the presence of class noise using a probabilistic Kernel Fisher method. Pattern Recognition 2007;40:3349-57. [DOI: 10.1016/j.patcog.2007.05.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
314 Nakatamari H, Ueda T, Ishioka F, Raman B, Kurihara K, Rubin GD, Ito H, Sze DY. Discriminant Analysis of Native Thoracic Aortic Curvature: Risk Prediction for Endoleak Formation After Thoracic Endovascular Aortic Repair. Journal of Vascular and Interventional Radiology 2011;22:974-979.e2. [DOI: 10.1016/j.jvir.2011.02.031] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
315 Mudereri BT, Abdel-rahman EM, Dube T, Landmann T, Khan Z, Kimathi E, Owino R, Niassy S. Multi-source spatial data-based invasion risk modeling of Striga ( Striga asiatica ) in Zimbabwe. GIScience & Remote Sensing 2020;57:553-71. [DOI: 10.1080/15481603.2020.1744250] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
316 Gondek PC. What You See May Not Be What You Think You Get: Discriminant Analysis in Statistical Packages. Educational and Psychological Measurement 1981;41:267-82. [DOI: 10.1177/001316448104100204] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
317 Elizondo DA, Birkenhead R, Gamez M, Garcia N, Alfaro E. Linear separability and classification complexity. Expert Systems with Applications 2012;39:7796-807. [DOI: 10.1016/j.eswa.2012.01.090] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
318 Houwelingen J, Cessie S. Logistic Regression, a review. Statistica Neerland 1988;42:215-32. [DOI: 10.1111/j.1467-9574.1988.tb01237.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
319 Ishikawa A, Abe K, Abe K, Abe T, Adachi I, Ahn BS, Aihara H, Akai K, Akatsu M, Akemoto M, Asano Y, Aso T, Aulchenko V, Aushev T, Bakich AM, Ban Y, Bay A, Bizjak I, Bondar A, Bozek A, Bračko M, Browder TE, Chang P, Chao Y, Chen K, Cheon BG, Chistov R, Choi S, Choi Y, Choi YK, Chuvikov A, Danilov M, Dong LY, Drutskoy A, Eidelman S, Eiges V, Enari Y, Flanagan J, Fukunaga C, Funakoshi Y, Furukawa K, Gabyshev N, Garmash A, Gershon T, Golob B, Guo R, Haba J, Hagner C, Handa F, Hayashii H, Hazumi M, Hinz L, Hokuue T, Hoshi Y, Hou W, Hsiung YB, Huang H, Iijima T, Inami K, Itoh R, Iwasaki H, Iwasaki M, Iwasaki Y, Kang JH, Kang JS, Katayama N, Kawai H, Kawasaki T, Kichimi H, Kikutani E, Kim HJ, Kim H, Kim JH, Kim SK, Kinoshita K, Koppenburg P, Korpar S, Križan P, Krokovny P, Kuzmin A, Kwon Y, Lange JS, Leder G, Lee SH, Lesiak T, Li J, Limosani A, Lin S, Liventsev D, Macnaughton J, Majumder G, Mandl F, Masuzawa M, Matsumoto T, Matyja A, Michizono S, Mimashi T, Mitaroff W, Miyabayashi K, Miyake H, Miyata H, Mohapatra D, Mori T, Nagamine T, Nagasaka Y, Nakadaira T, Nakamura TT, Nakao M, Nakazawa H, Natkaniec Z, Nishida S, Nitoh O, Nozaki T, Ogawa S, Ogawa Y, Ohmi K, Ohnishi Y, Ohshima T, Ohuchi N, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Palka H, Park CW, Park H, Parslow N, Peak LS, Piilonen LE, Root N, Sagawa H, Saitoh S, Sakai Y, Sarangi TR, Satapathy M, Satpathy A, Schneider O, Schümann J, Schwanda C, Schwartz AJ, Semenov S, Senyo K, Seuster R, Sevior ME, Shibuya H, Shidara T, Sidorov V, Singh JB, Soni N, Stanič S, Starič M, Sugi A, Sugiyama A, Sumisawa K, Sumiyoshi T, Suzuki S, Suzuki SY, Swain SK, Takasaki F, Tamai K, Tamura N, Tanaka M, Tawada M, Taylor GN, Teramoto Y, Tomura T, Tsuboyama T, Tsukamoto T, Uehara S, Ueno K, Uno S, Varner G, Wang CC, Wang CH, Wang JG, Wang M, Watanabe Y, Won E, Yabsley BD, Yamada Y, Yamaguchi A, Yamashita Y, Yamauchi M, Yanai H, Yang H, Ying J, Yoshida M, Yusa Y, Zhang ZP, Zhilich V, Žontar D. Observation of BK*+. Phys Rev Lett 2003;91. [DOI: 10.1103/physrevlett.91.261601] [Cited by in Crossref: 75] [Article Influence: 3.9] [Reference Citation Analysis]
320 Fisch GS, Shapiro LR, Simensen R, Schwartz CE, Fryns JP, Borghgraef M, Curfs LM, Howard-Peebles PN, Arinami T, Mavrou A. Longitudinal changes in IQ among fragile X males: clinical evidence of more than one mutation? Am J Med Genet 1992;43:28-34. [PMID: 1605202 DOI: 10.1002/ajmg.1320430105] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.4] [Reference Citation Analysis]
321 Yu B, Yuan B. A global optimum clustering algorithm. Engineering Applications of Artificial Intelligence 1995;8:223-7. [DOI: 10.1016/0952-1976(94)00067-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
322 Murtagh F. Symmetry in data mining and analysis: A unifying view based on hierarchy. Proc Steklov Inst Math 2009;265:177-98. [DOI: 10.1134/s0081543809020175] [Cited by in Crossref: 15] [Article Influence: 1.2] [Reference Citation Analysis]
323 Aubert B, Barate R, Bona M, Boutigny D, Couderc F, Karyotakis Y, Lees JP, Poireau V, Tisserand V, Zghiche A, Grauges E, Palano A, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Battaglia M, Brown DN, Button-shafer J, Cahn RN, Charles E, Gill MS, Groysman Y, Jacobsen RG, Kadyk JA, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Ronan MT, Wenzel WA, Barrett M, Ford KE, Harrison TJ, Hart AJ, Hawkes CM, Morgan SE, Watson AT, Goetzen K, Held T, Koch H, Lewandowski B, Pelizaeus M, Peters K, Schroeder T, Steinke M, Boyd JT, Burke JP, Cottingham WN, Walker D, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Knecht NS, Mattison TS, Mckenna JA, Khan A, Kyberd P, Saleem M, Teodorescu L, Blinov VE, Bukin AD, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Best DS, Bondioli M, Bruinsma M, Chao M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Mommsen RK, Roethel W, Stoker DP, Abachi S, Buchanan C, Foulkes SD, Gary JW, Long O, Shen BC, Wang K, Zhang L, Hadavand HK, Hill EJ, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Cunha A, Dahmes B, Hong TM, Kovalskyi D, Richman JD, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Nesom G, Schalk T, Schumm BA, Seiden A, Spradlin P, Williams DC, Wilson MG, Albert J, Chen E, Dvoretskii A, Hitlin DG, Narsky I, Piatenko T, Porter FC, Ryd A, Samuel A, Andreassen R, Mancinelli G, Meadows BT, Sokoloff MD, Blanc F, Bloom PC, Chen S, Ford WT, Hirschauer JF, Kreisel A, Nauenberg U, Olivas A, Ruddick WO, Smith JG, Ulmer KA, Wagner SR, Zhang J, Chen A, Eckhart EA, Soffer A, Toki WH, Wilson RJ, Winklmeier F, Zeng Q, Altenburg DD, Feltresi E, Hauke A, Jasper H, Spaan B, Brandt T, Klose V, Lacker HM, Mader WF, Nogowski R, Petzold A, Schubert J, Schubert KR, Schwierz R, Sundermann JE, Volk A, Bernard D, Bonneaud GR, Grenier P, Latour E, Thiebaux C, Verderi M, Bard DJ, Clark PJ, Gradl W, Muheim F, Playfer S, Robertson AI, Xie Y, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Petrella A, Piemontese L, Prencipe E, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Buzzo A, Capra R, Contri R, Vetere ML, Macri MM, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Brandenburg G, Chaisanguanthum KS, Morii M, Wu J, Dubitzky RS, Marks J, Schenk S, Uwer U, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Flack RL, Gaillard JR, Nash J.A, Nikolich MB, Vazquez WP, Chai X, Charles MJ, Mallik U, Meyer NT, Ziegler V, Cochran J, Crawley HB, Dong L, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Gritsan AV, Fritsch M, Schott G, Arnaud N, Davier M, Grosdidier G, Höcker A, Diberder FL, Lepeltier V, Lutz AM, Oyanguren A, Pruvot S, Rodier S, Roudeau P, Schune MH, Stocchi A, Wang WF, Wormser G, Cheng CH, Lange DJ, Wright DM, Chavez CA, Forster IJ, Fry JR, Gabathuler E, Gamet R, George KA, Hutchcroft DE, Payne DJ, Schofield KC, Touramanis C, Bevan AJ, Lodovico FD, Menges W, Sacco R, Brown CL, Cowan G, Flaecher HU, Hopkins DA, Jackson PS, Mcmahon TR, Ricciardi S, Salvatore F, Brown DN, Davis CL, Allison J, Barlow NR, Barlow RJ, Chia YM, Edgar CL, Kelly MP, Lafferty GD, Naisbit MT, Williams JC, Yi JI, Chen C, Hulsbergen WD, Jawahery A, Lae CK, Roberts DA, Simi G, Blaylock G, Dallapiccola C, Hertzbach SS, Li X, Moore TB, Saremi S, Staengle H, Willocq SY, Cowan R, Koeneke K, Sciolla G, Sekula SJ, Spitznagel M, Taylor F, Yamamoto RK, Kim H, Patel PM, Robertson SH, Lazzaro A, Lombardo V, Palombo F, Pellegrini R, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Reidy J, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Taras P, Viaud FB, Nicholson H, Cavallo N, Nardo GD, del Re D, Fabozzi F, Gatto C, Lista L, Monorchio D, Paolucci P, Piccolo D, Sciacca C, Baak M, Bulten H, Raven G, Snoek HL, Jessop CP, Losecco JM, Allmendinger T, Benelli G, Gan KK, Honscheid K, Hufnagel D, Jackson PD, Kagan H, Kass R, Pulliam T, Rahimi AM, Ter-antonyan R, Wong QK, Blount NL, Brau J, Frey R, Igonkina O, Lu M, Potter CT, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Galeazzi F, Gaz A, Margoni M, Morandin M, Pompili A, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, Benayoun M, Chauveau J, David P, Buono LD, de la Vaissière C, Hamon O, Hartfiel BL, John MJJ, Malclès J, Ocariz J, Roos L, Therin G, Behera PK, Gladney L, Panetta J, Biasini M, Covarelli R, Pioppi M, Angelini C, Batignani G, Bettarini S, Bucci F, Calderini G, Carpinelli M, Cenci R, Forti F, Giorgi MA, Lusiani A, Marchiori G, Mazur MA, Morganti M, Neri N, Rizzo G, Walsh J, Haire M, Judd D, Wagoner DE, Biesiada J, Danielson N, Elmer P, Lau YP, Lu C, Olsen J, Smith AJS, Telnov AV, Bellini F, Cavoto G, D’orazio A, Marco ED, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Gioi LL, Mazzoni MA, Morganti S, Piredda G, Polci F, Tehrani FS, Voena C, Ebert M, Schröder H, Waldi R, Adye T, Groot ND, Franek B, Olaiya EO, Wilson FF, Emery S, Gaidot A, Ganzhur SF, de Monchenault GH, Kozanecki W, Legendre M, Vasseur G, Yèche C, Zito M, Park W, Purohit MV, Wilson JR, Allen MT, Aston D, Bartoldus R, Bechtle P, Berger N, Boyarski AM, Claus R, Coleman JP, Convery MR, Cristinziani M, Dingfelder JC, Dong D, Dorfan J, Dubois-felsmann GP, Dujmic D, Dunwoodie W, Field RC, Glanzman T, Gowdy SJ, Graham MT, Halyo V, Hast C, Hryn’ova T, Innes WR, Kelsey MH, Kim P, Kocian ML, Leith DWGS, Li S, Libby J, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Messner R, Muller DR, O’grady CP, Ozcan VE, Perl M, Perazzo A, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Stelzer J, Su D, Sullivan MK, Suzuki K, Swain SK, Thompson JM, Va’vra J, van Bakel N, Weaver M, Weinstein AJR, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Yi K, Young CC, Burchat PR, Edwards AJ, Majewski SA, Petersen BA, Roat C, Wilden L, Ahmed S, Alam MS, Bula R, Ernst JA, Jain V, Pan B, Saeed MA, Wappler FR, Zain SB, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Ritchie JL, Satpathy A, Schilling CJ, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Gallo F, Gamba D, Bomben M, Bosisio L, Cartaro C, Cossutti F, Ricca GD, Dittongo S, Grancagnolo S, Lanceri L, Vitale L, Azzolini V, Martinez-vidal F, Banerjee S, Bhuyan B, Brown CM, Fortin D, Hamano K, Kowalewski R, Nugent IM, Roney JM, Sobie RJ, Back JJ, Harrison PF, Latham TE, Mohanty GB, Pappagallo M, Band HR, Chen X, Cheng B, Dasu S, Datta M, Eichenbaum AM, Flood KT, Hollar JJ, Kutter PE, Li H, Liu R, Mellado B, Mihalyi A, Mohapatra AK, Pan Y, Pierini M, Prepost R, Tan P, Wu SL, Yu Z, Neal H. Search for B meson decays to ηηK. Phys Rev D 2006;74. [DOI: 10.1103/physrevd.74.031105] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
324 Sockloff AL, Kempler B. Visual-manual commonality in size judgments. Perception & Psychophysics 1972;11:284-6. [DOI: 10.3758/bf03210379] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
325 Cheng C, Wang S. A quarterly time-series classifier based on a reduced-dimension generated rules method for identifying financial distress. Quantitative Finance 2015;15:1979-94. [DOI: 10.1080/14697688.2015.1008029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
326 Glorfeld LW, Gaither N. ON USING LINEAR PROGRAMMING IN DISCRIMINANT PROBLEMS. Decision Sciences 1982;13:167-71. [DOI: 10.1111/j.1540-5915.1982.tb00139.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 0.7] [Reference Citation Analysis]
327 Mourouti N, Kontogianni MD, Papavagelis C, Plytzanopoulou P, Vassilakou T, Malamos N, Linos A, Panagiotakos DB. Adherence to the Mediterranean diet is associated with lower likelihood of breast cancer: a case-control study. Nutr Cancer 2014;66:810-7. [PMID: 24847911 DOI: 10.1080/01635581.2014.916319] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
328 Lee Y, Wang M, Abe K, Abe K, Aihara H, Asano Y, Aulchenko V, Aushev T, Bahinipati S, Bakich AM, Bedny I, Bitenc U, Bizjak I, Bondar A, Bozek A, Bračko M, Brodzicka J, Browder TE, Chang M, Chang P, Chao Y, Chen A, Chen K, Chen WT, Cheon BG, Chistov R, Choi S, Chuvikov A, Cole S, Dalseno J, Danilov M, Dash M, Drutskoy A, Eidelman S, Enari Y, Fang F, Fratina S, Gabyshev N, Garmash A, Gershon T, Gokhroo G, Golob B, Gorišek A, Haba J, Hayasaka K, Hazumi M, Hinz L, Hokuue T, Hoshi Y, Hou S, Hou W, Hsiung YB, Iijima T, Imoto A, Inami K, Ishikawa A, Itoh R, Iwasaki M, Iwasaki Y, Kang JH, Kang JS, Kapusta P, Katayama N, Kawai H, Kawasaki T, Khan HR, Kichimi H, Kim HJ, Kim SK, Kim SM, Kinoshita K, Korpar S, Križan P, Krokovny P, Kumar S, Kuo CC, Kuzmin A, Kwon Y, Leder G, Lee SE, Lesiak T, Li J, Lin S, Liventsev D, Mandl F, Matsumoto T, Matyja A, Mitaroff W, Miyake H, Miyata H, Mizuk R, Moloney GR, Nagamine T, Nagasaka Y, Nakano E, Nakao M, Nakazawa H, Natkaniec Z, Nishida S, Nitoh O, Ogawa S, Ohshima T, Okabe T, Olsen SL, Ostrowicz W, Ozaki H, Palka H, Park CW, Parslow N, Peak LS, Pestotnik R, Piilonen LE, Root N, Rozanska M, Sagawa H, Sakai Y, Sato N, Schietinger T, Schneider O, Schümann J, Senyo K, Sevior ME, Shibata T, Shibuya H, Shwartz B, Sidorov V, Singh JB, Somov A, Stamen R, Stanič S, Starič M, Sumisawa K, Sumiyoshi T, Tajima O, Takasaki F, Tamai K, Tamura N, Tanaka M, Teramoto Y, Tian XC, Tsukamoto T, Uehara S, Uglov T, Ueno K, Uno S, Urquijo P, Varner G, Varvell KE, Villa S, Wang CC, Wang CH, Watanabe M, Xie QL, Yamaguchi A, Yamashita Y, Yamauchi M, Yang H, Ying J, Zhang CC, Zhang LM, Zhang ZP, Zhilich V, Žontar D, Zürcher D. Observation of B+pΛ¯γ. Phys Rev Lett 2005;95. [DOI: 10.1103/physrevlett.95.061802] [Cited by in Crossref: 21] [Article Influence: 1.2] [Reference Citation Analysis]
329 Moreno P, Figueira D, Bernardino A, Santos-victor J. People and Mobile Robot Classification Through Spatio-Temporal Analysis of Optical Flow. Int J Patt Recogn Artif Intell 2015;29:1550021. [DOI: 10.1142/s0218001415500214] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
330 Melnykov V, Zhu X. An extension of the K-means algorithm to clustering skewed data. Comput Stat 2019;34:373-94. [DOI: 10.1007/s00180-018-0821-z] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
331 Baldassarre A, Ocampo J, Martinez M, Rans C. Accuracy of strain measurement systems on a non-isotropic material and its uncertainty on finite element analysis. The Journal of Strain Analysis for Engineering Design 2021;56:76-95. [DOI: 10.1177/0309324720924580] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
332 Peters G. Rough clustering utilizing the principle of indifference. Information Sciences 2014;277:358-74. [DOI: 10.1016/j.ins.2014.02.073] [Cited by in Crossref: 33] [Cited by in F6Publishing: 6] [Article Influence: 4.1] [Reference Citation Analysis]
333 Pan R, Yang Q, Pan SJ. Mining competent case bases for case-based reasoning. Artificial Intelligence 2007;171:1039-68. [DOI: 10.1016/j.artint.2007.04.018] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
334 Kassani PH, Teoh ABJ, Kim E. Evolutionary-modified fuzzy nearest-neighbor rule for pattern classification. Expert Systems with Applications 2017;88:258-69. [DOI: 10.1016/j.eswa.2017.07.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
335 Aubert B, Bona M, Boutigny D, Karyotakis Y, Lees JP, Poireau V, Prudent X, Tisserand V, Zghiche A, Tico JG, Grauges E, Lopez L, Palano A, Pappagallo M, Eigen G, Stugu B, Sun L, Abrams GS, Battaglia M, Brown DN, Button-shafer J, Cahn RN, Groysman Y, Jacobsen RG, Kadyk JA, Kerth LT, Kolomensky YG, Kukartsev G, Pegna DL, Lynch G, Mir LM, Orimoto TJ, Osipenkov IL, Ronan MT, Tackmann K, Tanabe T, Wenzel WA, del Amo Sanchez P, Hawkes CM, Watson AT, Koch H, Schroeder T, Walker D, Asgeirsson DJ, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Mattison TS, Mckenna JA, Khan A, Saleem M, Teodorescu L, Blinov VE, Bukin AD, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Bondioli M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Martin EC, Stoker DP, Abachi S, Buchanan C, Foulkes SD, Gary JW, Liu F, Long O, Shen BC, Vitug GM, Zhang L, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Cunha A, Dahmes B, Hong TM, Kovalskyi D, Richman JD, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Schalk T, Schumm BA, Seiden A, Wilson MG, Winstrom LO, Chen E, Cheng CH, Fang F, Hitlin DG, Narsky I, Piatenko T, Porter FC, Andreassen R, Mancinelli G, Meadows BT, Mishra K, Sokoloff MD, Blanc F, Bloom PC, Chen S, Ford WT, Hirschauer JF, Kreisel A, Nagel M, Nauenberg U, Olivas A, Smith JG, Ulmer KA, Wagner SR, Zhang J, Gabareen AM, Soffer A, Toki WH, Wilson RJ, Winklmeier F, Altenburg DD, Feltresi E, Hauke A, Jasper H, Merkel J, Petzold A, Spaan B, Wacker K, Klose V, Kobel MJ, Lacker HM, Mader WF, Nogowski R, Schubert J, Schubert KR, Schwierz R, Sundermann JE, Volk A, Bernard D, Bonneaud GR, Latour E, Lombardo V, Thiebaux C, Verderi M, Clark PJ, Gradl W, Muheim F, Playfer S, Robertson AI, Watson JE, Xie Y, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cecchi A, Cibinetto G, Franchini P, Luppi E, Negrini M, Petrella A, Piemontese L, Prencipe E, Santoro V, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Buzzo A, Contri R, Lo Vetere M, Macri MM, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Chaisanguanthum KS, Morii M, Wu J, Dubitzky RS, Marks J, Schenk S, Uwer U, Bard DJ, Dauncey PD, Flack RL, Nash JA, Vazquez WP, Tibbetts M, Behera PK, Chai X, Charles MJ, Mallik U, Cochran J, Crawley HB, Dong L, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Gao YY, Gritsan AV, Guo ZJ, Lae CK, Denig AG, Fritsch M, Schott G, Arnaud N, Béquilleux J, D’orazio A, Davier M, Grosdidier G, Höcker A, Lepeltier V, Le Diberder F, Lutz AM, Pruvot S, Rodier S, Roudeau P, Schune MH, Serrano J, Sordini V, Stocchi A, Wang WF, Wormser G, Lange DJ, Wright DM, Bingham I, Burke JP, Chavez CA, Fry JR, Gabathuler E, Gamet R, Hutchcroft DE, Payne DJ, Schofield KC, Touramanis C, Bevan AJ, George KA, Di Lodovico F, Sacco R, Cowan G, Flaecher HU, Hopkins DA, Paramesvaran S, Salvatore F, Wren AC, Brown DN, Davis CL, Allison J, Bailey D, Barlow NR, Barlow RJ, Chia YM, Edgar CL, Lafferty GD, West TJ, Yi JI, Anderson J, Chen C, Jawahery A, Roberts DA, Simi G, Tuggle JM, Blaylock G, Dallapiccola C, Hertzbach SS, Li X, Moore TB, Salvati E, Saremi S, Cowan R, Dujmic D, Fisher PH, Koeneke K, Sciolla G, Spitznagel M, Taylor F, Yamamoto RK, Zhao M, Zheng Y, Mclachlin SE, Patel PM, Robertson SH, Lazzaro A, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Simard M, Taras P, Viaud FB, Nicholson H, De Nardo G, Fabozzi F, Lista L, Monorchio D, Sciacca C, Baak MA, Raven G, Snoek HL, Jessop CP, Knoepfel KJ, Losecco JM, Benelli G, Corwin LA, Honscheid K, Kagan H, Kass R, Morris JP, Rahimi AM, Regensburger JJ, Sekula SJ, Wong QK, Blount NL, Brau J, Frey R, Igonkina O, Kolb JA, Lu M, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Gagliardi N, Gaz A, Margoni M, Morandin M, Pompili A, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, Ben-haim E, Briand H, Calderini G, Chauveau J, David P, Del Buono L, de la Vaissière C, Hamon O, Leruste P, Malclès J, Ocariz J, Perez A, Prendki J, Gladney L, Biasini M, Covarelli R, Manoni E, Angelini C, Batignani G, Bettarini S, Carpinelli M, Cenci R, Cervelli A, Forti F, Giorgi MA, Lusiani A, Marchiori G, Mazur MA, Morganti M, Neri N, Paoloni E, Rizzo G, Walsh JJ, Biesiada J, Elmer P, Lau YP, Lu C, Olsen J, Smith AJS, Telnov AV, Baracchini E, Bellini F, Cavoto G, del Re D, Di Marco E, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Jackson PD, Gioi LL, Mazzoni MA, Morganti S, Piredda G, Polci F, Renga F, Voena C, Ebert M, Hartmann T, Schröder H, Waldi R, Adye T, Castelli G, Franek B, Olaiya EO, Roethel W, Wilson FF, Emery S, Escalier M, Gaidot A, Ganzhur SF, de Monchenault GH, Kozanecki W, Vasseur G, Yèche C, Zito M, Chen XR, Liu H, Park W, Purohit MV, White RM, Wilson JR, Allen MT, Aston D, Bartoldus R, Bechtle P, Claus R, Coleman JP, Convery MR, Dingfelder JC, Dorfan J, Dubois-felsmann GP, Dunwoodie W, Field RC, Glanzman T, Gowdy SJ, Graham MT, Grenier P, Hast C, Innes WR, Kaminski J, Kelsey MH, Kim H, Kim P, Kocian ML, Leith DWGS, Li S, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Messner R, Muller DR, O’grady CP, Ofte I, Perazzo A, Perl M, Pulliam T, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Su D, Sullivan MK, Suzuki K, Swain SK, Thompson JM, Va’vra J, Wagner AP, Weaver M, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Yi K, Young CC, Ziegler V, Burchat PR, Edwards AJ, Majewski SA, Miyashita TS, Petersen BA, Wilden L, Ahmed S, Alam MS, Bula R, Ernst JA, Jain V, Pan B, Saeed MA, Wappler FR, Zain SB, Krishnamurthy M, Spanier SM, Eckmann R, Ritchie JL, Ruland AM, Schilling CJ, Schwitters RF, Izen JM, Lou XC, Ye S, Bianchi F, Gallo F, Gamba D, Pelliccioni M, Bomben M, Bosisio L, Cartaro C, Cossutti F, Della Ricca G, Lanceri L, Vitale L, Azzolini V, Lopez-march N, Martinez-vidal F, Milanes DA, Oyanguren A, Albert J, Banerjee S, Bhuyan B, Hamano K, Kowalewski R, Nugent IM, Roney JM, Sobie RJ, Harrison PF, Ilic J, Latham TE, Mohanty GB, Band HR, Chen X, Dasu S, Flood KT, Hollar JJ, Kutter PE, Pan Y, Pierini M, Prepost R, Wu SL, Neal H. Measurements of the branching fractions of B0K*0K+K , B0K*0π+K , B0K*0K+π , and B0K*0π+π. Phys Rev D 2007;76. [DOI: 10.1103/physrevd.76.071104] [Cited by in Crossref: 11] [Article Influence: 0.7] [Reference Citation Analysis]
