BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 2010;12:1576-88. [PMID: 20557315 DOI: 10.1111/j.1462-5822.2010.01490.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Brittan JL, Buckeridge TJ, Finn A, Kadioglu A, Jenkinson HF. Pneumococcal neuraminidase A: an essential upper airway colonization factor for Streptococcus pneumoniae. Mol Oral Microbiol 2012;27:270-83. [PMID: 22759312 DOI: 10.1111/j.2041-1014.2012.00658.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 5.2] [Reference Citation Analysis]
2 Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2019;9:462. [PMID: 31998664 DOI: 10.3389/fcimb.2019.00462] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
3 Zhang K, Shi M, Niu Z, Chen X, Wei J, Miao Z, Zhao W, Chen Y. Activation of brain endothelium by Escherichia coli K1 virulence factor cglD promotes polymorphonuclear leukocyte transendothelial migration. Med Microbiol Immunol 2019;208:59-68. [DOI: 10.1007/s00430-018-0560-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
4 Nishiyama K, Yamamoto Y, Sugiyama M, Takaki T, Urashima T, Fukiya S, Yokota A, Okada N, Mukai T. Bifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation. mBio 2017;8:e00928-17. [PMID: 28974612 DOI: 10.1128/mBio.00928-17] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
5 Kim BJ, Hancock BM, Bermudez A, Del Cid N, Reyes E, van Sorge NM, Lauth X, Smurthwaite CA, Hilton BJ, Stotland A, Banerjee A, Buchanan J, Wolkowicz R, Traver D, Doran KS. Bacterial induction of Snail1 contributes to blood-brain barrier disruption. J Clin Invest 2015;125:2473-83. [PMID: 25961453 DOI: 10.1172/JCI74159] [Cited by in Crossref: 69] [Cited by in F6Publishing: 46] [Article Influence: 9.9] [Reference Citation Analysis]
6 Rahman NA, Sharudin A, Diah S, Muharram SH. Serotyping of Brunei pneumococcal clinical strains and the investigation of their capability to adhere and invade a brain endothelium model. Microb Pathog 2017;110:352-8. [PMID: 28711510 DOI: 10.1016/j.micpath.2017.07.021] [Reference Citation Analysis]
7 Pettini E, Fiorino F, Cuppone AM, Iannelli F, Medaglini D, Pozzi G. Interferon-γ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae. Front Microbiol 2015;6:1340. [PMID: 26648922 DOI: 10.3389/fmicb.2015.01340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
8 Anil A, Banerjee A. Pneumococcal Encounter With the Blood-Brain Barrier Endothelium. Front Cell Infect Microbiol 2020;10:590682. [PMID: 33224900 DOI: 10.3389/fcimb.2020.590682] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Doran KS, Banerjee A, Disson O, Lecuit M. Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 2013;3:a010090. [PMID: 23818514 DOI: 10.1101/cshperspect.a010090] [Cited by in Crossref: 78] [Cited by in F6Publishing: 53] [Article Influence: 8.7] [Reference Citation Analysis]
10 Ogunniyi AD, Paton JC. Vaccine Potential of Pneumococcal Proteins. Streptococcus Pneumoniae. Elsevier; 2015. pp. 59-78. [DOI: 10.1016/b978-0-12-410530-0.00004-1] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
11 Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013;2013:480739. [PMID: 23997430 DOI: 10.1155/2013/480739] [Cited by in Crossref: 219] [Cited by in F6Publishing: 262] [Article Influence: 24.3] [Reference Citation Analysis]
12 Lüttge M, Fulde M, Talay SR, Nerlich A, Rohde M, Preissner KT, Hammerschmidt S, Steinert M, Mitchell TJ, Chhatwal GS, Bergmann S. Streptococcus pneumoniae induces exocytosis of Weibel-Palade bodies in pulmonary endothelial cells. Cell Microbiol 2012;14:210-25. [PMID: 21999205 DOI: 10.1111/j.1462-5822.2011.01712.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. FEMS Immunol Med Microbiol 2011;63:297-318. [PMID: 22092557 DOI: 10.1111/j.1574-695X.2011.00867.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
14 Deng L, Mu R, Weston TA, Spencer BL, Liles RP, Doran KS. Characterization of a Two-Component System Transcriptional Regulator, LtdR, That Impacts Group B Streptococcal Colonization and Disease. Infect Immun 2018;86:e00822-17. [PMID: 29685987 DOI: 10.1128/IAI.00822-17] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
15 Imaki H, Tomoyasu T, Yamamoto N, Taue C, Masuda S, Takao A, Maeda N, Tabata A, Whiley RA, Nagamune H. Identification and characterization of a novel secreted glycosidase with multiple glycosidase activities in Streptococcus intermedius. J Bacteriol 2014;196:2817-26. [PMID: 24858187 DOI: 10.1128/JB.01727-14] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hirose Y, Yamaguchi M, Goto K, Sumitomo T, Nakata M, Kawabata S. Competence-induced protein Ccs4 facilitates pneumococcal invasion into brain tissue and virulence in meningitis. Virulence 2018;9:1576-87. [PMID: 30251911 DOI: 10.1080/21505594.2018.1526530] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
