BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim JH, Shin HS, Lee SH, Lee I, Lee YS, Park JC, Kim YJ, Chung JB, Lee YC. Contrasting activity of Hedgehog and Wnt pathways according to gastric cancer cell differentiation: relevance of crosstalk mechanisms. Cancer Sci 2010;101:328-35. [PMID: 19930158 DOI: 10.1111/j.1349-7006.2009.01395.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Riquelme I, Saavedra K, Espinoza JA, Weber H, García P, Nervi B, Garrido M, Corvalán AH, Roa JC, Bizama C. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget 2015;6:24750-79. [PMID: 26267324 DOI: 10.18632/oncotarget.4990] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 13.0] [Reference Citation Analysis]
2 Saito T, Mitomi H, Imamhasan A, Hayashi T, Kurisaki-Arakawa A, Mitani K, Takahashi M, Kajiyama Y, Yao T. PTCH1 mutation is a frequent event in oesophageal basaloid squamous cell carcinoma. Mutagenesis 2015;30:297-301. [PMID: 25395299 DOI: 10.1093/mutage/geu072] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
3 Li Z, Li AD, Xu L, Bai DW, Hou KZ, Zheng HC, Qu XJ, Liu YP. SPARC expression in gastric cancer predicts poor prognosis: Results from a clinical cohort, pooled analysis and GSEA assay. Oncotarget 2016;7:70211-22. [PMID: 28053291 DOI: 10.18632/oncotarget.12191] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
4 Sremac M, Paic F, Grubelic Ravic K, Serman L, Pavicic Dujmovic A, Brcic I, Krznaric Z, Nikuseva Martic T. Aberrant expression of SFRP1, SFRP3, DVL2 and DVL3 Wnt signaling pathway components in diffuse gastric carcinoma. Oncol Lett 2021;22:822. [PMID: 34691249 DOI: 10.3892/ol.2021.13083] [Reference Citation Analysis]
5 Brechbiel J, Miller-Moslin K, Adjei AA. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer. Cancer Treat Rev. 2014;40:750-759. [PMID: 24613036 DOI: 10.1016/j.ctrv.2014.02.003] [Cited by in Crossref: 108] [Cited by in F6Publishing: 110] [Article Influence: 13.5] [Reference Citation Analysis]
6 Thompson M, Nejak-bowen K, Monga SPS. Crosstalk of the Wnt Signaling Pathway. In: Goss KH, Kahn M, editors. Targeting the Wnt Pathway in Cancer. New York: Springer; 2011. pp. 51-80. [DOI: 10.1007/978-1-4419-8023-6_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Zhang W, Tao H, Chen X, Sugimura H, Wang J, Zhou P. High expression of Wls is associated with lymph node metastasis and advanced TNM stage in gastric carcinomas. Pathol Int 2017;67:141-6. [PMID: 28110490 DOI: 10.1111/pin.12508] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
8 Giroux-Leprieur E, Costantini A, Ding VW, He B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int J Mol Sci 2018;19:E2835. [PMID: 30235830 DOI: 10.3390/ijms19092835] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
9 Salaritabar A, Berindan-neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA, Gulei D, Nabavi SF, Sureda A, Daglia M, Dehpour AR, Nabavi SM, Shirooie S. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research 2019;141:466-80. [DOI: 10.1016/j.phrs.2019.01.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
10 Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastrointestinal cancers. Vitam Horm 2012;88:461-72. [PMID: 22391316 DOI: 10.1016/B978-0-12-394622-5.00020-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
11 Kietzmann T. Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol. 2017;11:622-630. [PMID: 28126520 DOI: 10.1016/j.redox.2017.01.012] [Cited by in Crossref: 171] [Cited by in F6Publishing: 164] [Article Influence: 34.2] [Reference Citation Analysis]
12 Baharudin R, Tieng FYF, Lee LH, Ab Mutalib NS. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel) 2020;12:E445. [PMID: 32074995 DOI: 10.3390/cancers12020445] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
13 Geron L, Salomão KB, Borges KS, Andrade AF, Corrêa CAP, Scrideli CA, Tone LG. Molecular characterization of Wnt pathway and function of β-catenin overexpression in medulloblastoma cell lines. Cytotechnology 2018;70:1713-22. [PMID: 30374857 DOI: 10.1007/s10616-018-0260-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Xiao Q, Chen Z, Jin X, Mao R, Chen Z. The many postures of noncanonical Wnt signaling in development and diseases. Biomed Pharmacother 2017;93:359-69. [PMID: 28651237 DOI: 10.1016/j.biopha.2017.06.061] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