336 Quek C, Tung W. A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture. Pattern Recognition Letters 2001;22:941-58. [DOI: 10.1016/s0167-8655(01)00033-2] [Cited by in Crossref: 36] [Article Influence: 1.7] [Reference Citation Analysis]
337 Lei T, Chen F, Liu H, Sun H, Kang Y, Li D, Li Y, Hou T. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Mol Pharm 2017;14:2407-21. [PMID: 28595388 DOI: 10.1021/acs.molpharmaceut.7b00317] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
338 Badura P. Accelerometric signals in automatic balance assessment. Computerized Medical Imaging and Graphics 2015;46:169-77. [DOI: 10.1016/j.compmedimag.2015.05.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
339 Duffy FH, Denckla MB, Bartels PH, Sandini G, Kiessling LS. Dyslexia: Automated diagnosis by computerized classification of brain electrical activity. Ann Neurol 1980;7:421-8. [DOI: 10.1002/ana.410070506] [Cited by in Crossref: 131] [Cited by in F6Publishing: 96] [Article Influence: 3.1] [Reference Citation Analysis]
340 Brown GW. Basic principles for construction and application of discriminators. J Clin Psychol 1950;6:58-61. [DOI: 10.1002/1097-4679(195001)6:1<58::aid-jclp2270060112>3.0.co;2-b] [Cited by in Crossref: 7] [Article Influence: 0.1] [Reference Citation Analysis]
341 Li M, Pal A, Phadke AG, Thorp JS. Transient stability prediction based on apparent impedance trajectory recorded by PMUs. International Journal of Electrical Power & Energy Systems 2014;54:498-504. [DOI: 10.1016/j.ijepes.2013.07.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 6] [Article Influence: 3.6] [Reference Citation Analysis]
342 Orrù M, Grillo O, Venora G, Bacchetta G. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biologies 2012;335:602-15. [DOI: 10.1016/j.crvi.2012.08.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
343 Mcgarigal K, Stafford S, Cushman S. Discriminant Analysis. Multivariate Statistics for Wildlife and Ecology Research. New York: Springer; 2000. pp. 129-87. [DOI: 10.1007/978-1-4612-1288-1_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
344 Tan M, Wu F, Yang B, Ma J, Kong D, Chen Z, Long D. Pulmonary nodule detection using hybrid two-stage 3D CNNs. Med Phys 2020;47:3376-88. [PMID: 32239521 DOI: 10.1002/mp.14161] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
345 Valerio M, Zini C, Fierro D, Giura F, Colarieti A, Giuliani A, Laghi A, Catalano C, Panebianco V. 3T multiparametric MRI of the prostate: Does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone? Eur J Radiol 2016;85:790-4. [PMID: 26971425 DOI: 10.1016/j.ejrad.2016.01.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
346 Fuster-Garcia E, Tortajada S, Vicente J, Robles M, García-Gómez JM. Extracting MRS discriminant functional features of brain tumors. NMR Biomed 2013;26:578-92. [PMID: 23239454 DOI: 10.1002/nbm.2895] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
347 Sorinas J, Grima MD, Ferrandez JM, Fernandez E. Identifying Suitable Brain Regions and Trial Size Segmentation for Positive/Negative Emotion Recognition. Int J Neur Syst 2019;29:1850044. [DOI: 10.1142/s0129065718500442] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
348 Sardá-espinosa A, Subbiah S, Bartz-beielstein T. Conditional inference trees for knowledge extraction from motor health condition data. Engineering Applications of Artificial Intelligence 2017;62:26-37. [DOI: 10.1016/j.engappai.2017.03.008] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
349 Cruz-ramírez M, Hervás-martínez C, Gutiérrez PA, Pérez-ortiz M, Briceño J, de la Mata M. Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft Comput 2013;17:275-84. [DOI: 10.1007/s00500-012-0892-7] [Cited by in Crossref: 6] [Article Influence: 0.6] [Reference Citation Analysis]
350 Yao Y, Zuo M, Dong Y, Shi L, Zhu Y, Si L, Ye X, Ma H. Polarization imaging feature characterization of different endometrium phases by machine learning. OSA Continuum 2021;4:1776. [DOI: 10.1364/osac.414109] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
351 Berthouex P. Information management for wastewater treatment. ISA Transactions 1992;31:35-51. [DOI: 10.1016/0019-0578(92)90008-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
352 Anderson JR, Matessa M. Explorations of an incremental, Bayesian algorithm for categorization. Mach Learn 1992;9:275-308. [DOI: 10.1007/bf00994109] [Cited by in Crossref: 21] [Article Influence: 0.7] [Reference Citation Analysis]
353 Atik ME, Duran Z, Seker DZ. Machine Learning-Based Supervised Classification of Point Clouds Using Multiscale Geometric Features. IJGI 2021;10:187. [DOI: 10.3390/ijgi10030187] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
354 Spasojević S, Ilić TV, Milanović S, Potkonjak V, Rodić A, Santos-victor J. Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation. Methods Inf Med 2018;56:95-111. [DOI: 10.3414/me16-02-0013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
355 Lorente D, Escandell-montero P, Cubero S, Gómez-sanchis J, Blasco J. Visible–NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering 2015;163:17-24. [DOI: 10.1016/j.jfoodeng.2015.04.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
356 McCann C, Matveeva A, McAllister K, Van Schaeybroeck S, Sessler T, Fichtner M, Carberry S, Rehm M, Prehn JHM, Longley DB. Development of a protein signature to enable clinical positioning of IAP inhibitors in colorectal cancer. FEBS J 2021. [PMID: 33660894 DOI: 10.1111/febs.15801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
357 Saigre-tardif C, Faqiri R, Zhao H, Li L, del Hougne P. Intelligent meta-imagers: From compressed to learned sensing. Applied Physics Reviews 2022;9:011314. [DOI: 10.1063/5.0076022] [Reference Citation Analysis]
358 Laubach M. Wavelet-based processing of neuronal spike trains prior to discriminant analysis. J Neurosci Methods 2004;134:159-68. [PMID: 15003382 DOI: 10.1016/j.jneumeth.2003.11.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 0.7] [Reference Citation Analysis]
359 Horii Y, Trabelsi K, Yamamoto H, Adachi I, Aihara H, Arinstein K, Aulchenko V, Balagura V, Barberio E, Bedny I, Belous K, Bhardwaj V, Bitenc U, Blyth S, Bozek A, Bračko M, Browder TE, Chao Y, Chen A, Chen WT, Cheon BG, Chistov R, Cho I, Choi S, Choi Y, Dalseno J, Dash M, Eidelman S, Gabyshev N, Ha H, Haba J, Hara T, Hayasaka K, Hazumi M, Heffernan D, Hoshi Y, Hou W, Hyun HJ, Inami K, Ishikawa A, Ishino H, Itoh R, Iwabuchi M, Iwasaki M, Iwasaki Y, Kah DH, Kaji H, Kang JH, Katayama N, Kawai H, Kawasaki T, Kichimi H, Kim HJ, Kim SK, Kim YJ, Kinoshita K, Korpar S, Križan P, Krokovny P, Kuo CC, Kuroki Y, Kuzmin A, Kwon Y, Lee JS, Lee MJ, Lee SE, Lesiak T, Li J, Lin S, Liu C, Liventsev D, Mandl F, Mconie S, Medvedeva T, Mitaroff W, Miyabayashi K, Miyake H, Miyata H, Miyazaki Y, Mizuk R, Moloney GR, Nagamine T, Nagasaka Y, Nakao M, Nakazawa H, Natkaniec Z, Nishida S, Nitoh O, Ogawa S, Ohshima T, Okuno S, Ozaki H, Pakhlova G, Park CW, Park H, Park HK, Peak LS, Pestotnik R, Piilonen LE, Sahoo H, Sakai Y, Schneider O, Schwanda C, Schwartz AJ, Senyo K, Sevior ME, Shapkin M, Shibuya H, Shiu J, Somov A, Stanič S, Starič M, Sumiyoshi T, Suzuki S, Takasaki F, Tamura N, Tanaka M, Teramoto Y, Tsuboyama T, Uehara S, Unno Y, Uno S, Urquijo P, Usov Y, Varner G, Varvell KE, Vervink K, Wang CH, Wang M, Wang P, Wang XL, Watanabe Y, Wedd R, Won E, Yamashita Y, Yamauchi M, Zhang CC, Zhang ZP, Zhilich V, Zhulanov V, Zupanc A, Zyukova O. Study of the suppressed B meson decay BDK , DK+π. Phys Rev D 2008;78. [DOI: 10.1103/physrevd.78.071901] [Cited by in Crossref: 7] [Article Influence: 0.5] [Reference Citation Analysis]
360 Morinaga A, Hara K, Inoue K, Urahama K. Classification between natural and graphics images based on generalized Gaussian distributions. Information Processing Letters 2018;138:31-4. [DOI: 10.1016/j.ipl.2018.05.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
361 Leotta R. Use of linear discriminant analysis to characterise three dairy cattle breeds on the basis of several milk characteristics. Italian Journal of Animal Science 2016;3:377-83. [DOI: 10.4081/ijas.2004.377] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
362 Iguchi J, Takashima Y, Namikoshi A, Yamashita Y, Yamashita M. Origin identification method by multiple trace elemental analysis of short-neck clams produced in Japan, China, and the Republic of Korea. Fish Sci 2013;79:977-82. [DOI: 10.1007/s12562-013-0659-9] [Cited by in Crossref: 9] [Article Influence: 1.0] [Reference Citation Analysis]
363 Wildes RP, Asmuth JC, Green GL, Hsu SC, Kolczynski RJ, Matey JR, Mcbride SE. A machine-vision system for iris recognition. Machine Vis Apps 1996;9:1-8. [DOI: 10.1007/bf01246633] [Cited by in Crossref: 244] [Article Influence: 9.4] [Reference Citation Analysis]
364 Rostami R, Bashiri FS, Rostami B, Yu Z. A Survey on Data‐Driven 3D Shape Descriptors. Computer Graphics Forum 2018;38:356-93. [DOI: 10.1111/cgf.13536] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
365 Thompson JB, Whitehouse RNH. Studies on the breeding of self pollinating cereals: 4. Environment and the inheritance of quality in spring wheats. Euphytica 1962;11:181-96. [DOI: 10.1007/bf00033791] [Cited by in Crossref: 3] [Article Influence: 0.1] [Reference Citation Analysis]
366 Chinnasamy K, Arumugam Y, Jegadeesan R, Chockalingam V. Linear discriminant analysis in red sorghum using artificial intelligence. Nucleus 2021;64:103-13. [DOI: 10.1007/s13237-020-00340-1] [Reference Citation Analysis]
367 Dahl MJ, Mortensen LE, Jensen NH, Veihe A. Magnitude–frequency characteristics and preparatory factors for spatial debris-slide distribution in the northern Faroe Islands. Geomorphology 2013;188:3-11. [DOI: 10.1016/j.geomorph.2012.09.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
368 Lacruz AJ, Américo BL, Carniel F. Indicadores de qualidade na educação: análise discriminante dos desempenhos na Prova Brasil. Rev Bras Educ 2019;24:e240002. [DOI: 10.1590/s1413-24782019240002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
369 Sousa MR, Gama J, Brandão E. A new dynamic modeling framework for credit risk assessment. Expert Systems with Applications 2016;45:341-51. [DOI: 10.1016/j.eswa.2015.09.055] [Cited by in Crossref: 36] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
370 Bagirov AM, Ugon J. An algorithm for minimizing clustering functions. Optimization 2005;54:351-68. [DOI: 10.1080/02331930500096155] [Cited by in Crossref: 16] [Article Influence: 0.9] [Reference Citation Analysis]
371 Lu R, Abe K, Abe K, Abe N, Abe R, Abe T, Adachi I, Aihara H, Asano Y, Aso T, Aulchenko V, Aushev T, Bakich AM, Ban Y, Banas E, Bedny I, Behera PK, Bizjak I, Bondar A, Bozek A, Bračko M, Browder TE, Casey BCK, Chang M, Chang P, Chao Y, Chen K, Cheon BG, Chistov R, Choi S, Choi Y, Choi YK, Danilov M, Dong LY, Drutskoy A, Eidelman S, Eiges V, Everton CW, Fukunaga C, Gabyshev N, Gershon T, Golob B, Gordon A, Guo R, Haba J, Hara T, Harada Y, Hayashii H, Hazumi M, Heenan EM, Higuchi T, Hinz L, Hokuue T, Hoshi Y, Hou W, Hsu S, Huang H, Igaki T, Igarashi Y, Iijima T, Inami K, Ishikawa A, Itoh R, Iwasaki H, Iwasaki Y, Jang HK, Kang JH, Kapusta P, Kataoka SU, Katayama N, Kawai H, Kawakami Y, Kawamura N, Kawasaki T, Kichimi H, Kim DW, Kim H, Kim HJ, Kim HO, Kim H, Kim SK, Kinoshita K, Krokovny P, Kulasiri R, Kumar S, Kuzmin A, Kwon Y, Leder G, Lee SH, Li J, Liventsev D, Macnaughton J, Majumder G, Mandl F, Matsuishi T, Matsumoto S, Matsumoto T, Mitaroff W, Miyabayashi K, Miyabayashi Y, Miyake H, Miyata H, Moloney GR, Mori T, Murakami A, Nagamine T, Nagasaka Y, Nakadaira T, Nakano E, Nakao M, Nam JW, Natkaniec Z, Neichi K, Nishida S, Nitoh O, Noguchi S, Nozaki T, Ogawa S, Ohno F, Ohshima T, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Palka H, Park CW, Park H, Peak LS, Perroud J, Peters M, Piilonen LE, Root N, Rybicki K, Sagawa H, Saitoh S, Sakai Y, Satapathy M, Satpathy A, Schneider O, Schrenk S, Semenov S, Senyo K, Seuster R, Sevior ME, Shibuya H, Sidorov V, Singh JB, Soni N, Stanič S, Starič M, Sugi A, Sugiyama A, Sumisawa K, Sumiyoshi T, Suzuki K, Suzuki S, Takahashi T, Takasaki F, Tamai K, Tamura N, Tanaka J, Tanaka M, Taylor GN, Teramoto Y, Tokuda S, Tomoto M, Tomura T, Tovey SN, Trabelsi K, Tsuboyama T, Tsukamoto T, Uehara S, Ueno K, Uno S, Ushiroda Y, Varner G, Varvell KE, Wang CC, Wang CH, Wang JG, Wang M, Watanabe Y, Won E, Yabsley BD, Yamada Y, Yamashita Y, Yamauchi M, Yeh P, Yuan Y, Zhang J, Zhang ZP, Zheng Y, Žontar D. Observation of B±ωK± Decay. Phys Rev Lett 2002;89. [DOI: 10.1103/physrevlett.89.191801] [Cited by in Crossref: 9] [Article Influence: 0.5] [Reference Citation Analysis]
372 Haynes JD. A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives. Neuron 2015;87:257-70. [PMID: 26182413 DOI: 10.1016/j.neuron.2015.05.025] [Cited by in Crossref: 254] [Cited by in F6Publishing: 186] [Article Influence: 36.3] [Reference Citation Analysis]
373 Hou-liu J, Browne RP. Chimeral Clustering. J Classif. [DOI: 10.1007/s00357-021-09396-3] [Reference Citation Analysis]
374 Gehlenborg N, Wong B. Power of the plane. Nat Methods 2012;9:935-935. [DOI: 10.1038/nmeth.2186] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
375 Tao D, Jin L. Discriminative information preservation for face recognition. Neurocomputing 2012;91:11-20. [DOI: 10.1016/j.neucom.2012.02.024] [Cited by in Crossref: 25] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
376 Santos F, Guyomarc'h P, Bruzek J. Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines. Forensic Sci Int 2014;245:204.e1-8. [PMID: 25459272 DOI: 10.1016/j.forsciint.2014.10.010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
377 Hwang S, Lin C, Chuang W. Stock selection using data envelopment analysis-discriminant analysis. Journal of Information and Optimization Sciences 2007;28:33-50. [DOI: 10.1080/02522667.2007.10699727] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
378 Sai K, Sood N, Saini I. Abiotic stress classification through spectral analysis of enhanced electrophysiological signals of plants. Biosystems Engineering 2022;219:189-204. [DOI: 10.1016/j.biosystemseng.2022.04.025] [Reference Citation Analysis]
379 van Leeuwen G, van Kesteren HA. Delineation of the three brown rot fungi of fruit crops ( Monilinia spp.) on the basis of quantitative characteristics. Can J Bot 1998;76:2042-50. [DOI: 10.1139/b98-183] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
380 Webster R, Burrough PA. MULTIPLE DISCRIMINANT ANALYSIS IN SOIL SURVEY. Journal of Soil Science 1974;25:120-34. [DOI: 10.1111/j.1365-2389.1974.tb01109.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
