BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kneidl J, Löffler B, Erat MC, Kalinka J, Peters G, Roth J, Barczyk K. Soluble CD163 promotes recognition, phagocytosis and killing of Staphylococcus aureus via binding of specific fibronectin peptides. Cell Microbiol. 2012;14:914-936. [PMID: 22309204 DOI: 10.1111/j.1462-5822.2012.01766.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Gao J, Song L, Li D, Peng L, Ding H. Clinical value of haptoglobin and soluble CD163 testing for the differential diagnosis of tuberculous and malignant pleural effusions. Medicine (Baltimore). 2019;98:e17416. [PMID: 31626097 DOI: 10.1097/md.0000000000017416] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
2 Graversen JH, Moestrup SK. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163. Membranes (Basel) 2015;5:228-52. [PMID: 26111002 DOI: 10.3390/membranes5020228] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
3 Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2015;308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 8.1] [Reference Citation Analysis]
4 Kneidl J, Mysore V, Geraci J, Tuchscherr L, Löffler B, Holzinger D, Roth J, Barczyk-Kahlert K. Soluble CD163 masks fibronectin-binding protein A-mediated inflammatory activation of Staphylococcus aureus infected monocytes. Cell Microbiol 2014;16:364-77. [PMID: 24118665 DOI: 10.1111/cmi.12225] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
5 Zhi Y, Gao P, Xin X, Li W, Ji L, Zhang L, Zhang X, Zhang J. Clinical significance of sCD163 and its possible role in asthma (Review). Mol Med Rep 2017;15:2931-9. [PMID: 28350095 DOI: 10.3892/mmr.2017.6393] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
6 Pombinho R, Sousa S, Cabanes D. Scavenger Receptors: Promiscuous Players during Microbial Pathogenesis. Crit Rev Microbiol 2018;44:685-700. [PMID: 30318962 DOI: 10.1080/1040841X.2018.1493716] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
7 Ho CM, Chen CL, Chang CH, Lee MR, Wang JY, Hu RH, Lee PH. Circulatory Inflammatory Mediators in the Prediction of Anti-Tuberculous Drug-Induced Liver Injury Using RUCAM for Causality Assessment. Biomedicines 2021;9:891. [PMID: 34440095 DOI: 10.3390/biomedicines9080891] [Reference Citation Analysis]
8 Gulati A, Kaur D, Krishna Prasad GVR, Mukhopadhaya A. PRR Function of Innate Immune Receptors in Recognition of Bacteria or Bacterial Ligands. In: Chattopadhyay K, Basu SC, editors. Biochemical and Biophysical Roles of Cell Surface Molecules. Singapore: Springer; 2018. pp. 255-80. [DOI: 10.1007/978-981-13-3065-0_18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
9 Fischer-Riepe L, Daber N, Schulte-Schrepping J, Véras De Carvalho BC, Russo A, Pohlen M, Fischer J, Chasan AI, Wolf M, Ulas T, Glander S, Schulz C, Skryabin B, Wollbrink Dipl-Ing A, Steingraeber N, Stremmel C, Koehle M, Gärtner F, Vettorazzi S, Holzinger D, Gross J, Rosenbauer F, Stoll M, Niemann S, Tuckermann J, Schultze JL, Roth J, Barczyk-Kahlert K. CD163 expression defines specific, IRF8-dependent, immune-modulatory macrophages in the bone marrow. J Allergy Clin Immunol 2020;146:1137-51. [PMID: 32199911 DOI: 10.1016/j.jaci.2020.02.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Fjeldborg K, Christiansen T, Bennetzen M, J Møller H, Pedersen SB, Richelsen B. The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity (Silver Spring) 2013;21:2437-43. [PMID: 23512476 DOI: 10.1002/oby.20376] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 6.3] [Reference Citation Analysis]
11 Bessa Pereira C, Bocková M, Santos RF, Santos AM, Martins de Araújo M, Oliveira L, Homola J, Carmo AM. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain. Front Immunol 2016;7:416. [PMID: 27790215 DOI: 10.3389/fimmu.2016.00416] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
12 Yu X, Guo C, Fisher PB, Subjeck JR, Wang XY. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology. Adv Cancer Res 2015;128:309-64. [PMID: 26216637 DOI: 10.1016/bs.acr.2015.04.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 7.6] [Reference Citation Analysis]
13 Nielsen MC, Hvidbjerg Gantzel R, Clària J, Trebicka J, Møller HJ, Grønbæk H. Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure. Cells 2020;9:E1175. [PMID: 32397365 DOI: 10.3390/cells9051175] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
14 Suzuki Y, Enomoto Y, Yokomura K, Hozumi H, Kono M, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Suda T. Soluble hemoglobin scavenger receptor CD163 (sCD163) predicts mortality of community-acquired pneumonia. J Infect 2016;73:375-7. [PMID: 27422701 DOI: 10.1016/j.jinf.2016.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
