BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci. 2009;100:1786-1793. [PMID: 19622105 DOI: 10.1111/j.1349-7006.2009.01257.x] [Cited by in Crossref: 142] [Cited by in F6Publishing: 128] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Sigaud R, Dussault N, Berenguer-Daizé C, Vellutini C, Benyahia Z, Cayol M, Parat F, Mabrouk K, Vázquez R, Riveiro ME, Metellus P, Ouafik L. Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors. Front Oncol 2021;11:753244. [PMID: 34692535 DOI: 10.3389/fonc.2021.753244] [Reference Citation Analysis]
2 Chen C, Liang F, Chen B, Sun Z, Xue T, Yang R, Luo D. Identification of demethylincisterol A 3 as a selective inhibitor of protein tyrosine phosphatase Shp2. European Journal of Pharmacology 2017;795:124-33. [DOI: 10.1016/j.ejphar.2016.12.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
3 Sahu S, Chaudhury S, Saldanha D. Noonan syndrome with somnambulism: A rare case report. Ind Psychiatry J 2020;29:339-41. [PMID: 34158723 DOI: 10.4103/ipj.ipj_84_19] [Reference Citation Analysis]
4 Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacological Research 2018;129:65-83. [DOI: 10.1016/j.phrs.2018.01.021] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 12.5] [Reference Citation Analysis]
5 Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet 2013;381:333-42. [PMID: 23312968 DOI: 10.1016/S0140-6736(12)61023-X] [Cited by in Crossref: 372] [Cited by in F6Publishing: 157] [Article Influence: 41.3] [Reference Citation Analysis]
6 Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel) 2019;11:E38. [PMID: 30609850 DOI: 10.3390/cancers11010038] [Cited by in Crossref: 143] [Cited by in F6Publishing: 129] [Article Influence: 47.7] [Reference Citation Analysis]
7 Barbosa TC, Andrade FG, Lopes BA, de Andrade CF, Mansur MB, Emerenciano M, Pombo-de-Oliveira MS. Impact of mutations in FLT3, PTPN11 and RAS genes on the overall survival of pediatric B cell precursor acute lymphoblastic leukemia in Brazil. Leuk Lymphoma 2014;55:1501-9. [PMID: 24067137 DOI: 10.3109/10428194.2013.847934] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
8 Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene. 2014;33:939-953. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 5.9] [Reference Citation Analysis]
9 Zhan X, Dong H, Sun C, Liu L, Wang D, Wei Z. [Expression and clinical significance of SHP2 in the tumor tissues of smokers with lung cancer]. Zhongguo Fei Ai Za Zhi 2010;13:877-81. [PMID: 20840817 DOI: 10.3779/j.issn.1009-3419.2010.09.08] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharmaceutica Sinica B 2021;11:3908-24. [DOI: 10.1016/j.apsb.2021.03.037] [Reference Citation Analysis]
11 Dos Santos-Bueno FV, Andrade FG, Sardou-Cezar I, Mendes-de-Almeida DP, Chung-Filho AA, Brisson GD, Terra-Granado E, Noronha EP, Santos Thuler LC, Pombo-de-Oliveira MS; Brazilian Collaborative Study of Childhood Leukemia-EMiLI. Childhood Myeloid Neoplasms With PTPN11 Mutations in Brazil. Clin Lymphoma Myeloma Leuk 2020;20:e496-505. [PMID: 32434682 DOI: 10.1016/j.clml.2020.04.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Johnson MD, Reeder JE, O'Connell M. MKP-3 regulates PDGF-BB effects and MAPK activation in meningioma cells. J Clin Neurosci 2015;22:752-7. [PMID: 25698542 DOI: 10.1016/j.jocn.2014.10.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
13 Xu J, Zeng LF, Shen W, Turchi JJ, Zhang ZY. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma. Biochem Biophys Res Commun 2013;439:586-90. [PMID: 24041688 DOI: 10.1016/j.bbrc.2013.09.028] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
14 Watanabe N, Kato T, Fujita H, Kitagawa S. Heterogeneous nuclear ribonucleoprotein Q is a novel substrate of SH2 domain-containing phosphatase-2. J Biochem 2013;154:475-80. [PMID: 23946508 DOI: 10.1093/jb/mvt078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
15 Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016;7:183. [PMID: 26941717 DOI: 10.3389/fmicb.2016.00183] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 11.2] [Reference Citation Analysis]
16 Ding X, Cai J, Li S, Liu XD, Wan Y, Xing GG. BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation. Neurobiol Dis 2015;73:428-51. [PMID: 25447233 DOI: 10.1016/j.nbd.2014.10.025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