381 Aubert B, Barate R, Boutigny D, Couderc F, Karyotakis Y, Lees JP, Poireau V, Tisserand V, Zghiche A, Grauges E, Palano A, Pappagallo M, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Battaglia M, Best DS, Brown DN, Button-shafer J, Cahn RN, Charles E, Day CT, Gill MS, Gritsan AV, Groysman Y, Jacobsen RG, Kadyk JA, Kerth LT, Kolomensky YG, Kukartsev G, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Ronan MT, Wenzel WA, Barrett M, Ford KE, Harrison TJ, Hart AJ, Hawkes CM, Morgan SE, Watson AT, Fritsch M, Goetzen K, Held T, Koch H, Lewandowski B, Pelizaeus M, Peters K, Schroeder T, Steinke M, Boyd JT, Burke JP, Cottingham WN, Walker D, Cuhadar-donszelmann T, Fulsom BG, Hearty C, Knecht NS, Mattison TS, Mckenna JA, Khan A, Kyberd P, Saleem M, Teodorescu L, Blinov VE, Bukin AD, Buzykaev A, Druzhinin VP, Golubev VB, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Todyshev KY, Bondioli M, Bruinsma M, Chao M, Curry S, Eschrich I, Kirkby D, Lankford AJ, Lund P, Mandelkern M, Mommsen RK, Roethel W, Stoker DP, Abachi S, Buchanan C, Foulkes SD, Gary JW, Long O, Shen BC, Wang K, Zhang L, del Re D, Hadavand HK, Hill EJ, Paar HP, Rahatlou S, Sharma V, Berryhill JW, Campagnari C, Cunha A, Dahmes B, Hong TM, Richman JD, Beck TW, Eisner AM, Flacco CJ, Heusch CA, Kroseberg J, Lockman WS, Nesom G, Schalk T, Schumm BA, Seiden A, Spradlin P, Williams DC, Wilson MG, Albert J, Chen E, Dubois-felsmann GP, Dvoretskii A, Hitlin DG, Narsky I, Piatenko T, Porter FC, Ryd A, Samuel A, Andreassen R, Mancinelli G, Meadows BT, Sokoloff MD, Blanc F, Bloom PC, Chen S, Ford WT, Hirschauer JF, Kreisel A, Nauenberg U, Olivas A, Ruddick WO, Smith JG, Ulmer KA, Wagner SR, Zhang J, Chen A, Eckhart EA, Soffer A, Toki WH, Wilson RJ, Winklmeier F, Zeng Q, Altenburg DD, Feltresi E, Hauke A, Jasper H, Spaan B, Brandt T, Klose V, Lacker HM, Nogowski R, Petzold A, Schubert J, Schubert KR, Schwierz R, Sundermann JE, Volk A, Bernard D, Bonneaud GR, Grenier P, Latour E, Thiebaux C, Verderi M, Bard DJ, Clark PJ, Gradl W, Muheim F, Playfer S, Xie Y, Andreotti M, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Piemontese L, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Finocchiaro G, Pacetti S, Patteri P, Peruzzi IM, Piccolo M, Rama M, Zallo A, Buzzo A, Capra R, Contri R, Lo Vetere M, Macri MM, Monge MR, Passaggio S, Patrignani C, Robutti E, Santroni A, Tosi S, Brandenburg G, Chaisanguanthum KS, Morii M, Wu J, Dubitzky RS, Marks J, Schenk S, Uwer U, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Flack RL, Gaillard JR, Nash JA, Nikolich MB, Panduro Vazquez W, Chai X, Charles MJ, Mader WF, Mallik U, Ziegler V, Cochran J, Crawley HB, Dong L, Eyges V, Meyer WT, Prell S, Rosenberg EI, Rubin AE, Schott G, Arnaud N, Davier M, Grosdidier G, Höcker A, Le Diberder F, Lepeltier V, Lutz AM, Oyanguren A, Petersen TC, Pruvot S, Rodier S, Roudeau P, Schune MH, Stocchi A, Wang WF, Wormser G, Cheng CH, Lange DJ, Wright DM, Chavez CA, Forster IJ, Fry JR, Gabathuler E, Gamet R, George KA, Hutchcroft DE, Payne DJ, Schofield KC, Touramanis C, Bevan AJ, Di Lodovico F, Menges W, Sacco R, Brown CL, Cowan G, Flaecher HU, Hopkins DA, Jackson PS, Mcmahon TR, Ricciardi S, Salvatore F, Brown DN, Davis CL, Allison J, Barlow NR, Barlow RJ, Chia YM, Edgar CL, Kelly MP, Lafferty GD, Naisbit MT, Williams JC, Yi JI, Chen C, Hulsbergen WD, Jawahery A, Kovalskyi D, Lae CK, Roberts DA, Simi G, Blaylock G, Dallapiccola C, Hertzbach SS, Li X, Moore TB, Saremi S, Staengle H, Willocq SY, Cowan R, Koeneke K, Sciolla G, Sekula SJ, Spitznagel M, Taylor F, Yamamoto RK, Kim H, Patel PM, Potter CT, Robertson SH, Lazzaro A, Lombardo V, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Reidy J, Sanders DA, Summers DJ, Zhao HW, Brunet S, Côté D, Simard M, Taras P, Viaud FB, Nicholson H, Cavallo N, Nardo GD, Fabozzi F, Gatto C, Lista L, Monorchio D, Paolucci P, Piccolo D, Sciacca C, Baak M, Bulten H, Raven G, Snoek HL, Jessop CP, Losecco JM, Allmendinger T, Benelli G, Gan KK, Honscheid K, Hufnagel D, Jackson PD, Kagan H, Kass R, Pulliam T, Rahimi AM, Ter-antonyan R, Wong QK, Blount NL, Brau J, Frey R, Igonkina O, Lu M, Rahmat R, Sinev NB, Strom D, Strube J, Torrence E, Galeazzi F, Gaz A, Margoni M, Morandin M, Pompili A, Posocco M, Rotondo M, Simonetto F, Stroili R, Voci C, Benayoun M, Chauveau J, David P, Del Buono L, de la Vaissière C, Hamon O, Hartfiel BL, John MJJ, Leruste P, Malclès J, Ocariz J, Roos L, Therin G, Behera PK, Gladney L, Panetta J, Biasini M, Covarelli R, Pioppi M, Angelini C, Batignani G, Bettarini S, Bucci F, Calderini G, Carpinelli M, Cenci R, Forti F, Giorgi MA, Lusiani A, Marchiori G, Mazur MA, Morganti M, Neri N, Paoloni E, Rizzo G, Walsh J, Haire M, Judd D, Wagoner DE, Biesiada J, Danielson N, Elmer P, Lau YP, Lu C, Olsen J, Smith AJS, Telnov AV, Bellini F, Cavoto G, D’orazio A, Di Marco E, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Li Gioi L, Mazzoni MA, Morganti S, Piredda G, Polci F, Safai Tehrani F, Voena C, Schröder H, Waldi R, Adye T, De Groot N, Franek B, Olaiya EO, Wilson FF, Emery S, Gaidot A, Ganzhur SF, Hamel de Monchenault G, Kozanecki W, Legendre M, Mayer B, Vasseur G, Yèche C, Zito M, Park W, Purohit MV, Weidemann AW, Wilson JR, Allen MT, Aston D, Bartoldus R, Bechtle P, Berger N, Boyarski AM, Claus R, Coleman JP, Convery MR, Cristinziani M, Dingfelder JC, Dong D, Dorfan J, Dujmic D, Dunwoodie W, Field RC, Glanzman T, Gowdy SJ, Halyo V, Hast C, Hryn’ova T, Innes WR, Kelsey MH, Kim P, Kocian ML, Leith DWGS, Libby J, Luitz S, Luth V, Lynch HL, Macfarlane DB, Marsiske H, Messner R, Muller DR, O’grady CP, Ozcan VE, Perazzo A, Perl M, Ratcliff BN, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Snyder A, Stelzer J, Su D, Sullivan MK, Suzuki K, Swain SK, Thompson JM, Va’vra J, van Bakel N, Weaver M, Weinstein AJR, Wisniewski WJ, Wittgen M, Wright DH, Yarritu AK, Yi K, Young CC, Burchat PR, Edwards AJ, Majewski SA, Petersen BA, Roat C, Wilden L, Ahmed S, Alam MS, Bula R, Ernst JA, Jain V, Pan B, Saeed MA, Wappler FR, Zain SB, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Ritchie JL, Satpathy A, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Bona M, Gallo F, Gamba D, Bomben M, Bosisio L, Cartaro C, Cossutti F, Della Ricca G, Dittongo S, Grancagnolo S, Lanceri L, Vitale L, Azzolini V, Martinez-vidal F, Panvini RS, Banerjee S, Bhuyan B, Brown CM, Fortin D, Hamano K, Kowalewski R, Nugent IM, Roney JM, Sobie RJ, Back JJ, Harrison PF, Latham TE, Mohanty GB, Band HR, Chen X, Cheng B, Dasu S, Datta M, Eichenbaum AM, Flood KT, Graham MT, Hollar JJ, Johnson JR, Kutter PE, Li H, Liu R, Mellado B, Mihalyi A, Mohapatra AK, Pan Y, Pierini M, Prepost R, Tan P, Wu SL, Yu Z, Neal H. Measurement of B¯0D(*)0K¯(*)0 branching fractions. Phys Rev D 2006;74. [DOI: 10.1103/physrevd.74.031101] [Cited by in Crossref: 15] [Article Influence: 0.9] [Reference Citation Analysis]
382 Gambin A, Szczurek E, Dutkowski J, Bakun M, Dadlez M. Classification of peptide mass fingerprint data by novel no-regret boosting method. Comput Biol Med 2009;39:460-73. [PMID: 19386298 DOI: 10.1016/j.compbiomed.2009.03.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
383 Li M, Fang H, Chen Y, Wang T, Yang J, Fu H, Yang X, Li X, Chen Z, Yu R. Data fusion of synchronous fluorescence and surface enhanced Raman scattering spectroscopies for geographical origin traceability of Atractylodes macrocephala Koidz. Spectroscopy Letters. [DOI: 10.1080/00387010.2022.2074039] [Reference Citation Analysis]
384 Woodruff DL, Reiners T. Experiments with, and on, algorithms for maximum likelihood clustering. Computational Statistics & Data Analysis 2004;47:237-53. [DOI: 10.1016/j.csda.2003.11.002] [Cited by in Crossref: 8] [Article Influence: 0.4] [Reference Citation Analysis]
385 Liu D, Li J. Data field modeling and data description for hyperspectral target detection. J Appl Remote Sens 2016;10:035001. [DOI: 10.1117/1.jrs.10.035001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
386 Isogai T. Some extension of Haldane's multivariate median and its application. Ann Inst Stat Math 1985;37:289-301. [DOI: 10.1007/bf02481098] [Cited by in Crossref: 7] [Article Influence: 0.2] [Reference Citation Analysis]
387 David G, Averbuch A. Hierarchical data organization, clustering and denoising via localized diffusion folders. Applied and Computational Harmonic Analysis 2012;33:1-23. [DOI: 10.1016/j.acha.2011.09.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 5] [Article Influence: 2.9] [Reference Citation Analysis]
388 Liu Q, Pitt D, Wu X. On the prediction of claim duration for income protection insurance policyholders. Ann actuar sci 2014;8:42-62. [DOI: 10.1017/s1748499513000134] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
389 Brown LD, Hwang JTG. How to Approximate a Histogram by a Normal Density. The American Statistician 1993;47:251-5. [DOI: 10.1080/00031305.1993.10475992] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
390 Xu R, Gui L, Lu Q, Wang S, Xu J. Incorporating multi-kernel function and Internet verification for Chinese person name disambiguation. Front Comput Sci 2016;10:1026-38. [DOI: 10.1007/s11704-016-4503-0] [Reference Citation Analysis]
391 Tung S, Quek C, Guan C. SoHyFIS-Yager: A self-organizing Yager based Hybrid neural Fuzzy Inference System. Expert Systems with Applications 2012;39:12759-71. [DOI: 10.1016/j.eswa.2012.02.056] [Cited by in Crossref: 6] [Article Influence: 0.6] [Reference Citation Analysis]
392 Joachimsthaler EA, Stam A. FOUR APPROACHES TO THE CLASSIFICATION PROBLEM IN DISCRIMINANT ANALYSIS: AN EXPERIMENTAL STUDY. Decision Sciences 1988;19:322-33. [DOI: 10.1111/j.1540-5915.1988.tb00270.x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 57] [Article Influence: 2.5] [Reference Citation Analysis]
393 Rabuñal JR, Dorado J, Gestal M, Pedreira N. Diversity and Multimodal Search with a Hybrid Two-Population GA: An Application to ANN Development. In: Cabestany J, Prieto A, Sandoval F, editors. Computational Intelligence and Bioinspired Systems. Berlin: Springer Berlin Heidelberg; 2005. pp. 382-90. [DOI: 10.1007/11494669_47] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
394 Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 2010;114:129-42. [DOI: 10.1016/j.geomorph.2009.06.020] [Cited by in Crossref: 201] [Cited by in F6Publishing: 89] [Article Influence: 16.8] [Reference Citation Analysis]
395 Das K, Nenadic Z. Approximate information discriminant analysis: A computationally simple heteroscedastic feature extraction technique. Pattern Recognition 2008;41:1548-57. [DOI: 10.1016/j.patcog.2007.10.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
396 Sun M. A MULTI-CLASS SUPPORT VECTOR MACHINE: THEORY AND MODEL. Int J Info Tech Dec Mak 2013;12:1175-99. [DOI: 10.1142/s0219622013500338] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
397 Demsar J, Leban G, Zupan B. FreeViz--an intelligent multivariate visualization approach to explorative analysis of biomedical data. J Biomed Inform 2007;40:661-71. [PMID: 17531544 DOI: 10.1016/j.jbi.2007.03.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
398 Pai DR, Lawrence KD, Klimberg RK, Lawrence SM. Analyzing the balancing of error rates for multi-group classification. Expert Systems with Applications 2012;39:12869-75. [DOI: 10.1016/j.eswa.2012.05.006] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
399 Ushiroda Y, Sumisawa K, Hazumi M, Abe K, Abe K, Adachi I, Aihara H, Asano Y, Aulchenko V, Aushev T, Bakich AM, Bay A, Bedny I, Bitenc U, Bizjak I, Blyth S, Bondar A, Bozek A, Bracko M, Brodzicka J, Browder TE, Chang MC, Chang P, Chao Y, Chen A, Chen KF, Chen WT, Cheon BG, Choi SK, Choi Y, Chuvikov A, Cole S, Dalseno J, Danilov M, Dash M, Dragic J, Eidelman S, Fang F, Fratina S, Gabyshev N, Gershon T, Gokhroo G, Gorisek A, Haba J, Hara K, Hastings NC, Hayasaka K, Hayashii H, Higuchi T, Hinz L, Hokuue T, Hoshi Y, Hou S, Hou WS, Hsiung YB, Iijima T, Imoto A, Inami K, Ishikawa A, Ishino H, Itoh R, Iwasaki M, Iwasaki Y, Kang JH, Kang JS, Kapusta P, Katayama N, Kawai H, Kawasaki T, Khan HR, Kichimi H, Kim HJ, Kim SM, Kinoshita K, Krizan P, Krokovny P, Kumar S, Kuo CC, Kusaka A, Kuzmin A, Kwon YJ, Leder G, Lesiak T, Li J, Limosani A, Lin SW, Liventsev D, Mandl F, Matsumoto T, Mikami Y, Mitaroff W, Miyabayashi K, Miyake H, Miyata H, Mohapatra D, Moloney GR, Nagamine T, Nakano E, Nakao M, Nishida S, Nitoh O, Nozaki T, Ogawa S, Ohshima T, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Pakhlov P, Palka H, Park CW, Parslow N, Peak LS, Pestotnik R, Piilonen LE, Sagawa H, Sakai Y, Sato N, Schietinger T, Schneider O, Schwartz AJ, Senyo K, Sevior ME, Shibata T, Shibuya H, Singh JB, Somov A, Soni N, Stamen R, Stanic S, Staric M, Sumiyoshi T, Suzuki S, Tajima O, Takasaki F, Tamai K, Tamura N, Tanaka M, Teramoto Y, Tian XC, Trabelsi K, Tsuboyama T, Tsukamoto T, Uehara S, Uglov T, Uno S, Urquijo P, Varner G, Varvell KE, Villa S, Wang CC, Wang CH, Watanabe M, Watanabe Y, Xie QL, Yamaguchi A, Yamashita Y, Yamauchi M, Yang H, Ying J, Zhang J, Zhang LM, Zhang ZP, Zontar D; Belle Collaboration. Measurement of the time-dependent CP-violating asymmetry in B(0)-->K(0)(S)pi(0)gamma decays. Phys Rev Lett 2005;94:231601. [PMID: 16090457 DOI: 10.1103/PhysRevLett.94.231601] [Cited by in Crossref: 11] [Article Influence: 0.6] [Reference Citation Analysis]
400 Li Y, Adelson E, Agarwala A. ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments. Computer Graphics Forum 2008;27:1255-64. [DOI: 10.1111/j.1467-8659.2008.01264.x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
401 Melnykov V, Shen G. Clustering through empirical likelihood ratio. Computational Statistics & Data Analysis 2013;62:1-10. [DOI: 10.1016/j.csda.2012.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
402 Torrecilla P, Acedo C, Marques I, Díaz-pérez AJ, López-rodríguez JÁ, Mirones V, Sus A, Llamas F, Alonso A, Pérez-collazos E, Viruel J, Sahuquillo E, Sancho MDC, Komac B, Manso JA, Segarra-moragues JG, Draper D, Villar L, Catalán P. Morphometric and molecular variation in concert: taxonomy and genetics of the reticulate Pyrenean and Iberian alpine spiny fescues ( Festuca eskia complex, Poaceae): Taxonomy and Genetics of Festuca eskia. Bot J Linn Soc 2013;173:676-706. [DOI: 10.1111/boj.12103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
403 Blanchard F, Herbin M, Lucas L. A New Pixel-Oriented Visualization Technique Through Color Image. Information Visualization 2005;4:257-65. [DOI: 10.1057/palgrave.ivs.9500104] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
404 Larose R, Coyle B. Robust data encodings for quantum classifiers. Phys Rev A 2020;102. [DOI: 10.1103/physreva.102.032420] [Cited by in Crossref: 27] [Cited by in F6Publishing: 2] [Article Influence: 13.5] [Reference Citation Analysis]
405 Delorme A, Kothe C, Vankov A, Bigdely-shamlo N, Oostenveld R, Zander TO, Makeig S. MATLAB-Based Tools for BCI Research. In: Tan DS, Nijholt A, editors. Brain-Computer Interfaces. London: Springer; 2010. pp. 241-59. [DOI: 10.1007/978-1-84996-272-8_14] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
406 Huleihel M, Shufan E, Tsror L, Sharaha U, Lapidot I, Mordechai S, Salman A. Differentiation of mixed soil-borne fungi in the genus level using infrared spectroscopy and multivariate analysis. J Photochem Photobiol B 2018;180:155-65. [PMID: 29433053 DOI: 10.1016/j.jphotobiol.2018.02.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
407 Johnson BL. AMPHIPLOIDY AND INTROGRESSION IN STIPA. American Journal of Botany 1962;49:253-62. [DOI: 10.1002/j.1537-2197.1962.tb14935.x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
408 Kattan MW, Cooper RB. A simulation of factors affecting machine learning techniques: an examination of partitioning and class proportions. Omega 2000;28:501-12. [DOI: 10.1016/s0305-0483(00)00015-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
409 Cheng Y, Zhuang Y, Yang J. Optimal fisher discriminant analysis using the rank decomposition. Pattern Recognition 1992;25:101-11. [DOI: 10.1016/0031-3203(92)90010-g] [Cited by in Crossref: 48] [Article Influence: 1.6] [Reference Citation Analysis]
410 Zaouali Y, Messaoud C, Salah AB, Boussaïd M. Oil composition variability among populations in relationship with their ecological areas in TunisianRosmarinus officinalis L. Flavour Fragr J 2005;20:512-20. [DOI: 10.1002/ffj.1428] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
411 Nierop A, Tas A, van der Greef J. Reflected discriminant analysis. Chemometrics and Intelligent Laboratory Systems 1994;25:249-63. [DOI: 10.1016/0169-7439(94)85046-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
412 Saxberg BE, Duewer DL, Booker JL, Kowalski BR. Pattern recognition and blind assay techniques applied to forensic separation of whiskies. Analytica Chimica Acta 1978;103:201-12. [DOI: 10.1016/s0003-2670(01)84039-3] [Cited by in Crossref: 37] [Article Influence: 0.8] [Reference Citation Analysis]
413 Moore DM. POPULATION STUDIES ON VIOLA LACTEA SM. AND ITS WILD HYBRIDS. Evolution 1959;13:318-32. [DOI: 10.1111/j.1558-5646.1959.tb03019.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
414 Zhao J, Jin L, Shi L. Mixture model selection via hierarchical BIC. Computational Statistics & Data Analysis 2015;88:139-53. [DOI: 10.1016/j.csda.2015.01.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
415 Lloyd LK, Kuhlemeier KV, Fine PR, Mceachran AB, Stover SL. Prediction of Pyelocaliectasis in Follow-up of Patients with Spinal Cord Injury. British Journal of Urology 1987;59:122-6. [DOI: 10.1111/j.1464-410x.1987.tb04801.x] [Cited by in Crossref: 4] [Article Influence: 0.1] [Reference Citation Analysis]
416 Neville Z, Brownstein NC. Macros to conduct tests of multimodality in SAS. Journal of Statistical Computation and Simulation 2018;88:3269-90. [DOI: 10.1080/00949655.2018.1509979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
417 Xanthopoulos P, Guarracino MR, Pardalos PM. Robust generalized eigenvalue classifier with ellipsoidal uncertainty. Ann Oper Res 2014;216:327-42. [DOI: 10.1007/s10479-012-1303-2] [Cited by in Crossref: 17] [Article Influence: 1.9] [Reference Citation Analysis]
418 Güven A, Polat K, Kara S, Güneş S. The effect of generalized discriminate analysis (GDA) to the classification of optic nerve disease from VEP signals. Computers in Biology and Medicine 2008;38:62-8. [DOI: 10.1016/j.compbiomed.2007.07.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
419 Saadi K, Talbot NL, Cawley GC. Optimally regularised kernel Fisher discriminant classification. Neural Networks 2007;20:832-41. [DOI: 10.1016/j.neunet.2007.05.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
420 Woollons RC, Snowdon P. Utility of multivariate analyses in examining foliage composition and soil nutrition in a factorial fertilizer experiment. New Forest 1991;5:289-305. [DOI: 10.1007/bf00118858] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
421 Tang A, Quek C, Ng G. GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms. Expert Systems with Applications 2005;29:769-81. [DOI: 10.1016/j.eswa.2005.06.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
422 Vrbik I, Mcnicholas PD. Parsimonious skew mixture models for model-based clustering and classification. Computational Statistics & Data Analysis 2014;71:196-210. [DOI: 10.1016/j.csda.2013.07.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
423 Gallegos MT, Ritter G. Using combinatorial optimization in model-based trimmed clustering with cardinality constraints. Computational Statistics & Data Analysis 2010;54:637-54. [DOI: 10.1016/j.csda.2009.08.023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
424 Huang Z, Brooke B, Li J. Performance of predictive models in marine benthic environments based on predictions of sponge distribution on the Australian continental shelf. Ecological Informatics 2011;6:205-16. [DOI: 10.1016/j.ecoinf.2011.01.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
425 Rifai S, Bengio Y, Courville A, Vincent P, Mirza M. Disentangling Factors of Variation for Facial Expression Recognition. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Computer Vision – ECCV 2012. Berlin: Springer Berlin Heidelberg; 2012. pp. 808-22. [DOI: 10.1007/978-3-642-33783-3_58] [Cited by in Crossref: 63] [Cited by in F6Publishing: 6] [Article Influence: 6.3] [Reference Citation Analysis]
426 Kim S, Park YJ, Toh K, Lee S. SVM-based feature extraction for face recognition. Pattern Recognition 2010;43:2871-81. [DOI: 10.1016/j.patcog.2010.03.008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 8] [Article Influence: 3.6] [Reference Citation Analysis]
427 Jurasek P, Varga S, Phillips G. Classification of natural gums. VII. Relationships between the series Vulgares (Acacia senegal) and Gummiferae (Acacia seyal). Food Hydrocolloids 1995;9:17-34. [DOI: 10.1016/s0268-005x(09)80190-2] [Cited by in Crossref: 10] [Article Influence: 0.4] [Reference Citation Analysis]
428 Groenen PJ, Jajuga K. Fuzzy clustering with squared Minkowski distances. Fuzzy Sets and Systems 2001;120:227-37. [DOI: 10.1016/s0165-0114(98)00403-5] [Cited by in Crossref: 46] [Article Influence: 2.2] [Reference Citation Analysis]
429 Stec M, Grzebyk M. Socio-economic Development and the Level of Tourism Function Development in European Union Countries – a Comparative Approach. European Review 2022;30:172-93. [DOI: 10.1017/s106279872000099x] [Reference Citation Analysis]
430 Cogan J, Kagan M, Strauss E, Schwarztman A. Jet-images: computer vision inspired techniques for jet tagging. J High Energ Phys 2015;2015. [DOI: 10.1007/jhep02(2015)118] [Cited by in Crossref: 106] [Article Influence: 15.1] [Reference Citation Analysis]