17 Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27:691-726. [PMID: 25278572 DOI: 10.1128/cmr.00118-13] [Cited by in Crossref: 174] [Cited by in F6Publishing: 105] [Article Influence: 24.9] [Reference Citation Analysis]
18 Chang YC, Uchiyama S, Varki A, Nizet V. Leukocyte inflammatory responses provoked by pneumococcal sialidase. mBio 2012;3:e00220-11. [PMID: 22215570 DOI: 10.1128/mBio.00220-11] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
19 Al-Obaidi MMJ, Desa MNM. Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. Cell Mol Neurobiol 2018;38:1349-68. [PMID: 30117097 DOI: 10.1007/s10571-018-0609-2] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 11.5] [Reference Citation Analysis]
20 Yang L, Connaris H, Potter JA, Taylor GL. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor. BMC Struct Biol 2015;15:15. [PMID: 26289431 DOI: 10.1186/s12900-015-0042-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
21 Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012;12:200. [PMID: 22963456 DOI: 10.1186/1471-2180-12-200] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
22 Kim BJ, Bee OB, McDonagh MA, Stebbins MJ, Palecek SP, Doran KS, Shusta EV. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. mSphere 2017;2:e00398-17. [PMID: 29104935 DOI: 10.1128/mSphere.00398-17] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
23 Thornton JA, Tullos NA, Sanders ME, Ridout G, Wang YD, Taylor SD, McDaniel LS, Marquart ME. Differential bacterial gene expression during experimental pneumococcal endophthalmitis. Ophthalmic Res 2015;53:149-61. [PMID: 25791614 DOI: 10.1159/000371713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
24 van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 2012;7:383-94. [PMID: 22393891 DOI: 10.2217/fmb.12.1] [Cited by in Crossref: 66] [Cited by in F6Publishing: 57] [Article Influence: 6.6] [Reference Citation Analysis]
25 Yamaguchi M, Hirose Y, Nakata M, Uchiyama S, Yamaguchi Y, Goto K, Sumitomo T, Lewis AL, Kawabata S, Nizet V. Evolutionary inactivation of a sialidase in group B Streptococcus. Sci Rep 2016;6:28852. [PMID: 27352769 DOI: 10.1038/srep28852] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
26 Löfling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cell Microbiol 2011;13:186-97. [PMID: 21199258 DOI: 10.1111/j.1462-5822.2010.01560.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.4] [Reference Citation Analysis]
27 Jiménez-Munguía I, Pulzova L, Kanova E, Tomeckova Z, Majerova P, Bhide K, Comor L, Sirochmanova I, Kovac A, Bhide M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci Rep 2018;8:5231. [PMID: 29588455 DOI: 10.1038/s41598-018-23485-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
28 Müller A, Schramm DB, Kleynhans J, de Gouveia L, Meiring S, Ramette A, von Gottberg A, Hathaway LJ. Cytokine response in cerebrospinal fluid of meningitis patients and outcome associated with pneumococcal serotype. Sci Rep 2021;11:19920. [PMID: 34620928 DOI: 10.1038/s41598-021-99190-3] [Reference Citation Analysis]
29 Roy S, Honma K, Douglas CWI, Sharma A, Stafford GP. Role of sialidase in glycoprotein utilization by Tannerella forsythia. Microbiology (Reading) 2011;157:3195-202. [PMID: 21885482 DOI: 10.1099/mic.0.052498-0] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 3.7] [Reference Citation Analysis]
30 Noorbakhsh F, Aminian A, Power C. Application of “Omics” Technologies for Diagnosis and Pathogenesis of Neurological Infections. Curr Neurol Neurosci Rep 2015;15. [DOI: 10.1007/s11910-015-0580-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
31 Janapatla RP, Chen CL, Hsu MH, Liao WT, Chiu CH. Immunization with pneumococcal neuraminidases NanA, NanB and NanC to generate neutralizing antibodies and to increase survival in mice. J Med Microbiol 2018;67:709-23. [PMID: 29557769 DOI: 10.1099/jmm.0.000724] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
32 Jiménez-Munguía I, Tomečková Z, Mochnáčová E, Bhide K, Majerová P, Bhide M. Transcriptomic analysis of human brain microvascular endothelial cells exposed to laminin binding protein (adhesion lipoprotein) and Streptococcus pneumoniae. Sci Rep 2021;11:7970. [PMID: 33846455 DOI: 10.1038/s41598-021-87021-4] [Reference Citation Analysis]
33 Sharapova Y, Suplatov D, Švedas V. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. FEBS J 2018;285:2428-45. [PMID: 29704878 DOI: 10.1111/febs.14486] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
34 Gut H, Xu G, Taylor GL, Walsh MA. Structural Basis for Streptococcus pneumoniae NanA Inhibition by Influenza Antivirals Zanamivir and Oseltamivir Carboxylate. Journal of Molecular Biology 2011;409:496-503. [DOI: 10.1016/j.jmb.2011.04.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