15 Bahreyni-toossi M, Dolat E, Khanbabaei H, Zafari N, Azimian H. microRNAs: Potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2019;816-818:111679. [DOI: 10.1016/j.mrfmmm.2019.111679] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Morris SL, Huang S. Crosstalk of the Wnt/β-catenin pathway with other pathways in cancer cells. Genes Dis 2016;3:41-7. [PMID: 27081668 DOI: 10.1016/j.gendis.2015.12.003] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
17 Roma J, Almazán-Moga A, Sánchez de Toledo J, Gallego S. Notch, wnt, and hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma 2012;2012:695603. [PMID: 22550422 DOI: 10.1155/2012/695603] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
18 Zinke J, Schneider FT, Harter PN, Thom S, Ziegler N, Toftgård R, Plate KH, Liebner S. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol Cancer 2015;14:17. [PMID: 25645196 DOI: 10.1186/s12943-015-0294-4] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 5.4] [Reference Citation Analysis]
19 Shahi MH, Rey JA, Castresana JS. The sonic hedgehog-GLI1 signaling pathway in brain tumor development. Expert Opin Ther Targets 2012;16:1227-38. [PMID: 22992192 DOI: 10.1517/14728222.2012.720975] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
20 Tang CT, Liang Q, Yang L, Lin XL, Wu S, Chen Y, Zhang XT, Gao YJ, Ge ZZ. RAB31 Targeted by MiR-30c-2-3p Regulates the GLI1 Signaling Pathway, Affecting Gastric Cancer Cell Proliferation and Apoptosis. Front Oncol 2018;8:554. [PMID: 30534536 DOI: 10.3389/fonc.2018.00554] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
21 Tang CT, Lin XL, Wu S, Liang Q, Yang L, Gao YJ, Ge ZZ. NOX4-driven ROS formation regulates proliferation and apoptosis of gastric cancer cells through the GLI1 pathway. Cell Signal 2018;46:52-63. [PMID: 29496628 DOI: 10.1016/j.cellsig.2018.02.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
22 Matz-Soja M, Hovhannisyan A, Gebhardt R. Hedgehog signalling pathway in adult liver: a major new player in hepatocyte metabolism and zonation? Med Hypotheses. 2013;80:589-594. [PMID: 23433827 DOI: 10.1016/j.mehy.2013.01.032] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
23 Werminghaus P, Haase M, Hornsby PJ, Schinner S, Schott M, Malendowicz LK, Lammers BJ, Goretzki PE, Müller-Mattheis V, Markus Giessing, Willenberg HS. Hedgehog-signaling is upregulated in non-producing human adrenal adenomas and antagonism of hedgehog-signaling inhibits proliferation of NCI-H295R cells and an immortalized primary human adrenal cell line. J Steroid Biochem Mol Biol 2014;139:7-15. [PMID: 24063979 DOI: 10.1016/j.jsbmb.2013.09.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
24 Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014;74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.CAN-14-1666] [Cited by in Crossref: 79] [Cited by in F6Publishing: 36] [Article Influence: 9.9] [Reference Citation Analysis]
25 Chahal KK, Parle M, Abagyan R. Hedgehog pathway and smoothened inhibitors in cancer therapies. Anticancer Drugs 2018;29:387-401. [PMID: 29537987 DOI: 10.1097/CAD.0000000000000609] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
26 Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021;9:1188. [PMID: 34572373 DOI: 10.3390/biomedicines9091188] [Reference Citation Analysis]
27 Ma J, Cheng J, Gong Y, Tian L, Huang Q. Downregulation of Wnt signaling by sonic hedgehog activation promotes repopulation of human tumor cell lines. Dis Model Mech. 2015;8:385-391. [PMID: 25713298 DOI: 10.1242/dmm.018887] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
28 Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017;14:6327-33. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
29 Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J 2020;287:5027-38. [PMID: 33015954 DOI: 10.1111/febs.15579] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Lecluze E, Rolland AD, Filis P, Evrard B, Leverrier-Penna S, Maamar MB, Coiffec I, Lavoué V, Fowler PA, Mazaud-Guittot S, Jégou B, Chalmel F. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum Reprod 2020;35:1099-119. [PMID: 32412604 DOI: 10.1093/humrep/deaa041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]