431 Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away: PLS-DA: taking the magic away. J Chemometrics 2014;28:213-25. [DOI: 10.1002/cem.2609] [Cited by in Crossref: 381] [Cited by in F6Publishing: 175] [Article Influence: 47.6] [Reference Citation Analysis]
432 Khan S, Naseem I, Malik MA, Togneri R, Bennamoun M. A Fractional Gradient Descent-Based RBF Neural Network. Circuits Syst Signal Process 2018;37:5311-32. [DOI: 10.1007/s00034-018-0835-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 2] [Article Influence: 6.3] [Reference Citation Analysis]
433 Edalat M, Dastres E, Jahangiri E, Moayedi G, Zamani A, Pourghasemi HR, Tiefenbacher JP. Spatial mapping Zataria multiflora using different machine-learning algorithms. CATENA 2022;212:106007. [DOI: 10.1016/j.catena.2021.106007] [Reference Citation Analysis]
434 Hou S, Riley C. Is uncorrelated linear discriminant analysis really a new method? Chemometrics and Intelligent Laboratory Systems 2015;142:49-53. [DOI: 10.1016/j.chemolab.2015.01.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
435 Clementz BA, Iacono WG, Grove WM. The construct validity of root-mean-square error for quantifying smooth-pursuit eye tracking abnormalities in schizophrenia. Biol Psychiatry 1996;39:448-50. [PMID: 8679791 DOI: 10.1016/0006-3223(95)00549-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
436 Mahmood MA, Lawrence EC. A PREFORMANCE ANALYSIS OF PARAMETRIC AND NONPARAMETRIC DISCRIMINANT APPROACHES TO BUSINESS DECISION MAKING. Decision Sciences 1987;18:308-26. [DOI: 10.1111/j.1540-5915.1987.tb01524.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
437 Oliveira MWDS, da Silva NR, Manzanera A, Bruno OM. Feature extraction on local jet space for texture classification. Physica A: Statistical Mechanics and its Applications 2015;439:160-70. [DOI: 10.1016/j.physa.2015.06.046] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.1] [Reference Citation Analysis]
438 Bigün J. Unsupervised feature reduction in image segmentation by local transforms. Pattern Recognition Letters 1993;14:573-83. [DOI: 10.1016/0167-8655(93)90108-p] [Cited by in Crossref: 16] [Article Influence: 0.6] [Reference Citation Analysis]
439 Ganeshanandam S, Krzanowski W. ON SELECTING VARIABLES AND ASSESSING THEIR PERFORMANCE IN LINEAR DISCRIMINANT ANALYSIS. Australian Journal of Statistics 1989;31:433-47. [DOI: 10.1111/j.1467-842x.1989.tb00988.x] [Cited by in Crossref: 20] [Article Influence: 1.4] [Reference Citation Analysis]
440 Zeng J, Alhajj R, Demetrick D. Adaptive multi-agent architecture for functional sequence motifs recognition. Bioinformatics 2009;25:3084-92. [PMID: 19808882 DOI: 10.1093/bioinformatics/btp567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
441 Ryan PW, Li B, Shanahan M, Leister KJ, Ryder AG. Prediction of Cell Culture Media Performance Using Fluorescence Spectroscopy. Anal Chem 2010;82:1311-7. [DOI: 10.1021/ac902337c] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 4.3] [Reference Citation Analysis]
442 Rezaali M, Karimi A, Moghadam Yekta N, Fouladi Fard R. Identification of temporal and spatial patterns of river water quality parameters using NLPCA and multivariate statistical techniques. Int J Environ Sci Technol 2020;17:2977-94. [DOI: 10.1007/s13762-019-02572-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
443 Biancolillo A, Foschi M, Di Micco M, Di Donato F, D'archivio A. ATR-FTIR-based rapid solution for the discrimination of lentils from different origins, with a special focus on PGI and Slow Food typical varieties. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107327] [Reference Citation Analysis]
444 Lin Y, Sun Y. Robot grasp planning based on demonstrated grasp strategies. The International Journal of Robotics Research 2015;34:26-42. [DOI: 10.1177/0278364914555544] [Cited by in Crossref: 48] [Article Influence: 6.0] [Reference Citation Analysis]
445 Brandl B, Falvard A, Guicheney C, Henrard P, Jousset J, Proriol J. Multivariate analysis methods to tag b-quark events at LEP/SLC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1993;324:307-16. [DOI: 10.1016/0168-9002(93)90993-r] [Cited by in Crossref: 8] [Article Influence: 0.3] [Reference Citation Analysis]
446 Lebedev MA, Nicolelis MA. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev 2017;97:767-837. [PMID: 28275048 DOI: 10.1152/physrev.00027.2016] [Cited by in Crossref: 194] [Cited by in F6Publishing: 112] [Article Influence: 38.8] [Reference Citation Analysis]
447 Lopes MB, Calado CR. Assessing plasmid bioprocess reproducibility and C-source uptake stage through multivariate analysis of offline and online data: Plasmid bioprocess reproducibility. J Chem Technol Biotechnol 2018;93:3056-66. [DOI: 10.1002/jctb.5666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
448 Aubert B, Barate R, Boutigny D, Gaillard J, Hicheur A, Karyotakis Y, Lees JP, Robbe P, Tisserand V, Zghiche A, Palano A, Pompili A, Chen JC, Qi ND, Rong G, Wang P, Zhu YS, Eigen G, Ofte I, Stugu B, Abrams GS, Borgland AW, Breon AB, Brown DN, Button-shafer J, Cahn RN, Charles E, Day CT, Gill MS, Gritsan AV, Groysman Y, Jacobsen RG, Kadel RW, Kadyk J, Kerth LT, Kolomensky YG, Kral JF, Kukartsev G, Leclerc C, Levi ME, Lynch G, Mir LM, Oddone PJ, Orimoto TJ, Pripstein M, Roe NA, Romosan A, Ronan MT, Shelkov VG, Telnov AV, Wenzel WA, Ford K, Harrison TJ, Hawkes CM, Knowles DJ, Morgan SE, Penny RC, Watson AT, Watson NK, Deppermann T, Goetzen K, Koch H, Lewandowski B, Pelizaeus M, Peters K, Schmuecker H, Steinke M, Barlow NR, Boyd JT, Chevalier N, Cottingham WN, Kelly MP, Latham TE, Mackay C, Wilson FF, Abe K, Cuhadar-donszelmann T, Hearty C, Mattison TS, Mckenna JA, Thiessen D, Kyberd P, Mckemey AK, Blinov VE, Bukin AD, Golubev VB, Ivanchenko VN, Kravchenko EA, Onuchin AP, Serednyakov SI, Skovpen YI, Solodov EP, Yushkov AN, Best D, Chao M, Kirkby D, Lankford AJ, Mandelkern M, Mcmahon S, Mommsen RK, Roethel W, Stoker DP, Buchanan C, del Re D, Hadavand HK, Hill EJ, Macfarlane DB, Paar HP, Rahatlou S, Schwanke U, Sharma V, Berryhill JW, Campagnari C, Dahmes B, Kuznetsova N, Levy SL, Long O, Lu A, Mazur MA, Richman JD, Verkerke W, Beck TW, Beringer J, Eisner AM, Heusch CA, Lockman WS, Schalk T, Schmitz RE, Schumm BA, Seiden A, Turri M, Walkowiak W, Williams DC, Wilson MG, Albert J, Chen E, Dubois-felsmann GP, Dvoretskii A, Hitlin DG, Narsky I, Porter FC, Ryd A, Samuel A, Yang S, Jayatilleke S, Mancinelli G, Meadows BT, Sokoloff MD, Abe T, Barillari T, Blanc F, Bloom P, Chen S, Clark PJ, Ford WT, Nauenberg U, Olivas A, Rankin P, Roy J, Smith JG, van Hoek WC, Zhang L, Harton JL, Hu T, Soffer A, Toki WH, Wilson RJ, Zhang J, Altenburg D, Brandt T, Brose J, Colberg T, Dickopp M, Dubitzky RS, Hauke A, Lacker HM, Maly E, Müller-pfefferkorn R, Nogowski R, Otto S, Schubert KR, Schwierz R, Spaan B, Wilden L, Bernard D, Bonneaud GR, Brochard F, Cohen-tanugi J, Thiebaux C, Vasileiadis G, Verderi M, Khan A, Lavin D, Muheim F, Playfer S, Swain JE, Tinslay J, Andreotti M, Azzolini V, Bettoni D, Bozzi C, Calabrese R, Cibinetto G, Luppi E, Negrini M, Piemontese L, Sarti A, Treadwell E, Anulli F, Baldini-ferroli R, Calcaterra A, de Sangro R, Falciai D, Finocchiaro G, Patteri P, Peruzzi IM, Piccolo M, Zallo A, Buzzo A, Contri R, Crosetti G, Lo Vetere M, Macri M, Monge MR, Passaggio S, Pastore FC, Patrignani C, Robutti E, Santroni A, Tosi S, Bailey S, Morii M, Bhimji W, Bowerman DA, Dauncey PD, Egede U, Eschrich I, Gaillard JR, Morton GW, Nash JA, Sanders P, Taylor GP, Grenier GJ, Lee S, Mallik U, Cochran J, Crawley HB, Lamsa J, Meyer WT, Prell S, Rosenberg EI, Yi J, Davier M, Grosdidier G, Höcker A, Laplace S, Le Diberder F, Lepeltier V, Lutz AM, Petersen TC, Plaszczynski S, Schune MH, Tantot L, Wormser G, Brigljević V, Cheng CH, Lange DJ, Wright DM, Bevan AJ, Coleman JP, Fry JR, Gabathuler E, Gamet R, Kay M, Parry RJ, Payne DJ, Sloane RJ, Touramanis C, Back JJ, Harrison PF, Shorthouse HW, Strother P, Vidal PB, Brown CL, Cowan G, Flack RL, Flaecher HU, George S, Green MG, Kurup A, Marker CE, Mcmahon TR, Ricciardi S, Salvatore F, Vaitsas G, Winter MA, Brown D, Davis CL, Allison J, Barlow RJ, Forti AC, Hart PA, Jackson F, Lafferty GD, Lyon AJ, Weatherall JH, Williams JC, Farbin A, Jawahery A, Kovalskyi D, Lae CK, Lillard V, Roberts DA, Blaylock G, Dallapiccola C, Flood KT, Hertzbach SS, Kofler R, Koptchev VB, Moore TB, Saremi S, Staengle H, Willocq S, Cowan R, Sciolla G, Taylor F, Yamamoto RK, Mangeol DJJ, Milek M, Patel PM, Lazzaro A, Palombo F, Bauer JM, Cremaldi L, Eschenburg V, Godang R, Kroeger R, Reidy J, Sanders DA, Summers DJ, Zhao HW, Hast C, Taras P, Nicholson H, Cartaro C, Cavallo N, De Nardo G, Fabozzi F, Gatto C, Lista L, Paolucci P, Piccolo D, Sciacca C, Baak MA, Raven G, Losecco JM, Gabriel TA, Brau B, Pulliam T, Wong QK, Brau J, Frey R, Potter CT, Sinev NB, Strom D, Torrence E, Colecchia F, Dorigo A, Galeazzi F, Margoni M, Morandin M, Posocco M, Rotondo M, Simonetto F, Stroili R, Tiozzo G, Voci C, Benayoun M, Briand H, Chauveau J, David P, de la Vaissière C, Del Buono L, Hamon O, John MJJ, Leruste P, Ocariz J, Pivk M, Roos L, Stark J, T’jampens S, Therin G, Manfredi PF, Re V, Gladney L, Guo QH, Panetta J, Angelini C, Batignani G, Bettarini S, Bondioli M, Bucci F, Calderini G, Carpinelli M, Forti F, Giorgi MA, Lusiani A, Marchiori G, Martinez-vidal F, Morganti M, Neri N, Paoloni E, Rama M, Rizzo G, Sandrelli F, Walsh J, Haire M, Judd D, Paick K, Wagoner DE, Danielson N, Elmer P, Lu C, Miftakov V, Olsen J, Smith AJS, Tanaka HA, Varnes EW, Bellini F, Cavoto G, Faccini R, Ferrarotto F, Ferroni F, Gaspero M, Mazzoni MA, Morganti S, Pierini M, Piredda G, Safai Tehrani F, Voena C, Christ S, Wagner G, Waldi R, Adye T, De Groot N, Franek B, Geddes NI, Gopal GP, Olaiya EO, Xella SM, Aleksan R, Emery S, Gaidot A, Ganzhur SF, Giraud P, Hamel de Monchenault G, Kozanecki W, Langer M, London GW, Mayer B, Schott G, Vasseur G, Yeche C, Zito M, Purohit MV, Weidemann AW, Yumiceva FX, Aston D, Bartoldus R, Berger N, Boyarski AM, Buchmueller OL, Convery MR, Coupal DP, Dong D, Dorfan J, Dujmic D, Dunwoodie W, Field RC, Glanzman T, Gowdy SJ, Grauges-pous E, Hadig T, Halyo V, Hryn’ova T, Innes WR, Jessop CP, Kelsey MH, Kim P, Kocian ML, Langenegger U, Leith DWGS, Luitz S, Luth V, Lynch HL, Marsiske H, Menke S, Messner R, Muller DR, O’grady CP, Ozcan VE, Perazzo A, Perl M, Petrak S, Ratcliff BN, Robertson SH, Roodman A, Salnikov AA, Schindler RH, Schwiening J, Simi G, Snyder A, Soha A, Stelzer J, Su D, Sullivan MK, Va’vra J, Wagner SR, Weaver M, Weinstein AJR, Wisniewski WJ, Wright DH, Young CC, Burchat PR, Edwards AJ, Meyer TI, Roat C, Ahmed S, Alam MS, Ernst JA, Saleem M, Wappler FR, Bugg W, Krishnamurthy M, Spanier SM, Eckmann R, Kim H, Ritchie JL, Schwitters RF, Izen JM, Kitayama I, Lou XC, Ye S, Bianchi F, Bona M, Gallo F, Gamba D, Borean C, Bosisio L, Della Ricca G, Dittongo S, Grancagnolo S, Lanceri L, Poropat P, Vitale L, Vuagnin G, Panvini RS, Banerjee S, Brown CM, Fortin D, Jackson PD, Kowalewski R, Roney JM, Band HR, Dasu S, Datta M, Eichenbaum AM, Hu H, Johnson JR, Kutter PE, Li H, Liu R, Di Lodovico F, Mihalyi A, Mohapatra AK, Pan Y, Prepost R, Sekula SJ, von Wimmersperg-toeller JH, Wu J, Wu SL, Yu Z, Neal H. Measurements of branching fractions in BφK and Bφπ and search for direct CP violation in B±φK±. Phys Rev D 2004;69. [DOI: 10.1103/physrevd.69.011102] [Cited by in Crossref: 17] [Article Influence: 0.9] [Reference Citation Analysis]
449 Chaturvedi A, Bapat SR, Joshi N. A k -stage procedure for estimating the mean vector of a multivariate normal population. Sequential Analysis 2019;38:369-84. [DOI: 10.1080/07474946.2019.1648926] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
450 Abe S, Lan M, Thawonmas R. Tuning of a fuzzy classifier derived from data. International Journal of Approximate Reasoning 1996;14:1-24. [DOI: 10.1016/0888-613x(95)00076-s] [Cited by in Crossref: 24] [Article Influence: 0.9] [Reference Citation Analysis]
451 Crawley HB, Firestone A, Grahl J, Lamsa JW, Lane DW, Kay RM, Meyer WT, Rosenberg EI, Gorn L, Deghorain A, De Brabandere S, De Clercq C, Bertrand D, Herquet P, Hoorelbeke S, Huet K, Lefebure V, Tomaradze A, Vander Velde C, Van Lysebetten A, Verbeure F, Wickens JH, Contri R, Anassontzis EG, Voulgaris G, Kourkoumelis C, Resvanis LK, Borgland AW, Stugu B, Frodesen AG, Eigen G, Benvenuti AC, Valenti G, Paiano S, Perrotta A, Rovelli T, Begalli M, Pol ME, Mahon JR, Shellard RC, Chochula P, Kubinec P, Rosinsky P, Janik R, Beilliere P, Dolbeau J, Tristram G, Brunet J, Belokopytov Y, Davenport M, Demaria N, De Angelis A, Camporesi T, Carena F, Cattai A, Chabaud V, Charpentier P, Collins P, Dijkstra H, Augustinus A, Baillon P, Andreazza A, Elsing M, Fischer P-, Foeth H, Gaspar C, Gavillet P, Hahn F, Haider S, Herr H, Jacobsson R, Jalocha P, Joram C, Klein H, Koratzinos M, Kreuter C, Liko D, Marin J-, Mariotti C, Nulty RM, Moenig K, Neufeld N, Pape L, Rebecchi P, Reid D, Treille D, Tsirou A, Ullaland O, Barker G, Wilkinson GR, Wolf G, Amaldi U, Bloch D, Dracos M, Cerruti C, Engel J, Gele D, Gerber J, Juillot P, Nikolaenko V, Orazi G, Strub R, Todorov T, Todorova S, Winter M, Bozovic I, Adzic P, Fanourakis G, Fassouliotis D, Karafasoulis K, Kokkinias P, Krstic J, Leisos A, Loukas D, Markou A, Mastroyiannopoulos N, Papageorgiou K, Sampsonidis D, Tzamarias S, Zevgolatakos E, Lokajicek M, Ridky J, Vrba V, Caso C, Crosetti G, Fontanelli F, Gracco V, Monge MR, Morettini P, Parodi F, Petrolini A, Piana G, Sannino M, Squarcia S, Ledroit F, Lopez-fernandez R, Mulet-marquis C, Naraghi F, Nicolaidou R, Sajot G, Arnoud Y, Berat C, Czellar S, Kiiskinen A, Kurvinen K, Lauhakangas R, Nomokonov V, Battaglia M, Orava R, Osterberg K, Saarikko H, Bilenky MS, Chelkov GA, Boyko I, Khomenko BA, Khovanski NN, Kouznetsov O, Krumstein Z, Malychev V, Zimin NI, Nikolenko M, Olshevski AG, Pozdniakov V, Pukhaeva N, Sadovsky A, Sedykh Y, Sisakian AN, Tkatchev LG, Tyapkin IA, Vertogradov LS, Vodopyanov AS, Alekseev GD, Zimin NI, Bardin DY, De Boer W, Ehret R, Feindt M, Heising S, Keranen R, Knoblauch D, Schneider H, Schwickerath U, Sopczak A, Weiser C, Ape W, Kucewicz W, Lesiak T, Muryn B, Palka H, Polok G, Witek M, Zalewska A, Bruckman P, Bizouard M, Borisov G, Bouquet B, Bourdarios C, Ferrer-ribas E, Fulda-quenzer F, Gamblin S, Jean-marie B, Lepeltier V, Martinez-rivero C, Richard F, Roudeau P, Cosme G, Stocchi A, Bambade P, Ratoff PN, Seager P, Abreu P, Andringa S, Barao F, Espirito Santo M, Goncalves P, Maio A, Onofre A, Paiva R, Peralta L, Pimenta M, Spassov T, Tome B, Booth PSL, Bowcock TJV, Allport PP, Carroll L, Galloni A, Green C, Houlden M, Jackson JN, King B, Marti i Garcia S, Cubbin MM, Pherson GM, Normand A, Parzefall U, Sheridan A, Cowell J-, Da Silva W, Baubillier M, Fayot J, Fichet S, Kapusta F, Moreau X, Pain R, Schwemling P, Falk E, Hedberg V, Jarlskog C, Jarlskog G, Jonsson P, Loerstad B, Mjoernmark U, Muresan R, Nygren A, Smirnova O, Transtromer G, Almehed S, Antilogus P, Barbier R, Berggren M, Bertini D, Augustin J-, Durand J-, Duperrin A, Chaussard L, Chorowicz V, Ghodbane N, Katsanevas S, Mirabito L, Smadja G, Delpierre P, Tilquin A, Ferrari P, Matteuzzi C, Meroni C, Negri P, Paganoni M, Piotto E, Pullia A, Ragazzi S, Redaelli NG, Tabarelli T, Terranova F, Tonazzo A, Troncon C, Vegni G, Caccia M, Calvi M, Bonesini M, Bonivento W, Moeller R, Nielsen BS, Damgaard G, Mazik J, Leitner R, Chudoba J, Boudinov E, Blom HM, Holthuizen D, Kjaer NJ, Kluit P, Mulders M, Timmermans J, Toet DZ, Van Apeldoorn GW, Van Dam P, Van Eldik J, Van Vulpen I, Fokitis E, Gazis EN, Katsoufis EC, Papadopoulou TD, Dris M, Rahmani H, Myklebust T, Read AL, Rohne O, Skaali TB, Stapnes S, Bugge L, Buran T, Cuevas Maestro J, Harris FJ, Hessing TL, Holt PJ, Libby J, Loken JG, Lyons L, Morton G, Myatt G, Palacios J, Parkes C, Radojicic D, Renton PB, Segar AM, Stevenson K, Thomas J, Vassilopoulos N, Harris FJ, Hessing TL, Holt PJ, Libby J, Loken JG, Lyons L, Morton G, Myatt G, Palacios J, Parkes C, Radojicic D, Renton PB, Segar AM, Stevenson K, Thomas J, Vassilopoulos N, Checchia P, Zumerle G, De Min A, Gasparini U, Lippi I, Margoni M, Mazzucato F, Mazzucato M, Pegoraro M, Ronchese P, Simonetto F, Ventura L, Verlato M, Franek B, Gopal G, Guy J, Murray WJ, Phillips HT, Sekulin R, Smith GR, Venus W, Adye T, Crennell D, Di Ciaccio L, Di Diodato A, Matthiae G, Privitera P, Verzi V, Canale V, Baroncelli A, Branchini P, Graziani E, Passeri A, Spiriti E, Stanescu C, Tortora L, Cossutti F, Boonekamp M, Besancon M, Gris P, Jarry P, Laugier J, Lethuillier M, Lutz P, Ouraou A, Pierre F, Ruhlmann-kleider V, Sacquin Y, Silvestre R, Simard L, Turluer M, Vilanova D, Camacho Rozas AJ, Garcia J, Gonzalez Caballero I, Lopez JM, Marco J, Marco R, Matorras F, Ruiz A, Bosio C, Ajinenko I, Chliapnikov P, Gouz Y, Konopliannikov A, Kostioukhine V, Lapin V, Miagkov A, Obraztsov V, Smirnov N, Tchikilev O, Uvarov V, Vlasov E, Yushchenko O, Erzen B, Golob B, Kriznic E, Podobnik T, Stanic S, Zavrtanik D, Ekspong G, Holmgren S, Hultqvist K, Johansson EK, Leinonen L, Lipniacka A, Malmgren TGM, Moa T, Walck C, Zucchelli GC, Åsman B, Andersson P, Bianchi F, Bigi M, Chierici R, Gamba D, Migliore E, Rinaudo G, Romero A, Barbiellini G, Delia Ricca G, De Lotto B, Petridou C, Poropat P, Scuri F, Vallazza E, Vitale L, De Paula L, Gandelman M, Gaspar M, Lopes JH, Marechal B, Amato S, Botner O, Brenner RA, Ekelof T, Ellert M, Günther M, Hallgren A, Tegenfeldt F, Cabrera S, Castillo Gimenez MV, Ferrer A, Fuster J, Garcia C, Gil I, Hernandez JJ, Higon E, Martinez-vidal F, Navas S, Salt J, Colomer M, Cortina E, Alemany R, Adam W, Fruhwirth R, Hrubec J, Krammer M, Leder G, Macnaughton J, Mandl F, Neumeister N, Pernicka M, Rakoczy D, Regler M, Stampfer D, Strauss J, Doroba K, Gokieli R, Gorski M, Grzelak K, Nawrocki K, Sosnowski R, Szczekowski M, Szeptycka M, Zalewski P, Becks K, Brenke T, Burgsmueller T, Buschmann P, Drees J, Flagmeyer U, Glege F, Hahn S, Hamacher K, Heuser J-, Klapp O, Langefeld P, Lenzen G, Malek A, Mueller U, Muenich K, Passon O, Reinhardt R, Schyns MAE, Siebel M, Sponholz P, Ueberschaer B, Wahlen H, Wicke D; DELPHI Collaboration. Search for scalar fermions and long-lived scalar leptons at centre-of-mass energies of 130 GeV to 172 GeV. Eur Phys J C 1999;6:385-401. [DOI: 10.1007/s100529801043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
452 Hadi-vencheh A. A new nonlinear model for multiple criteria supplier-selection problem. International Journal of Computer Integrated Manufacturing 2011;24:32-9. [DOI: 10.1080/0951192x.2010.527372] [Cited by in Crossref: 13] [Article Influence: 1.2] [Reference Citation Analysis]
453 Messay T, Hardie RC, Rogers SK. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 2010;14:390-406. [PMID: 20346728 DOI: 10.1016/j.media.2010.02.004] [Cited by in Crossref: 248] [Cited by in F6Publishing: 128] [Article Influence: 20.7] [Reference Citation Analysis]
454 Amamcharla JK, Panigrahi S, Logue CM, Marchello M, Sherwood JS. Fourier transform infrared spectroscopy (FTIR) as a tool for discriminating Salmonella typhimurium contaminated beef. Sens & Instrumen Food Qual 2010;4:1-12. [DOI: 10.1007/s11694-009-9090-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