35 Brissette CA, Kees ED, Burke MM, Gaultney RA, Floden AM, Watt JA. The multifaceted responses of primary human astrocytes and brain microvascular endothelial cells to the Lyme disease spirochete, Borrelia burgdorferi. ASN Neuro 2013;5:221-9. [PMID: 23883071 DOI: 10.1042/AN20130010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
36 Vo LK, Tsuzuki T, Kamada-futagami Y, Chigwechokha PK, Honda A, Oishi K, Komatsu M, Shiozaki K. Desialylation by Edwardsiella tarda is the initial step in the regulation of its invasiveness. Biochemical Journal 2019;476:3183-96. [DOI: 10.1042/bcj20190367] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Eneva R, Engibarov S, Abrashev R, Krumova E, Angelova M. Sialic acids, sialoconjugates and enzymes of their metabolism in fungi. Biotechnology & Biotechnological Equipment 2021;35:364-75. [DOI: 10.1080/13102818.2021.1879678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr 2019;7. [PMID: 30873934 DOI: 10.1128/microbiolspec.GPP3-0004-2018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
39 Yamaguchi M, Nakata M, Sumioka R, Hirose Y, Wada S, Akeda Y, Sumitomo T, Kawabata S. Zinc metalloproteinase ZmpC suppresses experimental pneumococcal meningitis by inhibiting bacterial invasion of central nervous systems. Virulence 2017;8:1516-24. [PMID: 28489958 DOI: 10.1080/21505594.2017.1328333] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
40 Connaris H, Govorkova EA, Ligertwood Y, Dutia BM, Yang L, Tauber S, Taylor MA, Alias N, Hagan R, Nash AA, Webster RG, Taylor GL. Prevention of influenza by targeting host receptors using engineered proteins. Proc Natl Acad Sci U S A 2014;111:6401-6. [PMID: 24733924 DOI: 10.1073/pnas.1404205111] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
41 Gratz N, Loh LN, Mann B, Gao G, Carter R, Rosch J, Tuomanen EI. Pneumococcal neuraminidase activates TGF-β signalling. Microbiology (Reading) 2017;163:1198-207. [PMID: 28749326 DOI: 10.1099/mic.0.000511] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
42 Kim BJ, Shusta EV, Doran KS. Past and Current Perspectives in Modeling Bacteria and Blood-Brain Barrier Interactions. Front Microbiol 2019;10:1336. [PMID: 31263460 DOI: 10.3389/fmicb.2019.01336] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
43 Schmidt F, Kakar N, Meyer TC, Depke M, Masouris I, Burchhardt G, Gómez-Mejia A, Dhople V, Håvarstein LS, Sun Z, Moritz RL, Völker U, Koedel U, Hammerschmidt S. In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathog 2019;15:e1007987. [PMID: 31356624 DOI: 10.1371/journal.ppat.1007987] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
44 Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, Feuer R, Prasadarao NV, Doran KS. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun 2011;2:462. [PMID: 21897373 DOI: 10.1038/ncomms1474] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 7.5] [Reference Citation Analysis]
45 Dos Santos-Lima EKN, Cardoso KAPA, de Miranda PM, Pimentel ACM, de Carvalho-Filho PC, de Oliveira YA, de Moura-Costa LF, Olczak T, Gomes-Filho IS, Meyer RJ, Xavier MT, Trindade SC. In silico analysis as a strategy to identify candidate epitopes with human IgG reactivity to study Porphyromonas gingivalis virulence factors. AMB Express 2019;9:35. [PMID: 30859419 DOI: 10.1186/s13568-019-0757-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
46 Klugman KP, Black S, Dagan R, Malley R, Whitney CG. Pneumococcal conjugate vaccine and pneumococcal common protein vaccines. Vaccines. Elsevier; 2013. pp. 504-41. [DOI: 10.1016/b978-1-4557-0090-5.00032-x] [Cited by in Crossref: 7] [Article Influence: 0.8] [Reference Citation Analysis]
47 Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017;18:132-41. [PMID: 28092376 DOI: 10.1038/ni.3656] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 17.2] [Reference Citation Analysis]
48 McCombs JE, Kohler JJ. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling. Bioconjug Chem 2016;27:1013-22. [PMID: 26954852 DOI: 10.1021/acs.bioconjchem.6b00050] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
49 Klugman KP, Dagan R, Malley R, Whitney CG. Pneumococcal Conjugate Vaccine and Pneumococcal Common Protein Vaccines. Plotkin's Vaccines. Elsevier; 2018. pp. 773-815.e18. [DOI: 10.1016/b978-0-323-35761-6.00045-6] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
50 Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018;592:3865-97. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
51 Ruhanen H, Hurley D, Ghosh A, O'Brien KT, Johnston CR, Shields DC. Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: a computational survey. Front Microbiol 2014;5:4. [PMID: 24478765 DOI: 10.3389/fmicb.2014.00004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]