15 Shiratori H, Feinweber C, Luckhardt S, Linke B, Resch E, Geisslinger G, Weigert A, Parnham MJ. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol 2017;88:58-68. [PMID: 28600970 DOI: 10.1016/j.molimm.2017.05.027] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 9.8] [Reference Citation Analysis]
16 Liu Q, Ou Q, Chen H, Gao Y, Liu Y, Xu Y, Ruan Q, Zhang W, Shao L. Differential expression and predictive value of monocyte scavenger receptor CD163 in populations with different tuberculosis infection statuses. BMC Infect Dis 2019;19:1006. [PMID: 31779590 DOI: 10.1186/s12879-019-4525-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
17 Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid Med Cell Longev. 2013;2013:523652. [PMID: 23781295 DOI: 10.1155/2013/523652] [Cited by in Crossref: 92] [Cited by in F6Publishing: 91] [Article Influence: 10.2] [Reference Citation Analysis]
18 Seifert A, Wozniak J, Düsterhöft S, Kasparek P, Sedlacek R, Dreschers S, Orlikowsky TW, Yildiz D, Ludwig A. The iRhom2/ADAM17 Axis Attenuates Bacterial Uptake by Phagocytes in a Cell Autonomous Manner. Int J Mol Sci 2020;21:E5978. [PMID: 32825187 DOI: 10.3390/ijms21175978] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Ye H, Wang LY, Zhao J, Wang K. Increased CD163 expression is associated with acute-on-chronic hepatitis B liver failure. World J Gastroenterol 2013; 19(18): 2818-2825 [PMID: 23687420 DOI: 10.3748/wjg.v19.i18.2818] [Cited by in CrossRef: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front Immunol 2019;10:2028. [PMID: 31507614 DOI: 10.3389/fimmu.2019.02028] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 12.7] [Reference Citation Analysis]
21 Münzenmayer L, Geiger T, Daiber E, Schulte B, Autenrieth SE, Fraunholz M, Wolz C. Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages. Cell Microbiol 2016;18:1172-83. [PMID: 26895738 DOI: 10.1111/cmi.12577] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
22 Tian P, Li J, Liu X, Li Y, Chen M, Ma Y, Zheng YQ, Fu Y, Zou H. Tandem alternative polyadenylation events of genes in non-eosinophilic nasal polyp tissue identified by high-throughput sequencing analysis. Int J Mol Med 2014;33:1423-30. [PMID: 24715051 DOI: 10.3892/ijmm.2014.1734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
23 D'Antoni ML, Byron MM, Chan P, Sailasuta N, Sacdalan C, Sithinamsuwan P, Tipsuk S, Pinyakorn S, Kroon E, Slike BM, Krebs SJ, Khadka VS, Chalermchai T, Kallianpur KJ, Robb M, Spudich S, Valcour V, Ananworanich J, Ndhlovu LC; RV254/SEARCH010, SEARCH011, and RV304/SEARCH013 Study Groups. Normalization of Soluble CD163 Levels After Institution of Antiretroviral Therapy During Acute HIV Infection Tracks with Fewer Neurological Abnormalities. J Infect Dis 2018;218:1453-63. [PMID: 29868826 DOI: 10.1093/infdis/jiy337] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
24 Thomsen HH, Møller HJ, Trolle C, Groth KA, Skakkebæk A, Bojesen A, Høst C, Gravholt CH. The macrophage low-grade inflammation marker sCD163 is modulated by exogenous sex steroids. Endocr Connect 2013;2:216-24. [PMID: 24148221 DOI: 10.1530/EC-13-0067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
25 Karrasch T, Brünnler T, Hamer OW, Schmid K, Voelk M, Herfarth H, Buechler C. Soluble CD163 is increased in patients with acute pancreatitis independent of disease severity. Exp Mol Pathol 2015;99:236-9. [PMID: 26209500 DOI: 10.1016/j.yexmp.2015.07.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
26 Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, Whitelaw CBA, Archibald AL. Pigs Lacking the Scavenger Receptor Cysteine-Rich Domain 5 of CD163 Are Resistant to Porcine Reproductive and Respiratory Syndrome Virus 1 Infection. J Virol 2018;92:e00415-18. [PMID: 29925651 DOI: 10.1128/JVI.00415-18] [Cited by in Crossref: 61] [Cited by in F6Publishing: 44] [Article Influence: 15.3] [Reference Citation Analysis]
27 Rødgaard-Hansen S, Rafique A, Christensen PA, Maniecki MB, Sandahl TD, Nexø E, Møller HJ. A soluble form of the macrophage-related mannose receptor (MR/CD206) is present in human serum and elevated in critical illness. Clin Chem Lab Med 2014;52:453-61. [PMID: 24114918 DOI: 10.1515/cclm-2013-0451] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 6.5] [Reference Citation Analysis]
28 Alvarado-Vazquez PA, Bernal L, Paige CA, Grosick RL, Moracho Vilrriales C, Ferreira DW, Ulecia-Morón C, Romero-Sandoval EA. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. Immunobiology 2017;222:900-12. [PMID: 28545809 DOI: 10.1016/j.imbio.2017.05.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