455 Balachander T, Kothari R, Cualing H. An empirical comparison of dimensionality reduction techniques for pattern classification. In: Gerstner W, Germond A, Hasler M, Nicoud J, editors. Artificial Neural Networks — ICANN'97. Berlin: Springer Berlin Heidelberg; 1997. pp. 589-94. [DOI: 10.1007/bfb0020218] [Cited by in Crossref: 6] [Article Influence: 0.4] [Reference Citation Analysis]
456 Ripley BD. Neural networks and flexible regression and discrimination. Journal of Applied Statistics 2011;21:39-57. [DOI: 10.1080/757582967] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
457 Nansen C, Stewart AN, Gutierrez TAM, Wintermantel WM, Mcroberts N, Gilbertson RL. Proximal remote sensing to differentiate nonviruliferous and viruliferous insect vectors – proof of concept and importance of input data robustness. Plant Pathol 2019;68:746-54. [DOI: 10.1111/ppa.12984] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
458 Hjelmås E, Low BK. Face Detection: A Survey. Computer Vision and Image Understanding 2001;83:236-74. [DOI: 10.1006/cviu.2001.0921] [Cited by in Crossref: 729] [Cited by in F6Publishing: 93] [Article Influence: 34.7] [Reference Citation Analysis]
459 Yang M. On a class of fuzzy classification maximum likelihood procedures. Fuzzy Sets and Systems 1993;57:365-75. [DOI: 10.1016/0165-0114(93)90030-l] [Cited by in Crossref: 81] [Article Influence: 2.8] [Reference Citation Analysis]
460 Safo SE, Min EJ, Haine L. Sparse linear discriminant analysis for multiview structured data. Biometrics 2021. [PMID: 33739448 DOI: 10.1111/biom.13458] [Reference Citation Analysis]
461 Iwasaki M, Itoh K, Aihara H, Abe K, Abe K, Adachi I, Asano Y, Aushev T, Bahinipati S, Bakich AM, Banerjee S, Bedny I, Bitenc U, Bizjak I, Blyth S, Bondar A, Bozek A, Bračko M, Brodzicka J, Browder TE, Chang M, Chang P, Chao Y, Chen A, Chen K, Chen WT, Cheon BG, Chistov R, Choi S, Choi Y, Chuvikov A, Dalseno J, Danilov M, Dash M, Drutskoy A, Eidelman S, Enari Y, Fratina S, Gabyshev N, Gershon T, Gokhroo G, Golob B, Gorišek A, Haba J, Hara T, Hastings NC, Hayasaka K, Hayashii H, Hazumi M, Hokuue T, Hoshi Y, Hou S, Hou W, Hsiung YB, Iijima T, Imoto A, Inami K, Ishikawa A, Ishino H, Itoh R, Kang JH, Kang JS, Katayama N, Kawai H, Kawasaki T, Khan HR, Kichimi H, Kim HJ, Kim SK, Kim SM, Kinoshita K, Križan P, Krokovny P, Kulasiri R, Kumar S, Kuo CC, Kuzmin A, Kwon Y, Lange JS, Leder G, Lee SE, Lesiak T, Li J, Lin S, Liventsev D, Macnaughton J, Majumder G, Mandl F, Matsumoto T, Matyja A, Mikami Y, Mitaroff W, Miyabayashi K, Miyake H, Miyata H, Mizuk R, Mohapatra D, Moloney GR, Nagamine T, Nagasaka Y, Nakamura I, Nakano E, Nakao M, Nakazawa H, Natkaniec Z, Nishida S, Nitoh O, Ogawa S, Ohshima T, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Palka H, Park CW, Park H, Parslow N, Peak LS, Pestotnik R, Piilonen LE, Root N, Rozanska M, Sagawa H, Sakai Y, Sato N, Schietinger T, Schneider O, Schönmeier P, Schümann J, Schwanda C, Schwartz AJ, Sevior ME, Shibuya H, Shwartz B, Sidorov V, Singh JB, Somov A, Soni N, Stamen R, Stanič S, Starič M, Sumisawa K, Sumiyoshi T, Suzuki S, Suzuki SY, Tajima O, Takasaki F, Tamai K, Tamura N, Tanaka M, Taylor GN, Teramoto Y, Tian XC, Tsukamoto T, Uehara S, Uglov T, Ueno K, Uno S, Urquijo P, Ushiroda Y, Varner G, Varvell KE, Villa S, Wang CC, Wang CH, Wang M, Watanabe Y, Xie QL, Yabsley BD, Yamaguchi A, Yamashita Y, Yamauchi M, Yang H, Ying J, Zhang LM, Zhang ZP, Zhilich V, Žontar D, Zürcher D. Improved measurement of the electroweak penguin process BXs+. Phys Rev D 2005;72. [DOI: 10.1103/physrevd.72.092005] [Cited by in Crossref: 107] [Article Influence: 6.3] [Reference Citation Analysis]
462 Lewis J, Rice RM. Estimating erosion risk on forest lands using improved methods of discriminant analysis. Water Resour Res 1990;26:1721-33. [DOI: 10.1029/wr026i008p01721] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
463 Selim SZ, Kamel M. On the mathematical and numerical properties of the fuzzy c-means algorithm. Fuzzy Sets and Systems 1992;49:181-91. [DOI: 10.1016/0165-0114(92)90323-v] [Cited by in Crossref: 15] [Article Influence: 0.5] [Reference Citation Analysis]
464 Mann N, Brown MD, Enger I. Statistical diagnosis of lumbar spine disorders using computerized patient pain drawings. Computers in Biology and Medicine 1991;21:383-97. [DOI: 10.1016/0010-4825(91)90040-g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
465 Sarigu M, Grillo O, Lo Bianco M, Ucchesu M, d'Hallewin G, Loi MC, Venora G, Bacchetta G. Phenotypic identification of plum varieties ( Prunus domestica L.) by endocarps morpho-colorimetric and textural descriptors. Computers and Electronics in Agriculture 2017;136:25-30. [DOI: 10.1016/j.compag.2017.02.009] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
466 Castro J, Castro-schez J, Zurita J. Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert systems. Fuzzy Sets and Systems 1999;101:331-42. [DOI: 10.1016/s0165-0114(97)00105-x] [Cited by in Crossref: 61] [Article Influence: 2.7] [Reference Citation Analysis]
467 Alshamiri AK, Singh A, Surampudi BR. Two swarm intelligence approaches for tuning extreme learning machine. Int J Mach Learn & Cyber 2018;9:1271-83. [DOI: 10.1007/s13042-017-0642-3] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
468 Guartán JA, Emery X. Regionalized Classification of Geochemical Data with Filtering of Measurement Noises for Predictive Lithological Mapping. Nat Resour Res 2021;30:1033-52. [DOI: 10.1007/s11053-020-09779-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
469 Murtagh F, Curnow RN, Felsenstein J, Sneath PHA, Wright MH, Bowman AW, Altham PME, Jeffers JNR, Crowder M, Bentler PM, Raudys Š. Book reviews. Journal of Classification 1991;8:115-48. [DOI: 10.1007/bf02616251] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
470 Plaehn D. Revisiting French tomato data: Cluster analysis with incomplete data. Food Quality and Preference 2019;76:146-59. [DOI: 10.1016/j.foodqual.2019.03.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
471 Pettit B, King G, Evans S. The potential of multivariate discriminant analysis in the antenatal detection of neural tube defects. Clinica Chimica Acta 1980;102:191-8. [DOI: 10.1016/0009-8981(80)90032-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
472 Hanssen EN, Liland KH, Gill P, Snipen L. Optimizing body fluid recognition from microbial taxonomic profiles. Forensic Sci Int Genet 2018;37:13-20. [PMID: 30071492 DOI: 10.1016/j.fsigen.2018.07.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
473 Hodge VJ, O'Keefe S, Austin J. Hadoop neural network for parallel and distributed feature selection. Neural Netw 2016;78:24-35. [PMID: 26403824 DOI: 10.1016/j.neunet.2015.08.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 4] [Article Influence: 4.1] [Reference Citation Analysis]
474 Hand DJ. Supervised classification and tunnel vision. Appl Stochastic Models Bus Ind 2005;21:97-109. [DOI: 10.1002/asmb.540] [Cited by in Crossref: 5] [Article Influence: 0.3] [Reference Citation Analysis]
475 Gu X, Angelov P, Kangin D, Principe J. Self-Organised direction aware data partitioning algorithm. Information Sciences 2018;423:80-95. [DOI: 10.1016/j.ins.2017.09.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
476 Zhao T, Zhang L, Jiang L, Zhao S, Chai L, Jin R. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol Process 2011;25:1704-16. [DOI: 10.1002/hyp.7930] [Cited by in Crossref: 78] [Cited by in F6Publishing: 8] [Article Influence: 7.1] [Reference Citation Analysis]
477 Chitwood DH, Topp CN. Revealing plant cryptotypes: defining meaningful phenotypes among infinite traits. Curr Opin Plant Biol 2015;24:54-60. [PMID: 25658908 DOI: 10.1016/j.pbi.2015.01.009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
478 Zeng Y, Yang Y, Zhao L. Nonparametric classification based on local mean and class statistics. Expert Systems with Applications 2009;36:8443-8. [DOI: 10.1016/j.eswa.2008.10.041] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
479 Liu JJ, Macgregor JF. Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops. Machine Vision and Applications 2006;16:374-83. [DOI: 10.1007/s00138-005-0009-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
480 Morimoto T, Katoh K, Yamaura Y, Watanabe S. Can surrounding land cover influence the avifauna in urban/suburban woodlands in Japan? Landscape and Urban Planning 2006;75:143-54. [DOI: 10.1016/j.landurbplan.2004.12.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
481 Neal M. Meta-stable Memory in an Artificial Immune Network. In: Timmis J, Bentley PJ, Hart E, editors. Artificial Immune Systems. Berlin: Springer Berlin Heidelberg; 2003. pp. 168-80. [DOI: 10.1007/978-3-540-45192-1_17] [Cited by in Crossref: 34] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
482 Mclachlan GJ. Discriminant analysis: Discriminant analysis. WIREs Comp Stat 2012;4:421-31. [DOI: 10.1002/wics.1219] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
483 Boylu F, Aytug H, Koehler GJ. Systems for strategic learning. ISeB 2008;6:205-20. [DOI: 10.1007/s10257-007-0065-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
484 Azen S, Afifi A. Two models for assessing prognosis on the basis of successive observations. Mathematical Biosciences 1972;14:169-76. [DOI: 10.1016/0025-5564(72)90016-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
485 Finke A, Lenhardt A, Ritter H. The MindGame: a P300-based brain-computer interface game. Neural Netw 2009;22:1329-33. [PMID: 19635654 DOI: 10.1016/j.neunet.2009.07.003] [Cited by in Crossref: 108] [Cited by in F6Publishing: 47] [Article Influence: 8.3] [Reference Citation Analysis]
486 Nascimento MC, Toledo FM, de Carvalho AC. Investigation of a new GRASP-based clustering algorithm applied to biological data. Computers & Operations Research 2010;37:1381-8. [DOI: 10.1016/j.cor.2009.02.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
487 Festa P. A biased random-key genetic algorithm for data clustering. Math Biosci 2013;245:76-85. [PMID: 23896381 DOI: 10.1016/j.mbs.2013.07.011] [Cited by in Crossref: 11] [Article Influence: 1.2] [Reference Citation Analysis]
488 Bateman JB, Parks MM, Wheeler N. Discriminant Analysis of Congenital Esotropia Surgery. Ophthalmology 1983;90:1146-53. [DOI: 10.1016/s0161-6420(83)34414-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
489 Ames BPW, Hong M. Alternating direction method of multipliers for penalized zero-variance discriminant analysis. Comput Optim Appl 2016;64:725-54. [DOI: 10.1007/s10589-016-9828-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
490 Shi SD, Hsueh PR, Yang PC, Chou CC. Use of DosR Dormancy Antigens from Mycobacterium tuberculosis for Serodiagnosis of Active and Latent Tuberculosis. ACS Infect Dis 2020;6:272-80. [PMID: 31815418 DOI: 10.1021/acsinfecdis.9b00329] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
491 Itoh H, Imiya A, Sakai T. Dimension Reduction and Construction of Feature Space for Image Pattern Recognition. J Math Imaging Vis 2016;56:1-31. [DOI: 10.1007/s10851-015-0629-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
492 Yanev N, Balev S. A combinatorial approach to the classification problem. European Journal of Operational Research 1999;115:339-50. [DOI: 10.1016/s0377-2217(98)00229-x] [Cited by in Crossref: 22] [Article Influence: 1.0] [Reference Citation Analysis]
493 Le THN, Savvides M. A novel Shape Constrained Feature-based Active Contour model for lips/mouth segmentation in the wild. Pattern Recognition 2016;54:23-33. [DOI: 10.1016/j.patcog.2015.11.009] [Cited by in Crossref: 24] [Article Influence: 4.0] [Reference Citation Analysis]
494 Zhang C, Nie F, Xiang S. A general kernelization framework for learning algorithms based on kernel PCA. Neurocomputing 2010;73:959-67. [DOI: 10.1016/j.neucom.2009.08.014] [Cited by in Crossref: 73] [Cited by in F6Publishing: 17] [Article Influence: 6.1] [Reference Citation Analysis]
495 Pastor S. Limits on the diffuse flux of ultra-high energy neutrinos using the Pierre Auger Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2012;662:S113-7. [DOI: 10.1016/j.nima.2010.11.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
496 Alam MS, Ochilov S. Spectral fringe-adjusted joint transform correlation. Appl Opt 2010;49:B18-25. [PMID: 20357838 DOI: 10.1364/AO.49.000B18] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
497 Aab A, Abreu P, Aglietta M, Ahn E, Al Samarai I, Albuquerque I, Allekotte I, Allison P, Almela A, Alvarez Castillo J, Alvarez-muñiz J, Alves Batista R, Ambrosio M, Aminaei A, Anchordoqui L, Andringa S, Aramo C, Aranda V, Arqueros F, Arsene N, Asorey H, Assis P, Aublin J, Ave M, Avenier M, Avila G, Awal N, Badescu A, Barber K, Bäuml J, Baus C, Beatty J, Becker K, Bellido J, Berat C, Bertaina M, Bertou X, Biermann P, Billoir P, Blaess S, Blanco A, Blanco M, Bleve C, Blümer H, Boháčová M, Boncioli D, Bonifazi C, Borodai N, Brack J, Brancus I, Bridgeman A, Brogueira P, Brown W, Buchholz P, Bueno A, Buitink S, Buscemi M, Caballero-mora K, Caccianiga B, Caccianiga L, Candusso M, Caramete L, Caruso R, Castellina A, Cataldi G, Cazon L, Cester R, Chavez A, Chiavassa A, Chinellato J, Chudoba J, Cilmo M, Clay R, Cocciolo G, Colalillo R, Coleman A, Collica L, Coluccia M, Conceição R, Contreras F, Cooper M, Cordier A, Coutu S, Covault C, Cronin J, Dallier R, Daniel B, Dasso S, Daumiller K, Dawson B, de Almeida R, de Jong S, De Mauro G, de Mello Neto J, De Mitri I, de Oliveira J, de Souza V, del Peral L, Deligny O, Dembinski H, Dhital N, Di Giulio C, Di Matteo A, Diaz J, Díaz Castro M, Diogo F, Dobrigkeit C, Docters W, D’olivo J, Dorofeev A, Dorosti Hasankiadeh Q, Dova M, Ebr J, Engel R, Erdmann M, Erfani M, Escobar C, Espadanal J, Etchegoyen A, Falcke H, Fang K, Farrar G, Fauth A, Fazzini N, Ferguson A, Fernandes M, Fick B, Figueira J, Filevich A, Filipčič A, Fox B, Fratu O, Freire M, Fuchs B, Fujii T, García B, Garcia-pinto D, Gate F, Gemmeke H, Gherghel-lascu A, Ghia P, Giaccari U, Giammarchi M, Giller M, Głas D, Glaser C, Glass H, Golup G, Gómez Berisso M, Gómez Vitale P, González N, Gookin B, Gordon J, Gorgi A, Gorham P, Gouffon P, Griffith N, Grillo A, Grubb T, Guardincerri Y, Guarino F, Guedes G, Hampel M, Hansen P, Harari D, Harrison T, Hartmann S, Harton J, Haungs A, Hebbeker T, Heck D, Heimann P, Herve A, Hill G, Hojvat C, Hollon N, Holt E, Homola P, Hörandel J, Horvath P, Hrabovský M, Huber D, Huege T, Insolia A, Isar P, Jandt I, Jansen S, Jarne C, Johnsen J, Josebachuili M, Kääpä A, Kambeitz O, Kampert K, Kasper P, Katkov I, Kégl B, Keilhauer B, Keivani A, Kemp E, Kieckhafer R, Klages H, Kleifges M, Kleinfeller J, Krause R, Krohm N, Krömer O, Kuempel D, Kunka N, Lahurd D, Latronico L, Lauer R, Lauscher M, Lautridou P, Le Coz S, Lebrun D, Lebrun P, Leigui de Oliveira M, Letessier-selvon A, Lhenry-yvon I, Link K, Lopes L, López R, López Casado A, Louedec K, Lu L, Lucero A, Malacari M, Maldera S, Mallamaci M, Maller J, Mandat D, Mantsch P, Mariazzi A, Marin V, Mariş I, Marsella G, Martello D, Martin L, Martinez H, Martínez Bravo O, Martraire D, Masías Meza J, Mathes H, Mathys S, Matthews J, Matthews J, Matthiae G, Maurel D, Maurizio D, Mayotte E, Mazur P, Medina C, Medina-tanco G, Meissner R, Mello V, Melo D, Menshikov A, Messina S, Meyhandan R, Micheletti M, Middendorf L, Minaya I, Miramonti L, Mitrica B, Molina-bueno L, Mollerach S, Montanet F, Morello C, Mostafá M, Moura C, Muller M, Müller G, Müller S, Mussa R, Navarra G, Navarro J, Navas S, Necesal P, Nellen L, Nelles A, Neuser J, Nguyen P, Niculescu-oglinzanu M, Niechciol M, Niemietz L, Niggemann T, Nitz D, Nosek D, Novotny V, Nožka L, Ochilo L, Oikonomou F, Olinto A, Pacheco N, Pakk Selmi-dei D, Palatka M, Pallotta J, Papenbreer P, Parente G, Parra A, Paul T, Pech M, Pȩkala J, Pelayo R, Pepe I, Perrone L, Petermann E, Peters C, Petrera S, Petrov Y, Phuntsok J, Piegaia R, Pierog T, Pieroni P, Pimenta M, Pirronello V, Platino M, Plum M, Porcelli A, Porowski C, Prado R, Privitera P, Prouza M, Purrello V, Quel E, Querchfeld S, Quinn S, Rautenberg J, Ravel O, Ravignani D, Revenu B, Ridky J, Riggi S, Risse M, Ristori P, Rizi V, Rodrigues de Carvalho W, Rodriguez Fernandez G, Rodriguez Rojo J, Rodríguez-frías M, Rogozin D, Rosado J, Roth M, Roulet E, Rovero A, Saffi S, Saftoiu A, Salamida F, Salazar H, Saleh A, Salesa Greus F, Salina G, Sánchez F, Sanchez-lucas P, Santos E, Santos E, Sarazin F, Sarkar B, Sarmento R, Sato R, Scarso C, Schauer M, Scherini V, Schieler H, Schiffer P, Schmidt D, Scholten O, Schoorlemmer H, Schovánek P, Schröder F, Schulz A, Schulz J, Schumacher J, Sciutto S, Segreto A, Settimo M, Shadkam A, Shellard R, Sidelnik I, Sigl G, Sima O, Śmiałkowski A, Šmída R, Snow G, Sommers P, Sorokin J, Squartini R, Srivastava Y, Stanca D, Stanič S, Stapleton J, Stasielak J, Stephan M, Stutz A, Suarez F, Suomijärvi T, Supanitsky A, Sutherland M, Swain J, Szadkowski Z, Taborda O, Tapia A, Tepe A, Theodoro V, Tiffenberg J, Timmermans C, Todero Peixoto C, Toma G, Tomankova L, Tomé B, Tonachini A, Torralba Elipe G, Torres Machado D, Travnicek P, Ulrich R, Unger M, Urban M, Valdés Galicia J, Valiño I, Valore L, van Aar G, van Bodegom P, van den Berg A, van Velzen S, van Vliet A, Varela E, Vargas Cárdenas B, Varner G, Vasquez R, Vázquez J, Vázquez R, Veberič D, Verzi V, Vicha J, Videla M, Villaseñor L, Vlcek B, Vorobiov S, Wahlberg H, Wainberg O, Walz D, Watson A, Weber M, Weidenhaupt K, Weindl A, Werner F, Widom A, Wiencke L, Wilczyński H, Winchen T, Wittkowski D, Wundheiler B, Wykes S, Yang L, Yapici T, Yushkov A, Zas E, Zavrtanik D, Zavrtanik M, Zepeda A, Zhu Y, Zimmermann B, Ziolkowski M, Zuccarello F; Pierre Auger Collaboration. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys Rev D 2015;91. [DOI: 10.1103/physrevd.91.092008] [Cited by in Crossref: 113] [Article Influence: 16.1] [Reference Citation Analysis]
498 Maravall D, de Lope J. Fusion of learning automata theory and granular inference systems: ANLAGIS. Applications to pattern recognition and machine learning. Neurocomputing 2011;74:1237-42. [DOI: 10.1016/j.neucom.2010.07.024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
499 Shannon W, Culverhouse R, Duncan J. Analyzing microarray data using cluster analysis. Pharmacogenomics 2003;4:41-52. [PMID: 12517285 DOI: 10.1517/phgs.4.1.41.22581] [Cited by in Crossref: 117] [Cited by in F6Publishing: 70] [Article Influence: 6.5] [Reference Citation Analysis]
500 Liang J, Shen S, Li M, Fei S. Quantum algorithms for the generalized eigenvalue problem. Quantum Inf Process 2022;21. [DOI: 10.1007/s11128-021-03370-z] [Reference Citation Analysis]
501 Tajima H; The Belle Collaboration. BELLE B PHYSICS RESULTS. Int J Mod Phys A 2012;17:2967-81. [DOI: 10.1142/s0217751x02012533] [Cited by in Crossref: 22] [Article Influence: 2.2] [Reference Citation Analysis]
502 Telemeco RS, Gangloff EJ. Analyzing Stress as a Multivariate Phenotype. Integr Comp Biol 2020;60:70-8. [PMID: 32058560 DOI: 10.1093/icb/icaa005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
503 Guliev RR, Suntsova AY, Vostrikova TY, Shchegolikhin AN, Popov DA, Guseva MA, Shevelev AB, Kurochkin IN. Discrimination of Staphylococcus aureus Strains from Coagulase-Negative Staphylococci and Other Pathogens by Fourier Transform Infrared Spectroscopy. Anal Chem 2020;92:4943-8. [PMID: 32129600 DOI: 10.1021/acs.analchem.9b05050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