29 Fjeldborg K, Moller HJ, Richelsen B, Pedersen SB. Regulation of CD163 mRNA and soluble CD163 protein in human adipose tissue in vitro. Journal of Molecular Endocrinology 2014;53:227-35. [DOI: 10.1530/jme-14-0089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
30 Etzerodt A, Rasmussen MR, Svendsen P, Chalaris A, Schwarz J, Galea I, Møller HJ, Moestrup SK. Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages. J Biol Chem 2014;289:778-88. [PMID: 24275664 DOI: 10.1074/jbc.M113.520213] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
31 Sarkar S, Chelvarajan L, Go YY, Cook F, Artiushin S, Mondal S, Anderson K, Eberth J, Timoney PJ, Kalbfleisch TS, Bailey E, Balasuriya UB. Equine Arteritis Virus Uses Equine CXCL16 as an Entry Receptor. J Virol 2016;90:3366-84. [PMID: 26764004 DOI: 10.1128/JVI.02455-15] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
32 Rødgaard-Hansen S, Rafique A, Weis N, Wejse C, Nielsen H, Pedersen SS, Møller HJ, Kronborg G. Increased concentrations of the soluble mannose receptor in serum from patients with pneumococcal bacteraemia, and prediction of survival. Infect Dis (Lond) 2015;47:203-8. [PMID: 25650730 DOI: 10.3109/00365548.2014.984321] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
33 Etzerodt A, Berg RM, Plovsing RR, Andersen MN, Bebien M, Habbeddine M, Lawrence T, Møller HJ, Moestrup SK. Soluble ectodomain CD163 and extracellular vesicle-associated CD163 are two differently regulated forms of 'soluble CD163' in plasma. Sci Rep 2017;7:40286. [PMID: 28084321 DOI: 10.1038/srep40286] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
34 Bhattacharya A, Ashouri R, Fangman M, Mazur A, Garett T, Doré S. Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021;22:1108. [PMID: 33498620 DOI: 10.3390/ijms22031108] [Reference Citation Analysis]
35 Aljohmani A, Yildiz D. A Disintegrin and Metalloproteinase-Control Elements in Infectious Diseases. Front Cardiovasc Med 2020;7:608281. [PMID: 33392273 DOI: 10.3389/fcvm.2020.608281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Luvanda MK, Posch W, Vosper J, Zaderer V, Noureen A, Lass-Flörl C, Wilflingseder D. Dexamethasone Promotes Aspergillus fumigatus Growth in Macrophages by Triggering M2 Repolarization via Targeting PKM2. J Fungi (Basel) 2021;7:70. [PMID: 33498318 DOI: 10.3390/jof7020070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Speziale P, Arciola CR, Pietrocola G. Fibronectin and Its Role in Human Infective Diseases. Cells 2019;8:E1516. [PMID: 31779172 DOI: 10.3390/cells8121516] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
38 Nielsen MC, Andersen MN, Rittig N, Rødgaard-Hansen S, Grønbaek H, Moestrup SK, Møller HJ, Etzerodt A. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol 2019;106:1129-38. [PMID: 31242338 DOI: 10.1002/JLB.3A1218-500R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
39 Etzerodt A, Moestrup SK. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal. 2013;18:2352-2363. [PMID: 22900885 DOI: 10.1089/ars.2012.4834] [Cited by in Crossref: 218] [Cited by in F6Publishing: 214] [Article Influence: 21.8] [Reference Citation Analysis]
40 Nguyen AT, Wang K, Hu G, Wang X, Miao Z, Azevedo JA, Suh E, Van Deerlin VM, Choi D, Roeder K, Li M, Lee EB. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathol 2020;140:477-93. [PMID: 32840654 DOI: 10.1007/s00401-020-02200-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
41 Suzuki Y, Shirai M, Asada K, Miwa S, Karayama M, Nakamura Y, Inui N, Shirai T, Hayakawa H, Baba S, Suda T. Utility of Macrophage-activated Marker CD163 for Diagnosis and Prognosis in Pulmonary Tuberculosis. Annals ATS 2017;14:57-64. [DOI: 10.1513/annalsats.201607-528oc] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
42 Zhang J, Song L, Pedersen DV, Li A, Lambris JD, Andersen GR, Mollnes TE, Ma YJ, Garred P. Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. Elife 2020;9:e60908. [PMID: 32909942 DOI: 10.7554/eLife.60908] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Martinez VG, Escoda-Ferran C, Tadeu Simões I, Arai S, Orta Mascaró M, Carreras E, Martínez-Florensa M, Yelamos J, Miyazaki T, Lozano F. The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression. Cell Mol Immunol 2014;11:343-54. [PMID: 24583716 DOI: 10.1038/cmi.2014.12] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
44 Le Y, Gao H, Richards W, Zhao L, Bleday R, Clancy T, Zhu Z. VentX expression in tumor-associated macrophages promotes phagocytosis and immunity against pancreatic cancers. JCI Insight 2020;5:137088. [PMID: 32573491 DOI: 10.1172/jci.insight.137088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]