504 Chen C, Husny J, Rabe S. Predicting fishiness off-flavour and identifying compounds of lipid oxidation in dairy powders by SPME-GC/MS and machine learning. International Dairy Journal 2018;77:19-28. [DOI: 10.1016/j.idairyj.2017.09.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
505 Bradley P, Keller S, Weinmann M. Unsupervised Feature Selection Based on Ultrametricity and Sparse Training Data: A Case Study for the Classification of High-Dimensional Hyperspectral Data. Remote Sensing 2018;10:1564. [DOI: 10.3390/rs10101564] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
506 Chan LS, Gilman JA, Dunn OJ. Alternative Approaches to Missing Values in Discriminant Analysis. Journal of the American Statistical Association 1976;71:842-4. [DOI: 10.1080/01621459.1976.10480956] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
507 Mohapatra D, Nakao M, Yabsley BD, Abe K, Abe K, Aihara H, Arinstein K, Asano Y, Aushev T, Aziz T, Bahinipati S, Bakich AM, Barberio E, Barbero M, Bedny I, Bitenc U, Bizjak I, Bondar A, Bozek A, Bračko M, Brodzicka J, Browder TE, Chao Y, Chen A, Chen WT, Cheon BG, Chistov R, Choi S, Choi Y, Chuvikov A, Dalseno J, Danilov M, Dash M, Dragic J, Eidelman S, Gershon T, Gokhroo G, Golob B, Gorišek A, Hara T, Hayasaka K, Hazumi M, Hinz L, Hokuue T, Hoshi Y, Hou S, Hou W, Hsiung YB, Iijima T, Ikado K, Imoto A, Inami K, Ishikawa A, Iwasaki M, Iwasaki Y, Kang JH, Kang JS, Kawai H, Kawasaki T, Khan HR, Kim HJ, Kim SM, Kinoshita K, Križan P, Krokovny P, Kulasiri R, Kuo CC, Kuzmin A, Kwon Y, Leder G, Lee SE, Lesiak T, Li J, Limosani A, Lin S, Liventsev D, Majumder G, Mandl F, Matyja A, Mikami Y, Mitaroff W, Miyata H, Moloney GR, Nagamine T, Nagasaka Y, Nakano E, Nakazawa H, Nishida S, Nitoh O, Nozaki T, Ogawa S, Ohshima T, Okuno S, Olsen SL, Onuki Y, Ostrowicz W, Ozaki H, Pakhlov P, Park H, Pestotnik R, Piilonen LE, Sakai Y, Sarangi TR, Sato N, Satoyama N, Schietinger T, Schneider O, Schümann J, Schwartz AJ, Senyo K, Sevior ME, Shibuya H, Somov A, Soni N, Stamen R, Stanič S, Starič M, Sumiyoshi T, Takasaki F, Tamai K, Tamura N, Tanaka M, Taylor GN, Teramoto Y, Tian XC, Trabelsi K, Uehara S, Uglov T, Ueno K, Uno S, Varner G, Villa S, Wang CC, Wang CH, Watanabe Y, Xie QL, Yamashita Y, Yamauchi M, Yang H, Ying J, Zhang CC, Zhang J, Zhang LM, Zhang ZP, Zhilich V, Zürcher D. Search for the bdγ process. Phys Rev D 2005;72. [DOI: 10.1103/physrevd.72.011101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
508 Sardana M, Agrawal R, Kaur B. A hybrid of clustering and quantum genetic algorithm for relevant genes selection for cancer microarray data. KES 2016;20:161-73. [DOI: 10.3233/kes-160341] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
509 Lopez-bernal D, Balderas D, Ponce P, Molina A. Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems. Future Internet 2021;13:193. [DOI: 10.3390/fi13080193] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
510 Berthold MR, Wiswedel B, Gabriel TR. Fuzzy Logic in KNIME – Modules for Approximate Reasoning –: . IJCIS 2013;6:34. [DOI: 10.1080/18756891.2013.818186] [Cited by in Crossref: 6] [Article Influence: 0.7] [Reference Citation Analysis]
511 Pakhira MK, Bandyopadhyay S, Maulik U. A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets and Systems 2005;155:191-214. [DOI: 10.1016/j.fss.2005.04.009] [Cited by in Crossref: 146] [Cited by in F6Publishing: 31] [Article Influence: 8.6] [Reference Citation Analysis]
512 Baten WD, Hatcher HM. Distinguishing Method Differences By Use Of Discriminant Functions. The Journal of Experimental Education 2015;12:184-6. [DOI: 10.1080/00220973.1944.11010301] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
513 Kachouri R, Djemal K, Maaref H. Multi-model classification method in heterogeneous image databases. Pattern Recognition 2010;43:4077-88. [DOI: 10.1016/j.patcog.2010.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
514 Mcfarland H, Richards DS. Exact Misclassification Probabilities for Plug-In Normal Quadratic Discriminant Functions. Journal of Multivariate Analysis 2002;82:299-330. [DOI: 10.1006/jmva.2001.2034] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
515 Bertini I, Luchinat C, Miniati M, Monti S, Tenori L. Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate. Metabolomics 2014;10:302-11. [DOI: 10.1007/s11306-013-0572-3] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
516 Guo Y, Sengur A. NECM: Neutrosophic evidential c-means clustering algorithm. Neural Comput & Applic 2015;26:561-71. [DOI: 10.1007/s00521-014-1648-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
517 Mcculloch RE. Some remarks on allocatory and separatory linear discrimination. Journal of Statistical Planning and Inference 1986;14:323-30. [DOI: 10.1016/0378-3758(86)90170-9] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
518 Turner JC, Tsokos CP. A nonparametric classification scheme with mean squared error criterion. Pattern Recognition 1978;10:47-53. [DOI: 10.1016/0031-3203(78)90048-1] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
519 Abbon P, Andriamonje S, Aune S, Dafni T, Davenport M, Delagnes E, Oliveira RD, Fanourakis G, Ribas EF, Franz J, Geralis T, Giganon A, Gros M, Giomataris Y, Irastorza IG, Kousouris K, Morales J, Papaevangelou T, Ruz J, Zachariadou K, Zioutas K. The Micromegas detector of the CAST experiment. New J Phys 2007;9:170-170. [DOI: 10.1088/1367-2630/9/6/170] [Cited by in Crossref: 51] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
520 Weiss SM, Galen RS, Tadepalli PV. Maximizing the predictive value of production rules. Artificial Intelligence 1990;45:47-71. [DOI: 10.1016/0004-3702(90)90037-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
521 Bang W, Bien Z. Incremental Inductive Learning Algorithm And Its Performance Evaluation: Rough Set Approach. Intelligent Automation & Soft Computing 2002;8:15-29. [DOI: 10.1080/10798587.2002.10644194] [Reference Citation Analysis]
522 Acebes F, Poza D, González-varona JM, López-paredes A. Stochastic Earned Duration Analysis for Project Schedule Management. Engineering 2021. [DOI: 10.1016/j.eng.2021.07.019] [Reference Citation Analysis]
523 Feng X, Xiao Z, Zhong B, Dong Y, Qiu J. Dynamic weighted ensemble classification for credit scoring using Markov Chain. Appl Intell 2019;49:555-68. [DOI: 10.1007/s10489-018-1253-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
524 Collier S. Sexual dimorphism in relation to big-game hunting and economy in modern human populations. Am J Phys Anthropol 1993;91:485-504. [DOI: 10.1002/ajpa.1330910406] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
525 Appiah KO, Chizema A, Arthur J. Predicting corporate failure: a systematic literature review of methodological issues. International Journal of Law and Management 2015;57:461-85. [DOI: 10.1108/ijlma-04-2014-0032] [Cited by in Crossref: 31] [Article Influence: 4.4] [Reference Citation Analysis]
526 Tozer DJ, Davies GR, Altmann DR, Miller DH, Tofts PS. Principal component and linear discriminant analysis of T1 histograms of white and grey matter in multiple sclerosis. Magn Reson Imaging 2006;24:793-800. [PMID: 16824974 DOI: 10.1016/j.mri.2005.08.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
527 Lee KL. Multivariate Tests for Clusters. Journal of the American Statistical Association 1979;74:708-14. [DOI: 10.1080/01621459.1979.10481675] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
528 Hsiao S, Whang T. A study of financial insolvency prediction model for life insurers. Expert Systems with Applications 2009;36:6100-7. [DOI: 10.1016/j.eswa.2008.07.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
529 Delubac T, Raichoor A, Comparat J, Jouvel S, Kneib J, Yèche C, Zou H, Brownstein JR, Abdalla FB, Dawson, Jullo E, Myers AD, Newman JA, Percival WJ, Prada F, Ross AJ, Schneider DP, Zhou X, Zhou Z, Zhu G. The SDSS-IV eBOSS: emission line galaxy catalogues at z ≈ 0.8 and study of systematic errors in the angular clustering. Mon Not R Astron Soc 2016;465:1831-46. [DOI: 10.1093/mnras/stw2741] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
530 Ramos E, Fernández DS. Classification of leaf epidermis microphotographs using texture features. Ecological Informatics 2009;4:177-81. [DOI: 10.1016/j.ecoinf.2009.06.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
531 Tavassoli M, Farzipoor Saen R. A stochastic data envelopment analysis approach for multi-criteria ABC inventory classification. Journal of Industrial and Production Engineering. [DOI: 10.1080/21681015.2022.2037761] [Reference Citation Analysis]
532 Peiris MTR, Davidson PR, Bones PJ, Jones RD. Detection of lapses in responsiveness from the EEG. J Neural Eng 2011;8:016003. [DOI: 10.1088/1741-2560/8/1/016003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
533 Stöckel S, Meisel S, Elschner M, Rösch P, Popp J. Identification of Bacillus anthracis via Raman Spectroscopy and Chemometric Approaches. Anal Chem 2012;84:9873-80. [DOI: 10.1021/ac302250t] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 5.7] [Reference Citation Analysis]
534 Duffy FH. Brain electrical activity mapping (BEAM): computerized access to complex brain function. Int J Neurosci 1981;13:55-65. [PMID: 7251253 DOI: 10.3109/00207458108991795] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 0.6] [Reference Citation Analysis]
535 Kounelakis MG, Zervakis ME, Giakos GC, Postma GJ, Buydens LMC, Kotsiakis X. Embedding filtering criteria into a wrapper marker selection method for brain tumor classification: an application on metabolic peak area ratios. Meas Sci Technol 2011;22:114019. [DOI: 10.1088/0957-0233/22/11/114019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
536 Krishnan T. On linear combinations of binary item scores. Psychometrika 1973;38:291-304. [DOI: 10.1007/bf02291656] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
537 Masip D, Vitrià J. Feature extraction for nearest neighbor classification: Application to gender recognition: Feature Extraction For Gender Recognition. Int J Intell Syst 2005;20:561-76. [DOI: 10.1002/int.20081] [Reference Citation Analysis]
538 Morris JN, Kagan A, Pattison DC, Gardner MJ. Incidence and prediction of ischaemic heart-disease in London busmen. Lancet. 1966;2:553-559. [PMID: 4161611 DOI: 10.1016/s0140-6736(66)93034-0] [Cited by in Crossref: 237] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
539 Porto A, Araque A, Rabuñal J, Dorado J, Pazos A. A new hybrid evolutionary mechanism based on unsupervised learning for Connectionist Systems. Neurocomputing 2007;70:2799-808. [DOI: 10.1016/j.neucom.2006.06.010] [Cited by in Crossref: 8] [Article Influence: 0.5] [Reference Citation Analysis]
540 Capannesi G, Seccaroni C, Sedda AF, Majerini V, Musco S. CLASSIFICATION OF FIFTEENTH- TO NINETEENTH-CENTURY MORTARS FROM GABII USING INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS. Archaeometry 1991;33:255-66. [DOI: 10.1111/j.1475-4754.1991.tb00703.x] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
541 Woźniak M, Gałązka‐friedman J, Duda P, Jakubowska M, Rzepecka P, Karwowski Ł. Application of Mössbauer spectroscopy, multidimensional discriminant analysis, and Mahalanobis distance for classification of equilibrated ordinary chondrites. Meteorit Planet Sci 2019;54:1828-39. [DOI: 10.1111/maps.13314] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
542 Rawer-jost C, Zenker A, Böhmer J. Reference conditions of German stream types analysed and revised with macroinvertebrate fauna. Limnologica 2004;34:390-7. [DOI: 10.1016/s0075-9511(04)80008-2] [Cited by in Crossref: 23] [Article Influence: 1.3] [Reference Citation Analysis]
543 Fernández-martínez JL, Cernea A. NUMERICAL ANALYSIS AND COMPARISON OF SPECTRAL DECOMPOSITION METHODS IN BIOMETRIC APPLICATIONS. Int J Patt Recogn Artif Intell 2014;28:1456001. [DOI: 10.1142/s0218001414560011] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
544 Brusco MJ, Steinley D. A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning. Psychometrika 2007;72:583-600. [DOI: 10.1007/s11336-007-9013-4] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
545 Stone M, Jonathan P. Statistical thinking and technique for QSAR and related studies. Part II: Specific methods. J Chemometrics 1994;8:1-20. [DOI: 10.1002/cem.1180080103] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
546 Hong H, Tong W, Xie Q, Fang H, Perkins R. An in silico ensemble method for lead discovery: decision forest. SAR QSAR Environ Res 2005;16:339-47. [PMID: 16234175 DOI: 10.1080/10659360500203022] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 2.7] [Reference Citation Analysis]
547 Zaman FK, Shafie AA, Mustafah YM. Robust face recognition against expressions and partial occlusions. Int J Autom Comput 2016;13:319-37. [DOI: 10.1007/s11633-016-0974-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
548 Jain A, Ramaswami M. Classifier Design with Parzen Windows† †Research supported by NSF grant ECS-8603541. Pattern Recognition and Artificial Intelligence - Towards an Integration. Elsevier; 1988. pp. 211-28. [DOI: 10.1016/b978-0-444-87137-4.50021-7] [Cited by in Crossref: 29] [Article Influence: 0.9] [Reference Citation Analysis]
549 Garmash A, Abe K, Abe K, Abe N, Abe T, Adachi I, Aihara H, Asano Y, Aso T, Aulchenko V, Aushev T, Bakich AM, Ban Y, Banas E, Behari S, Behera PK, Bondar A, Bozek A, Bračko M, Browder TE, Casey BCK, Chang P, Chao Y, Cheon BG, Chistov R, Choi S, Choi Y, Dong LY, Drutskoy A, Eidelman S, Eiges V, Fang F, Fujii H, Fukunaga C, Fukushima M, Gabyshev N, Gershon T, Gordon A, Gotow K, Guo R, Haba J, Hamasaki H, Handa F, Hara K, Hara T, Hastings NC, Hayashii H, Hazumi M, Heenan EM, Higuchi I, Higuchi T, Hojo T, Hokuue T, Hoshi Y, Hoshina K, Hou SR, Hou W, Huang H, Igarashi Y, Iijima T, Ikeda H, Inami K, Ishikawa A, Ishino H, Itoh R, Iwasaki H, Iwasaki Y, Jackson DJ, Jang HK, Kang JH, Kang JS, Kapusta P, Katayama N, Kawai H, Kawai H, Kawamura N, Kawasaki T, Kichimi H, Kim DW, Kim H, Kim HJ, Kim HO, Kim H, Kim SK, Kim TH, Kinoshita K, Konishi H, Korpar S, Križan P, Krokovny P, Kulasiri R, Kumar S, Kuzmin A, Kwon Y, Lange JS, Leder G, Lee SH, Limosani A, Liventsev D, Lu R, Macnaughton J, Mandl F, Marlow D, Matsumoto S, Matsumoto T, Mikami Y, Miyake H, Miyata H, Moloney GR, Moorhead GF, Mori S, Mori T, Murakami A, Nagamine T, Nagasaka Y, Nagashima Y, Nakadaira T, Nakano E, Nakao M, Nam JW, Natkaniec Z, Neichi K, Nishida S, Nitoh O, Nozaki T, Ogawa S, Ohno F, Ohshima T, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Pakhlov P, Palka H, Park CS, Park CW, Park KS, Peak LS, Perroud J, Peters M, Piilonen LE, Rybicki K, Ryuko J, Sagawa H, Sakai Y, Sakamoto H, Satapathy M, Satpathy A, Schneider O, Schrenk S, Semenov S, Senyo K, Sevior ME, Shibuya H, Singh JB, Stanič S, Sugiyama A, Sumisawa K, Sumiyoshi T, Suzuki K, Suzuki S, Swain SK, Takahashi T, Takasaki F, Takita M, Tamai K, Tamura N, Tanaka J, Tanaka M, Taylor GN, Teramoto Y, Tomoto M, Tomura T, Tovey SN, Trabelsi K, Tsukamoto T, Uehara S, Ueno K, Uno S, Ushiroda Y, Wang CC, Wang CH, Wang JG, Wang M, Watanabe Y, Won E, Yabsley BD, Yamada Y, Yamaga M, Yamaguchi A, Yamashita Y, Yamauchi M, Yokoyama M, Yuan Y, Zhang CC, Zhang J, Zheng Y, Zhilich V, Žontar D. Study of three-body charmless B decays. Phys Rev D 2002;65. [DOI: 10.1103/physrevd.65.092005] [Cited by in Crossref: 68] [Article Influence: 3.4] [Reference Citation Analysis]
550 Wang N, Freysoldt C, Zhang S, Liebscher CH, Neugebauer J. Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. Microsc Microanal 2021;:1-11. [PMID: 34544517 DOI: 10.1017/S1431927621012770] [Reference Citation Analysis]
551 Berghaus G. Mathematisch-Statistische Differenzierungsmöglichkeiten zwischen Selbstmord und Unfall bei Sturz aus der Höhe. Z Rechtsmed 1978;80:273-86. [DOI: 10.1007/bf02092324] [Cited by in Crossref: 11] [Article Influence: 0.3] [Reference Citation Analysis]
552 Bolaños-sittler P, Sueur J, Fuchs J, Aubin T. Vocalisation of the rare and flagship species Pharomachrus mocinno (Aves: Trogonidae): implications for its taxonomy, evolution and conservation. Bioacoustics 2020;29:654-69. [DOI: 10.1080/09524622.2019.1647877] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
553 Preston K, Bartels PH. Automated Image Processing for Cells and Tissue. In: Newhouse VL, editor. Progress in Medical Imaging. New York: Springer; 1988. pp. 1-121. [DOI: 10.1007/978-1-4612-3866-9_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
554 Gediga G, Düntsch I. Statistical Techniques for Rough Set Data Analysis. In: Polkowski L, Tsumoto S, Lin TY, editors. Rough Set Methods and Applications. Heidelberg: Physica-Verlag HD; 2000. pp. 545-65. [DOI: 10.1007/978-3-7908-1840-6_11] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
555 Krinitskiy MA. Application of machine learning methods to the solar disk state detection by all-sky images over the ocean. Oceanology 2017;57:265-9. [DOI: 10.1134/s0001437017020126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
556 Rehm F, Klawonn F. Improving Angle Based Mappings. In: Tang C, Ling CX, Zhou X, Cercone NJ, Li X, editors. Advanced Data Mining and Applications. Berlin: Springer Berlin Heidelberg; 2008. pp. 3-14. [DOI: 10.1007/978-3-540-88192-6_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
557 Chang DS, Kuo YC. An approach for the two-group discriminant analysis: An application of DEA. Mathematical and Computer Modelling 2008;47:970-81. [DOI: 10.1016/j.mcm.2007.05.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
558 Deronde B, Kempeneers P, Forster R. Imaging spectroscopy as a tool to study sediment characteristics on a tidal sandbank in the Westerschelde. Estuarine, Coastal and Shelf Science 2006;69:580-90. [DOI: 10.1016/j.ecss.2006.05.048] [Cited by in Crossref: 27] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
559 Martin MV, Cho V, Aversano G. Detection of Subconscious Face Recognition Using Consumer-Grade Brain-Computer Interfaces. ACM Trans Appl Percept 2016;14:1-20. [DOI: 10.1145/2955097] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
560 Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 2016;137:188-200. [PMID: 26707889 DOI: 10.1016/j.neuroimage.2015.12.012] [Cited by in Crossref: 200] [Cited by in F6Publishing: 143] [Article Influence: 28.6] [Reference Citation Analysis]
561 Burkart O, Coudert V. Leading indicators of currency crises for emerging countries. Emerging Markets Review 2002;3:107-33. [DOI: 10.1016/s1566-0141(02)00002-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
562 Li X, Fan H, Wang H, Wang L. Common spatial patterns combined with phase synchronization information for classification of EEG signals. Biomedical Signal Processing and Control 2019;52:248-56. [DOI: 10.1016/j.bspc.2019.04.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
563 Chang Y, Wang M, Adachi I, Aihara H, Aushev T, Bakich AM, Balagura V, Bay A, Bhardwaj V, Bitenc U, Bondar A, Bozek A, Bračko M, Browder TE, Chao Y, Chen A, Chistov R, Choi Y, Dalseno J, Danilov M, Dash M, Drutskoy A, Eidelman S, Goldenzweig P, Ha H, Han B, Hara T, Hayasaka K, Hayashii H, Hazumi M, Heffernan D, Horii Y, Hoshi Y, Hou W, Hyun HJ, Inami K, Ishikawa A, Iwasaki M, Iwasaki Y, Joshi NJ, Kah DH, Kang JH, Kawai H, Kawasaki T, Kichimi H, Kim HJ, Kim YI, Kim YJ, Ko BR, Korpar S, Križan P, Kwon Y, Kyeong S, Lee JS, Lee MJ, Lee SE, Lesiak T, Limosani A, Lin S, Liu C, Liu Y, Louvot R, Mandl F, Matyja A, Mconie S, Miyabayashi K, Miyata H, Miyazaki Y, Mizuk R, Nagasaka Y, Nakao M, Natkaniec Z, Nishida S, Nitoh O, Ogawa S, Okuno S, Ozaki H, Pakhlov P, Pakhlova G, Park CW, Park HK, Park KS, Peak LS, Pestotnik R, Piilonen LE, Rozanska M, Sahoo H, Sakai Y, Schneider O, Sekiya A, Senyo K, Shapkin M, Shiu J, Shwartz B, Singh JB, Stanič S, Starič M, Sumisawa K, Tanaka M, Taylor GN, Teramoto Y, Tikhomirov I, Uehara S, Uglov T, Unno Y, Uno S, Usov Y, Varner G, Vervink K, Wang CH, Wang P, Wang XL, Watanabe Y, Wedd R, Wei J, Won E, Yabsley BD, Yamashita Y, Zhang ZP, Zhilich V, Zivko T, Zupanc A, Zyukova O. Observation of B0ΛΛ¯K0 and B0ΛΛ¯K*0 at Belle. Phys Rev D 2009;79. [DOI: 10.1103/physrevd.79.052006] [Cited by in Crossref: 14] [Article Influence: 1.1] [Reference Citation Analysis]
564 Aloise D, Hansen P. A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering. Pesqui Oper 2009;29:503-16. [DOI: 10.1590/s0101-74382009000300002] [Cited by in Crossref: 5] [Article Influence: 0.4] [Reference Citation Analysis]
565 Ireland G, Volpi M, Petropoulos G. Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood. Remote Sensing 2015;7:3372-99. [DOI: 10.3390/rs70303372] [Cited by in Crossref: 41] [Cited by in F6Publishing: 7] [Article Influence: 5.9] [Reference Citation Analysis]
566 Iban MC, Sekertekin A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecological Informatics 2022. [DOI: 10.1016/j.ecoinf.2022.101647] [Reference Citation Analysis]
567 Preston K. Digital picture analysis in cytology. In: Rosenfeld A, editor. Digital Picture Analysis. Berlin: Springer Berlin Heidelberg; 1976. pp. 209-94. [DOI: 10.1007/3540075798_23] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
568 Aasheim C, Koehler GJ. Scanning World Wide Web documents with the vector space model. Decision Support Systems 2006;42:690-9. [DOI: 10.1016/j.dss.2005.03.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
569 Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. In: Buxton B, Cipolla R, editors. Computer Vision — ECCV '96. Berlin: Springer Berlin Heidelberg; 1996. pp. 43-58. [DOI: 10.1007/bfb0015522] [Cited by in Crossref: 126] [Article Influence: 7.4] [Reference Citation Analysis]
570 Clark I. Snark—a four-dimensional trend-surface computer program. Computers & Geosciences 1977;3:283-308. [DOI: 10.1016/0098-3004(77)90006-1] [Cited by in Crossref: 6] [Article Influence: 0.1] [Reference Citation Analysis]
571 Akgöbek Ö, Aydin YS, Öztemel E, Aksoy MS. A new algorithm for automatic knowledge acquisition in inductive learning. Knowledge-Based Systems 2006;19:388-95. [DOI: 10.1016/j.knosys.2006.03.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
572 Marini F, Balestrieri F, Bucci R, Magrı̀ AL, Marini D. Supervised pattern recognition to discriminate the geographical origin of rice bran oils: a first study. Microchemical Journal 2003;74:239-48. [DOI: 10.1016/s0026-265x(03)00028-6] [Cited by in Crossref: 22] [Article Influence: 1.2] [Reference Citation Analysis]
573 Gyamfi KS, Brusey J, Hunt A, Gaura E. Linear classifier design under heteroscedasticity in Linear Discriminant Analysis. Expert Systems with Applications 2017;79:44-52. [DOI: 10.1016/j.eswa.2017.02.039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
574 Liebsch M, Döring B, Donelly T, Logemann P, Rheins L, Spielmann H. application of the human dermal model skin2 ZK 1350 to phototoxicity and skin corrosivity testing. Toxicology in Vitro 1995;9:557-62. [DOI: 10.1016/0887-2333(95)00042-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 1.2] [Reference Citation Analysis]
575 Castro J, Flores-hidalgo L, Mantas C, Puche J. Extraction of fuzzy rules from support vector machines. Fuzzy Sets and Systems 2007;158:2057-77. [DOI: 10.1016/j.fss.2007.04.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
576 Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2020;48:100662. [PMID: 31927437 DOI: 10.1016/j.drup.2019.100662] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
577 Wu L, Chunhua Shen, Hengel AVD. Deep linear discriminant analysis on fisher networks: A hybrid architecture for person re-identification. Pattern Recognition 2017;65:238-50. [DOI: 10.1016/j.patcog.2016.12.022] [Cited by in Crossref: 111] [Cited by in F6Publishing: 10] [Article Influence: 22.2] [Reference Citation Analysis]
578 Peck R, Linda JW, Dean YM. A comparison of several biased estimators for improving the expected error rate of the sample quadratic discriminant function. Journal of Statistical Computation and Simulation 1988;29:143-56. [DOI: 10.1080/00949658808811057] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
579 Camarero A, Camarero A, Cerbán MM, Turias IJ, González-cancelas N. Clasificación de los puertos españoles mediante análisis <em>cluster</em>. Inf constr 2019;71:296. [DOI: 10.3989/ic.61806] [Reference Citation Analysis]
580 Pison G, Struyf A, Rousseeuw PJ. Displaying a clustering with CLUSPLOT. Computational Statistics & Data Analysis 1999;30:381-92. [DOI: 10.1016/s0167-9473(98)00102-9] [Cited by in Crossref: 68] [Article Influence: 3.0] [Reference Citation Analysis]
581 Moore JH. Cross Validation Consistency for the Assessment of Genetic Programming Results in Microarray Studies. In: Cagnoni S, Johnson CG, Cardalda JJR, Marchiori E, Corne DW, Meyer J, Gottlieb J, Middendorf M, Guillot A, Raidl GR, Hart E, editors. Applications of Evolutionary Computing. Berlin: Springer Berlin Heidelberg; 2003. pp. 99-106. [DOI: 10.1007/3-540-36605-9_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
582 Wu S, Chow TW. Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition 2004;37:175-88. [DOI: 10.1016/s0031-3203(03)00237-1] [Cited by in Crossref: 100] [Article Influence: 5.6] [Reference Citation Analysis]
583 Cherkassky V, Dhar S. Interpretation of Black-Box Predictive Models. In: Vovk V, Papadopoulos H, Gammerman A, editors. Measures of Complexity. Cham: Springer International Publishing; 2015. pp. 267-86. [DOI: 10.1007/978-3-319-21852-6_19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
584 Takekawa A, Kajiura M, Fukuda H. Role of Layers and Neurons in Deep Learning With the Rectified Linear Unit. Cureus 2021;13:e18866. [PMID: 34820210 DOI: 10.7759/cureus.18866] [Reference Citation Analysis]
585 Weiss M, Gajarska Z, Lohninger H, Marchetti-deschmann M, Ramer G, Lendl B, Limbeck A. Elemental mapping of fluorine by means of molecular laser induced breakdown spectroscopy. Analytica Chimica Acta 2022;1195:339422. [DOI: 10.1016/j.aca.2021.339422] [Reference Citation Analysis]
586 Goebel ME, Lipsky JD, Reiss CS, Loeb VJ. Using carapace measurements to determine the sex of Antarctic krill, Euphausia superba. Polar Biol 2007;30:307-15. [DOI: 10.1007/s00300-006-0184-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
587 Wessels LF, Reinders MJ, Hart AA, Veenman CJ, Dai H, He YD, van't Veer LJ. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics 2005;21:3755-62. [PMID: 15817694 DOI: 10.1093/bioinformatics/bti429] [Cited by in Crossref: 95] [Cited by in F6Publishing: 78] [Article Influence: 5.6] [Reference Citation Analysis]
588 Rao PS, Dorvlo AS. The jackknife procedure for the probabilities of misclassification. Communications in Partial Differential Equations 2010;14:779-90. [DOI: 10.1080/03605308908820604] [Reference Citation Analysis]
589 Chen S, Shie J. Fuzzy classification systems based on fuzzy information gain measures. Expert Systems with Applications 2009;36:4517-22. [DOI: 10.1016/j.eswa.2008.05.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
590 Saigo M, Abe K, Abe K, Aihara H, Akatsu M, Asano Y, Aulchenko V, Aushev T, Bahinipati S, Bakich AM, Ban Y, Banerjee S, Bedny I, Bitenc U, Bizjak I, Blyth S, Bondar A, Bozek A, Bracko M, Brodzicka J, Browder TE, Chao Y, Chen A, Chen KF, Chen WT, Cheon BG, Chistov R, Choi SK, Choi Y, Choi YK, Chuvikov A, Cole S, Dalseno J, Danilov M, Dash M, Dong LY, Drutskoy A, Eidelman S, Eiges V, Enari Y, Fratina S, Gabyshev N, Garmash A, Gershon T, Gokhroo G, Golob B, Haba J, Hayasaka K, Hayashii H, Hazumi M, Higuchi T, Hinz L, Hokuue T, Hoshi Y, Hou S, Hou WS, Hsiung YB, Iijima T, Imoto A, Inami K, Ishikawa A, Itoh R, Iwasaki M, Iwasaki Y, Kang JH, Kang JS, Kapusta P, Katayama N, Kawai H, Kawasaki T, Kent N, Khan HR, Kichimi H, Kim HJ, Kim SK, Kim SM, Kinoshita K, Koppenburg P, Korpar S, Krizan P, Krokovny P, Kulasiri R, Kuo CC, Kuzmin A, Kwon YJ, Leder G, Lee SE, Lesiak T, Li J, Lin SW, Liventsev D, Macnaughton J, Majumder G, Mandl F, Marlow D, Matsumoto T, Matyja A, Mikami Y, Mitaroff W, Miyake H, Mizuk R, Mohapatra D, Mori T, Nagasaka Y, Nakano E, Nakao M, Natkaniec Z, Nishida S, Nitoh O, Ogawa S, Ohshima T, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Pakhlov P, Palka H, Park H, Park KS, Parslow N, Peak LS, Pestotnik R, Piilonen LE, Poluektov A, Ronga FJ, Sagawa H, Sakai Y, Sato N, Schietinger T, Schneider O, Schönmeier P, Schümann J, Schwartz AJ, Semenov S, Seuster R, Sevior ME, Shibuya H, Singh JB, Somov A, Soni N, Stamen R, Stanic S, Staric M, Sumiyoshi T, Suzuki S, Suzuki SY, Tajima O, Takasaki F, Tamai K, Tamura N, Tanaka M, Teramoto Y, Tian XC, Trabelsi K, Tsukamoto T, Uehara S, Uglov T, Uno S, Ushiroda Y, Varner G, Varvell KE, Villa S, Wang CC, Wang CH, Wang MZ, Watanabe M, Watanabe Y, Yamaguchi A, Yamamoto H, Yamashita Y, Yamauchi M, Yusa Y, Zhang LM, Zhang ZP, Zhilich V, Zontar D, Zürcher D; Belle Collaboration. Study of the suppressed decays B- -->[K+pi-](D)K- and B- -->[K+pi-]Dpi-. Phys Rev Lett 2005;94:091601. [PMID: 15783952 DOI: 10.1103/PhysRevLett.94.091601] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
591 Zhao M, Zhang Z, Chow TW. Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction. Pattern Recognition 2012;45:1482-99. [DOI: 10.1016/j.patcog.2011.10.008] [Cited by in Crossref: 59] [Cited by in F6Publishing: 12] [Article Influence: 5.9] [Reference Citation Analysis]
592 Bouveyron C, Fauvel M, Girard S. Kernel discriminant analysis and clustering with parsimonious Gaussian process models. Stat Comput 2015;25:1143-62. [DOI: 10.1007/s11222-014-9505-x] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
593 Kabbarah O, Mallon MA, Pfeifer JD, Goodfellow PJ. Transcriptional profiling endometrial carcinomas microdissected from DES-treated mice identifies changes in gene expression associated with estrogenic tumor promotion. Int J Cancer 2006;119:1843-9. [DOI: 10.1002/ijc.22063] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
594 Alfeo AL, Cimino MG, Vaglini G. Degradation stage classification via interpretable feature learning. Journal of Manufacturing Systems 2022;62:972-83. [DOI: 10.1016/j.jmsy.2021.05.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
595 Burigana L, Martino F, Vicovaro M. Olp: an R package for optimal linear partitions of finite sets of points on the plane. Br J Math Stat Psychol 2014;67:328-52. [PMID: 23998283 DOI: 10.1111/bmsp.12022] [Reference Citation Analysis]
596 Kim JH, Kohane IS, Ohno-machado L. Visualization and evaluation of clusters for exploratory analysis of gene expression data. Journal of Biomedical Informatics 2002;35:25-36. [DOI: 10.1016/s1532-0464(02)00001-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
597 Pascual-marqui R, Pascual-montano A, Kochi K, Carazo J. Smoothly distributed fuzzy c-means: a new self-organizing map. Pattern Recognition 2001;34:2395-402. [DOI: 10.1016/s0031-3203(00)00167-9] [Cited by in Crossref: 43] [Article Influence: 2.0] [Reference Citation Analysis]
598 Zhang Y, Zhou Z. Multilabel dimensionality reduction via dependence maximization. ACM Trans Knowl Discov Data 2010;4:1-21. [DOI: 10.1145/1839490.1839495] [Cited by in Crossref: 149] [Cited by in F6Publishing: 23] [Article Influence: 12.4] [Reference Citation Analysis]
599 Rosado-cubero A, Freire-rubio T, Hernández A. Entrepreneurship: What matters most. Journal of Business Research 2022;144:250-63. [DOI: 10.1016/j.jbusres.2022.01.087] [Reference Citation Analysis]
600 Żochowska A, Jakuszyk P, Nowicka MM, Nowicka A. Are covered faces eye-catching for us? The impact of masks on attentional processing of self and other faces during the COVID-19 pandemic. Cortex 2022. [DOI: 10.1016/j.cortex.2022.01.015] [Reference Citation Analysis]
601 Binaghi E, Madella P. Fuzzy Dempster–Shafer reasoning for rule‐based classifiers. Int J of Intelligent Sys 1999;14:559-83. [DOI: 10.1002/(sici)1098-111x(199906)14:6<559::aid-int2>3.0.co;2-#] [Cited by in Crossref: 50] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
602 Gopalakrishna AK, Ozcelebi T, Lukkien JJ, Liotta A. Relevance in cyber-physical systems with humans in the loop: Relevance in cyber-physical systems with humans in the loop. Concurrency Computat : Pract Exper 2017;29:e3827. [DOI: 10.1002/cpe.3827] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
603 Chang Y, Wang M, Abdesselam A, Adachi I, Adamczyk K, Aihara H, Al Said S, Asner D, Atmacan H, Aushev T, Babu V, Badhrees I, Bakich A, Barberio E, Bhuyan B, Biswal J, Bobrov A, Bozek A, Bračko M, Browder T, Červenkov D, Chekelian V, Chen A, Cheon B, Chilikin K, Chistov R, Chobanova V, Choi S, Choi Y, Cinabro D, Dalseno J, Danilov M, Dingfelder J, Doležal Z, Drásal Z, Dutta D, Eidelman S, Farhat H, Fast J, Ferber T, Fulsom B, Gaur V, Gabyshev N, Ganguly S, Garmash A, Gillard R, Glattauer R, Goh Y, Goldenzweig P, Greenwald D, Grzymkowska O, Haba J, Hayasaka K, Hayashii H, He X, Hou W, Hsu C, Iijima T, Inami K, Ishikawa A, Itoh R, Iwasaki Y, Jacobs W, Jaegle I, Joffe D, Joo K, Kawasaki T, Kim D, Kim H, Kim J, Kim J, Kim K, Kim M, Kim S, Kim Y, Kinoshita K, Korpar S, Križan P, Krokovny P, Kuhr T, Kumita T, Kuzmin A, Kwon Y, Lai Y, Lee I, Li L, Li Y, Libby J, Liventsev D, Lukin P, Masuda M, Matvienko D, Miyabayashi K, Miyake H, Miyata H, Mizuk R, Mohanty G, Mohanty S, Moll A, Moon H, Mori T, Nakano E, Nakao M, Nanut T, Nayak M, Nishida S, Ogawa S, Ozaki H, Pakhlov P, Pakhlova G, Pal B, Park C, Pedlar T, Pestotnik R, Petrič M, Piilonen L, Rauch J, Ribežl E, Ritter M, Rostomyan A, Ryu S, Sahoo H, Sakai Y, Sandilya S, Santelj L, Sanuki T, Savinov V, Schneider O, Schnell G, Schwanda C, Seino Y, Senyo K, Seong I, Sevior M, Shebalin V, Shen C, Shibata T, Shiu J, Simon F, Sohn Y, Starič M, Stypula J, Sumihama M, Sumisawa K, Sumiyoshi T, Tamponi U, Tanida K, Teramoto Y, Uglov T, Unno Y, Uno S, Usov Y, Van Hulse C, Vanhoefer P, Varner G, Vorobyev V, Vossen A, Wagner M, Wang C, Wang P, Watanabe M, Watanabe Y, Williams K, Won E, Yamaoka J, Yashchenko S, Yelton J, Yusa Y, Zhang Z, Zhilich V, Zhulanov V, Zupanc A; Belle Collaboration. Observation of B0pΛ¯D(*). Phys Rev Lett 2015;115. [DOI: 10.1103/physrevlett.115.221803] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
604 Zuanetti DA, Müller P, Zhu Y, Yang S, Ji Y. Bayesian nonparametric clustering for large data sets. Stat Comput 2019;29:203-15. [DOI: 10.1007/s11222-018-9803-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
605 Thulin M. Tests for multivariate normality based on canonical correlations. Stat Methods Appl 2014;23:189-208. [DOI: 10.1007/s10260-013-0252-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
606 Campos BM, Viana AP, Quintal SSR, Barbosa CD, Daher RF. HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS. Rev Bras Frutic 2016;38:151-7. [DOI: 10.1590/0100-2945-258/14] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
607 Marais C, Aldrich C. The Relationship between Froth Image Features and Platinum Flotation Grade. IFAC Proceedings Volumes 2010;43:104-8. [DOI: 10.3182/20100802-3-za-2014.00025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
608 Hino H, Wakayama K, Murata N. Entropy-based sliced inverse regression. Computational Statistics & Data Analysis 2013;67:105-14. [DOI: 10.1016/j.csda.2013.05.017] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
609 Diao C, Wang L. Incorporating plant phenological trajectory in exotic saltcedar detection with monthly time series of Landsat imagery. Remote Sensing of Environment 2016;182:60-71. [DOI: 10.1016/j.rse.2016.04.029] [Cited by in Crossref: 31] [Cited by in F6Publishing: 5] [Article Influence: 5.2] [Reference Citation Analysis]
610 Banks WJ, Abad PL. An Efficient Optimal Solution Algorithm for the Classification Problem. Decision Sciences 1991;22:1008-23. [DOI: 10.1111/j.1540-5915.1991.tb01904.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 2.9] [Reference Citation Analysis]
611 Tintner G. Some Formal Relations in Multivariate Analysis. Journal of the Royal Statistical Society: Series B (Methodological) 1950;12:95-101. [DOI: 10.1111/j.2517-6161.1950.tb00045.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
612 Lin C, Wu J, Wu S, Lin J, Chen T. Watershed landslide evolution combined with topographic factors to delineate the spatio-temporal distribution of sediment sources in central Taiwan. CATENA 2022;211:105978. [DOI: 10.1016/j.catena.2021.105978] [Reference Citation Analysis]
613 Beck A, Sharon R. New results on multi-dimensional linear discriminant analysis. Operations Research Letters 2022;50:1-7. [DOI: 10.1016/j.orl.2021.11.003] [Reference Citation Analysis]
614 Knoke JD. The robust estimation of classification error rates. Computers & Mathematics with Applications 1986;12:253-60. [DOI: 10.1016/0898-1221(86)90078-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
615 Trabelsi M, Maamouri F, Quignard J, Boussaïd M, Faure E. Morphometric or morpho-anatomal and genetic investigations highlight allopatric speciation in Western Mediterranean lagoons within the Atherina lagunae species (Teleostei, Atherinidae). Estuarine, Coastal and Shelf Science 2004;61:713-23. [DOI: 10.1016/j.ecss.2004.07.011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
616 Zhao C, Gao F. A nested-loop Fisher discriminant analysis algorithm. Chemometrics and Intelligent Laboratory Systems 2015;146:396-406. [DOI: 10.1016/j.chemolab.2015.06.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 4] [Article Influence: 4.9] [Reference Citation Analysis]
617 Tyler FT. Some examples of multivariate analysis in educational and psychological research. Psychometrika 1952;17:289-96. [DOI: 10.1007/bf02288759] [Cited by in Crossref: 6] [Article Influence: 0.1] [Reference Citation Analysis]
618 Naldi MC, Carvalho ACPLF, Campello RJGB. Cluster ensemble selection based on relative validity indexes. Data Min Knowl Disc 2013;27:259-89. [DOI: 10.1007/s10618-012-0290-x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 6] [Article Influence: 4.4] [Reference Citation Analysis]
619 Wallace N, Travers RMW. A PSYCHOMETRIC SOCIOLOGICAL STUDY OF A GROUP OF SPECIALITY SALESMEN. Annals of Eugenics 1938;8:266-302. [DOI: 10.1111/j.1469-1809.1938.tb02181.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
620 Lahsasna A, Ainon RN, Zainuddin R, Bulgiba A. Design of a Fuzzy-based Decision Support System for Coronary Heart Disease Diagnosis. J Med Syst 2012;36:3293-306. [DOI: 10.1007/s10916-012-9821-7] [Cited by in Crossref: 39] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
621 De R, Basak J, Pal S. Neuro-fuzzy feature evaluation with theoretical analysis. Neural Networks 1999;12:1429-55. [DOI: 10.1016/s0893-6080(99)00079-9] [Cited by in Crossref: 24] [Article Influence: 1.0] [Reference Citation Analysis]
622 Fuster-garcia E, Navarro C, Vicente J, Tortajada S, García-gómez JM, Sáez C, Calvar J, Griffiths J, Julià-sapé M, Howe FA, Pujol J, Peet AC, Heerschap A, Moreno-torres À, Martínez-bisbal MC, Martínez-granados B, Wesseling P, Semmler W, Capellades J, Majós C, Alberich-bayarri À, Capdevila A, Monleón D, Martí-bonmatí L, Arús C, Celda B, Robles M. Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magn Reson Mater Phy 2011;24:35-42. [DOI: 10.1007/s10334-010-0241-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
623 Doerr JJ, Ferguson JL. The Selection of Vocational-Technical Students. Vocational Guidance Quarterly 1968;17:27-32. [DOI: 10.1002/j.2164-585x.1968.tb01393.x] [Cited by in Crossref: 6] [Article Influence: 0.5] [Reference Citation Analysis]
624 Tollenaar N, van der Heijden PGM. Which method predicts recidivism best?: a comparison of statistical, machine learning and data mining predictive models: Which Method Predicts Recidivism Best?. Journal of the Royal Statistical Society: Series A (Statistics in Society) 2013;176:565-84. [DOI: 10.1111/j.1467-985x.2012.01056.x] [Cited by in Crossref: 46] [Article Influence: 4.6] [Reference Citation Analysis]
625 Menghi M, Cabido M, Peco B, Pineda FD. Grassland heterogeneity in relation to lithology and geomorphology in the C�rdoba Mountains, Argentina. Vegetatio 1989;84:133-42. [DOI: 10.1007/bf00036514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
626 Ordóñez C, Cabo C, Sanz-Ablanedo E. Automatic Detection and Classification of Pole-Like Objects for Urban Cartography Using Mobile Laser Scanning Data. Sensors (Basel) 2017;17:E1465. [PMID: 28640189 DOI: 10.3390/s17071465] [Cited by in Crossref: 25] [Article Influence: 5.0] [Reference Citation Analysis]
627 Juricskay I, Veress GE. PRIMA: a new pattern recognition method. Analytica Chimica Acta 1985;171:61-76. [DOI: 10.1016/s0003-2670(00)84184-7] [Cited by in Crossref: 27] [Article Influence: 0.7] [Reference Citation Analysis]
628 Chen S, Liu P, Tang D, Tao S, Zhang T. Identification of thin-layer coal texture using geophysical logging data: Investigation by Wavelet Transform and Linear Discrimination Analysis. International Journal of Coal Geology 2021;239:103727. [DOI: 10.1016/j.coal.2021.103727] [Cited by in Crossref: 9] [Article Influence: 9.0] [Reference Citation Analysis]
629 Luan Y, Shi Y, Wu W, Liu Z, Chang H, Cheng J. HAR-sEMG: A Dataset for Human Activity Recognition on Lower-Limb sEMG. Knowl Inf Syst 2021;63:2791-814. [DOI: 10.1007/s10115-021-01598-w] [Reference Citation Analysis]
630 Fotiadou E, Nikolaidis N. Activity-based methods for person recognition in motion capture sequences. Pattern Recognition Letters 2014;49:48-54. [DOI: 10.1016/j.patrec.2014.06.005] [Cited by in Crossref: 11] [Article Influence: 1.4] [Reference Citation Analysis]
631 Tai C, Chen S, Tzeng J, Kuo BI, Ding Y, Chang M, Shyu L. Prolonged fractionation of paced right atrial electrograms in patients with atrial flutter and fibrillation. Journal of the American College of Cardiology 2001;37:1651-7. [DOI: 10.1016/s0735-1097(01)01215-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
632 Leon-medina JX, Cardenas-flechas LJ, Tibaduiza DA. A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue. International Journal of Distributed Sensor Networks 2019;15:155014771988160. [DOI: 10.1177/1550147719881601] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
633 Albalate A, Suendermann D, Minker W. ON CLUSTER VALIDATION FOR DETECTING THE NUMBER OF CLUSTERS IN A DATA SET. Int J Artif Intell Tools 2012;20:941-53. [DOI: 10.1142/s0218213011000334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
634 Soltany Mahboob A, Zahiri SH. Automatic and heuristic complete design for ANFIS classifier. Network 2019;30:31-57. [PMID: 31448670 DOI: 10.1080/0954898X.2019.1637953] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
635 [DOI: 10.1101/706101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
636 Rasson JP, Bertholet V. Application of the Poisson process model for the early detection of enterprises' bankruptcy. Appl Stochastic Models Bus Ind 1999;15:443-9. [DOI: 10.1002/(sici)1526-4025(199910/12)15:4<443::aid-asmb407>3.0.co;2-g] [Reference Citation Analysis]
637 Capron X, Massart DL, Smeyers-verbeke J. Multivariate authentication of the geographical origin of wines: a kernel SVM approach. Eur Food Res Technol 2007;225:559-68. [DOI: 10.1007/s00217-006-0454-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
638 Queiroz S, de Carvalho FDA, Lechevallier Y. Nonlinear multicriteria clustering based on multiple dissimilarity matrices. Pattern Recognition 2013;46:3383-94. [DOI: 10.1016/j.patcog.2013.06.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
639 Park MS, Choi JY. Theoretical analysis on feature extraction capability of class-augmented PCA. Pattern Recognition 2009;42:2353-62. [DOI: 10.1016/j.patcog.2009.04.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
640 Portier J, Gauthier S, Bergeron Y. Spatial distribution of mean fire size and occurrence in eastern Canada: influence of climate, physical environment and lightning strike density. Int J Wildland Fire 2019;28:927. [DOI: 10.1071/wf18220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
641 Kumar N, Singh S, Kumar A. Random permutation principal component analysis for cancelable biometric recognition. Appl Intell 2018;48:2824-36. [DOI: 10.1007/s10489-017-1117-7] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
642 Jochner S, Heckmann T, Becht M, Menzel A. The integration of plant phenology and land use data to create a GIS-assisted bioclimatic characterisation of Bavaria, Germany. Plant Ecology & Diversity 2011;4:91-101. [DOI: 10.1080/17550874.2011.574739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
643 Kaushik D, Singh U, Sahu U, Sreedevi I, Bhowmik D. Comparing domain wall synapse with other non volatile memory devices for on-chip learning in analog hardware neural network. AIP Advances 2020;10:025111. [DOI: 10.1063/1.5128344] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
644 Hinterberger T, Kübler A, Kaiser J, Neumann N, Birbaumer N. A brain–computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Clinical Neurophysiology 2003;114:416-25. [DOI: 10.1016/s1388-2457(02)00411-x] [Cited by in Crossref: 107] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
645 Das RN, Roy K, Popelier PL. Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines. Chemosphere 2015;139:163-73. [PMID: 26117201 DOI: 10.1016/j.chemosphere.2015.06.022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
646 Döring C, Lesot M, Kruse R. Data analysis with fuzzy clustering methods. Computational Statistics & Data Analysis 2006;51:192-214. [DOI: 10.1016/j.csda.2006.04.030] [Cited by in Crossref: 75] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
647 Kozak M, Krzanowski W, Tartanus M. Use of the correlation coefficient in agricultural sciences: problems, pitfalls and how to deal with them. An Acad Bras Ciênc 2012;84:1147-56. [DOI: 10.1590/s0001-37652012000400029] [Cited by in Crossref: 15] [Article Influence: 1.5] [Reference Citation Analysis]
648 Raghuraj R, Lakshminarayanan S. Variable predictive models—A new multivariate classification approach for pattern recognition applications. Pattern Recognition 2009;42:7-16. [DOI: 10.1016/j.patcog.2008.07.005] [Cited by in Crossref: 21] [Article Influence: 1.6] [Reference Citation Analysis]
649 Lam K, Choo E, Wedley W. Linear goal programming in estimation of classification probability. European Journal of Operational Research 1993;67:101-10. [DOI: 10.1016/0377-2217(93)90325-h] [Cited by in Crossref: 10] [Article Influence: 0.3] [Reference Citation Analysis]
650 Malmasi S, Dras M. Native Language Identification With Classifier Stacking and Ensembles. Computational Linguistics 2018;44:403-46. [DOI: 10.1162/coli_a_00323] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
651 Savich A, Moussa M, Areibi S. A scalable pipelined architecture for real-time computation of MLP-BP neural networks. Microprocessors and Microsystems 2012;36:138-50. [DOI: 10.1016/j.micpro.2010.12.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 2.1] [Reference Citation Analysis]
652 Zhong G, Cheriet M. Tensor representation learning based image patch analysis for text identification and recognition. Pattern Recognition 2015;48:1211-24. [DOI: 10.1016/j.patcog.2014.09.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
653 von Schmidt B, Klawonn F. Extracting Fuzzy Classification Rules from Fuzzy Clusters on the Basis of Separating Hyperplanes. In: Casillas J, Cordón O, Herrera F, Magdalena L, editors. Interpretability Issues in Fuzzy Modeling. Berlin: Springer Berlin Heidelberg; 2003. pp. 621-43. [DOI: 10.1007/978-3-540-37057-4_27] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
654 Merenda PF. Measurements in the future: beyond the 20th century. Psychol Rep 2003;92:209-17. [PMID: 12674284 DOI: 10.2466/pr0.2003.92.1.209] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
655 Meng J, Cadusch JJ, Crozier KB. Plasmonic Mid-Infrared Filter Array-Detector Array Chemical Classifier Based on Machine Learning. ACS Photonics 2021;8:648-57. [DOI: 10.1021/acsphotonics.0c01786] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
656 Wang CH, Abe K, Abe K, Abe N, Abe T, Adachi I, Aihara H, Akatsu M, Aso T, Aulchenko V, Aushev T, Bahinipati S, Bakich AM, Ban Y, Banerjee S, Blyth S, Bondar A, Bozek A, Bračko M, Browder TE, Chao Y, Chen K, Cheon BG, Chistov R, Choi S, Choi Y, Chuvikov A, Cole S, Danilov M, Dong LY, Eidelman S, Eiges V, Gershon T, Golob B, Haba J, Hastings NC, Hayashii H, Hazumi M, Hinz L, Hokuue T, Hoshi Y, Hou W, Hsiung YB, Huang H, Iijima T, Inami K, Ishikawa A, Itoh R, Iwasaki H, Iwasaki M, Kang JH, Kang JS, Kapusta P, Katayama N, Kawai H, Kawasaki T, Kichimi H, Kim HJ, Kim JH, Kim SK, Koppenburg P, Korpar S, Križan P, Krokovny P, Kwon Y, Leder G, Lee SH, Lesiak T, Li J, Limosani A, Lin S, Liventsev D, Macnaughton J, Majumder G, Mandl F, Matsumoto T, Mitaroff W, Miyabayashi K, Miyata H, Mohapatra D, Moloney GR, Mori T, Nagamine T, Nagasaka Y, Nakano E, Nakao M, Natkaniec Z, Nishida S, Nitoh O, Ogawa S, Ohshima T, Okabe T, Okuno S, Olsen SL, Ostrowicz W, Ozaki H, Palka H, Park CW, Park H, Parslow N, Piilonen LE, Poluektov A, Rozanska M, Sagawa H, Sakai Y, Schneider O, Schümann J, Semenov S, Senyo K, Sidorov V, Singh JB, Soni N, Stamen R, Stanič S, Starič M, Sumisawa K, Sumiyoshi T, Suzuki S, Tajima O, Takasaki F, Tamura N, Tanaka M, Teramoto Y, Tomura T, Tsukamoto T, Uehara S, Ueno K, Uglov T, Uno S, Varner G, Wang CC, Wang M, Watanabe Y, Yabsley BD, Yamada Y, Yamaguchi A, Yamashita Y, Yamauchi M, Yanai H, Ying J, Yusa Y, Zhang CC, Zhang ZP, Žontar D. Measurement of the branching fractions for BωK and Bωπ. Phys Rev D 2004;70. [DOI: 10.1103/physrevd.70.012001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
657 Rajalahti T, Arneberg R, Kroksveen AC, Berle M, Myhr K, Kvalheim OM. Discriminating Variable Test and Selectivity Ratio Plot: Quantitative Tools for Interpretation and Variable (Biomarker) Selection in Complex Spectral or Chromatographic Profiles. Anal Chem 2009;81:2581-90. [DOI: 10.1021/ac802514y] [Cited by in Crossref: 151] [Cited by in F6Publishing: 120] [Article Influence: 11.6] [Reference Citation Analysis]
658 Åberg KM, Jacobsson SP. On the separation of classes: can the Fisher criterion be improved upon when classes have unequal variance-covariance structure? J Chemometrics 2010;24:650-4. [DOI: 10.1002/cem.1326] [Reference Citation Analysis]
659 Jarvis RM, Johnson HE, Olembe E, Panneerselvam A, Malik MA, Afzaal M, O'brien P, Goodacre R. Towards quantitatively reproducible substrates for SERS. Analyst 2008;133:1449. [DOI: 10.1039/b800340h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
660 Xu T, Zhang R, Zhang X. Estimation of spatial-functional based-line logit model for multivariate longitudinal data. Comput Stat. [DOI: 10.1007/s00180-022-01217-4] [Reference Citation Analysis]
661 Laitinen EK. Classification accuracy and correlation: LDA in failure prediction. European Journal of Operational Research 2007;183:210-25. [DOI: 10.1016/j.ejor.2006.09.054] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
662 Farrar CR, Doebling SW. Damage Detection and Evaluation II. In: Silva JMM, Maia NMM, editors. Modal Analysis and Testing. Dordrecht: Springer Netherlands; 1999. pp. 345-78. [DOI: 10.1007/978-94-011-4503-9_17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
663 Bondarenko I, Treiger B, Van Grieken R, Van Espen P. IDAS: a Windows based software package for cluster analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 1996;51:441-56. [DOI: 10.1016/0584-8547(95)01448-9] [Cited by in Crossref: 79] [Cited by in F6Publishing: 64] [Article Influence: 3.0] [Reference Citation Analysis]
664 Yi Y, Cheng Y, Xu C. Mining human movement evolution for complex action recognition. Expert Systems with Applications 2017;78:259-72. [DOI: 10.1016/j.eswa.2017.02.020] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
665 Ramos-guajardo AB, Grzegorzewski P. Distance-based linear discriminant analysis for interval-valued data. Information Sciences 2016;372:591-607. [DOI: 10.1016/j.ins.2016.08.068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
666 Hand DJ, Yu K. Idiot's Bayes?Not So Stupid After All? Int Statistical Rev 2001;69:385-98. [DOI: 10.1111/j.1751-5823.2001.tb00465.x] [Cited by in Crossref: 211] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
667 Rioux P, Nakache J. Discriminant analysis: Methods and program. Computer Programs in Biomedicine 1979;10:43-7. [DOI: 10.1016/0010-468x(79)90049-7] [Cited by in Crossref: 5] [Article Influence: 0.1] [Reference Citation Analysis]
668 Douillard B, Fox D, Ramos F, Durrant-whyte H. Classification and Semantic Mapping of Urban Environments. The International Journal of Robotics Research 2011;30:5-32. [DOI: 10.1177/0278364910373409] [Cited by in Crossref: 49] [Cited by in F6Publishing: 7] [Article Influence: 4.1] [Reference Citation Analysis]
669 Wang C, Yu J, Tao D. High-level attributes modeling for indoor scenes classification. Neurocomputing 2013;121:337-43. [DOI: 10.1016/j.neucom.2013.05.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
670 Falcón-Ordaz J, Octavio-Aguilar P, Estrella-Cruz I. Morphological and morphometric variations of Dicrocoelium rileyi (Digenea: Dicrocoelidae) parasitizing Tadarida brasiliensis (Chiroptera: Molosiidae) in Mexico. An Acad Bras Cienc 2019;91:e20180436. [PMID: 31778450 DOI: 10.1590/0001-3765201920180436] [Reference Citation Analysis]
671 Ataş M, Yeşilnacar Mİ, Demir Yetiş A. Novel machine learning techniques based hybrid models (LR-KNN-ANN and SVM) in prediction of dental fluorosis in groundwater. Environ Geochem Health 2021. [PMID: 34739652 DOI: 10.1007/s10653-021-01148-x] [Reference Citation Analysis]
672 Zhou A, Xie S, Zhang Y, Chuan J, Tang H, Li X, Zhang L, Xu G, Zou J. Interaction of environmental eukaryotic microorganisms and fungi in the pond-cultured carps: new insights into the potential pathogenic fungi in the freshwater aquaculture. Environ Sci Pollut Res Int 2021;28:38839-54. [PMID: 33745047 DOI: 10.1007/s11356-021-13231-y] [Reference Citation Analysis]
673 Szabó É, Gergely S, Salgó A. Linear discriminant analysis, partial least squares discriminant analysis, and soft independent modeling of class analogy of experimental and simulated near-infrared spectra of a cultivation medium for mammalian cells: simulation of spectra for model building. Journal of Chemometrics 2018;32:e3005. [DOI: 10.1002/cem.3005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
674 Tryon CA, Kuhn SL, Slimak L, Logan MAV, Balkan-atlı N. Scale in tephrostratigraphic correlation: An example from Turkish Pleistocene archaeological sites. Quaternary International 2011;246:124-33. [DOI: 10.1016/j.quaint.2011.05.039] [Cited by in Crossref: 8] [Article Influence: 0.7] [Reference Citation Analysis]
675 Kohlmann B, Nix H, Shaw DD. Environmental predictions and distributional limits of chromosomal taxa in the Australian grasshopperCaledia captiva (F.). Oecologia 1988;75:483-93. [DOI: 10.1007/bf00776409] [Cited by in Crossref: 33] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
676 Lee T, Chiu C, Lu C, Chen I. Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications 2002;23:245-54. [DOI: 10.1016/s0957-4174(02)00044-1] [Cited by in Crossref: 199] [Article Influence: 10.0] [Reference Citation Analysis]
677 Ucchesu M, Sarigu M, Vais CD, Sanna I, d’Hallewin G, Grillo O, Bacchetta G. First finds of Prunus domestica L. in Italy from the Phoenician and Punic periods (6th–2nd centuries bc). Veget Hist Archaeobot 2017;26:539-49. [DOI: 10.1007/s00334-017-0622-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 3.2] [Reference Citation Analysis]
678 Hasan MA, Chauhan VS, Krishnan S. Beat-to-beat T-wave alternans detection using the Ensemble Empirical Mode Decomposition method. Computers in Biology and Medicine 2016;77:1-8. [DOI: 10.1016/j.compbiomed.2016.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
679 Jiang L, Xie L, Wang S. Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis. Chinese Journal of Chemical Engineering 2006;14:343-8. [DOI: 10.1016/s1004-9541(06)60081-5] [Cited by in Crossref: 5] [Article Influence: 0.3] [Reference Citation Analysis]
680 Santafé G, Lozano JA, Larrañaga P. Discriminative Learning of Bayesian Network Classifiers via the TM Algorithm. In: Godo L, editor. Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Berlin: Springer Berlin Heidelberg; 2005. pp. 148-60. [DOI: 10.1007/11518655_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
681 Leon CT, Shaw DR, Bruce LM, Watson C. Effect of purple (Cyperus rotundus) and yellow nutsedge (C. esculentus) on growth and reflectance characteristics of cotton and soybean. Weed Science 2003;51:557-64. [DOI: 10.1614/0043-1745(2003)051[0557:eopcra]2.0.co;2] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
682 Rivet B, Cecotti H, Perrin M, Maby E, Mattout J. Adaptive training session for a P300 speller brain-computer interface. J Physiol Paris 2011;105:123-9. [PMID: 21843639 DOI: 10.1016/j.jphysparis.2011.07.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
683 Khediri KB, Charfeddine L, Youssef SB. Islamic versus conventional banks in the GCC countries: A comparative study using classification techniques. Research in International Business and Finance 2015;33:75-98. [DOI: 10.1016/j.ribaf.2014.07.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
684 Moraes ECC, Ferreira DD, Vitor GB, Barbosa BHG. Data clustering based on principal curves. Adv Data Anal Classif 2020;14:77-96. [DOI: 10.1007/s11634-019-00363-w] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
685 Zopounidis C, Doumpos M. Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research 2002;138:229-46. [DOI: 10.1016/s0377-2217(01)00243-0] [Cited by in Crossref: 392] [Cited by in F6Publishing: 1] [Article Influence: 19.6] [Reference Citation Analysis]
686 Forina M, Lanteri S, Esteban Díez I. New index for clustering tendency. Analytica Chimica Acta 2001;446:59-70. [DOI: 10.1016/s0003-2670(01)01033-9] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
687 Bevilacqua M, Bucci R, Magrì AD, Magrì AL, Marini F. Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: A case study. Analytica Chimica Acta 2012;717:39-51. [DOI: 10.1016/j.aca.2011.12.035] [Cited by in Crossref: 73] [Cited by in F6Publishing: 48]