17 Buday L, Vas V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev 2020;39:1067-73. [PMID: 32936431 DOI: 10.1007/s10555-020-09918-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Doohan D, Miftahussurur M, Matsuo Y, Kido Y, Akada J, Matsuhisa T, Yee TT, Htet K, Aftab H, Vilaichone RK, Mahachai V, Ratanachu-Ek T, Tshering L, Waskito LA, Fauzia KA, Uchida T, Syam AF, Rezkitha YAA, Yamaoka Y. Characterization of a novel Helicobacter pylori East Asian-type CagA ELISA for detecting patients infected with various cagA genotypes. Med Microbiol Immunol 2020;209:29-40. [PMID: 31549252 DOI: 10.1007/s00430-019-00634-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
19 Keshishian H, McDonald ER 3rd, Mundt F, Melanson R, Krug K, Porter DA, Wallace L, Forestier D, Rabasha B, Marlow SE, Jane-Valbuena J, Todres E, Specht H, Robinson ML, Jean Beltran PM, Babur O, Olive ME, Golji J, Kuhn E, Burgess M, MacMullan MA, Rejtar T, Wang K, Mani DR, Satpathy S, Gillette MA, Sellers WR, Carr SA. A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Mol Syst Biol 2021;17:e10156. [PMID: 34569154 DOI: 10.15252/msb.202010156] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kim MK, Park JY, Kang YN. Tumorigenic role of YAP in hepatocellular carcinogenesis is involved in SHP2 whose function is different in vitro and in vivo. Pathol Res Pract 2018;214:1031-9. [PMID: 29699904 DOI: 10.1016/j.prp.2018.04.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
21 Igbe I, Shen XF, Jiao W, Qiang Z, Deng T, Li S, Liu WL, Liu HW, Zhang GL, Wang F. Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase. Oncotarget 2017;8:113734-48. [PMID: 29371942 DOI: 10.18632/oncotarget.22556] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
22 Lores J, Prada CE, Ramírez-Montaño D, Nastasi-Catanese JA, Pachajoa H. Clinical and molecular analysis of 26 individuals with Noonan syndrome in a reference institution in Colombia. Am J Med Genet C Semin Med Genet 2020;184:1042-51. [PMID: 33300679 DOI: 10.1002/ajmg.c.31869] [Reference Citation Analysis]
23 Peng H, Carretero OA, Peterson EL, Yang XP, Santra K, Rhaleb NE. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits ET-1-induced collagen production by preserving Src homology 2-containing protein tyrosine phosphatase-2 activity in cardiac fibroblasts. Pflugers Arch 2012;464:415-23. [PMID: 22968858 DOI: 10.1007/s00424-012-1150-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
24 Jamalpour M, Li X, Gustafsson K, Tyner JW, Welsh M. Disparate effects of Shb gene deficiency on disease characteristics in murine models of myeloid, B-cell, and T-cell leukemia. Tumour Biol 2018;40:101042831877147. [DOI: 10.1177/1010428318771472] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Putlyaeva LV, Demin DE, Uvarova AN, Zinevich LS, Prokofjeva MM, Gazizova GR, Shagimardanova EI, Schwartz AM. PTPN11 Knockdown Prevents Changes in the Expression of Genes Controlling Cell Cycle, Chemotherapy Resistance, and Oncogene-Induced Senescence in Human Thyroid Cells Overexpressing BRAF V600E Oncogenic Protein. Biochemistry (Mosc) 2020;85:108-18. [PMID: 32079522 DOI: 10.1134/S0006297920010101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Cooke M, Mele P, Maloberti P, Duarte A, Poderoso C, Orlando U, Paz C, Cornejo Maciel F, Podestá EJ. Tyrosine phosphatases as key regulators of StAR induction and cholesterol transport: SHP2 as a potential tyrosine phosphatase involved in steroid synthesis. Mol Cell Endocrinol 2011;336:63-9. [PMID: 21145937 DOI: 10.1016/j.mce.2010.11.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
27 Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny PA, Condeelis JS. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Res 2012;14:R139. [PMID: 23113900 DOI: 10.1186/bcr3344] [Cited by in Crossref: 93] [Cited by in F6Publishing: 80] [Article Influence: 9.3] [Reference Citation Analysis]
28 Kelley KA, Ruhl RA, Rana SR, Dewey E, Espinosa C, Thomas CR Jr, Martindale RG, Anand S, Tsikitis VL. Understanding and Resetting Radiation Sensitivity in Rectal Cancer. Ann Surg 2017;266:610-6. [PMID: 28742699 DOI: 10.1097/SLA.0000000000002409] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
29 Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D, Horiguchi S, Okamoto Y, Seki N. miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer 2010;103:877-84. [PMID: 20700123 DOI: 10.1038/sj.bjc.6605811] [Cited by in Crossref: 107] [Cited by in F6Publishing: 113] [Article Influence: 8.9] [Reference Citation Analysis]
30 Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, Görgülü K, Dantes Z, Wörmann SM, Diakopoulos KN, Karpathaki AF, Kowalska M, Kaya-aksoy E, Song L, van der Laan EAZ, López-alberca MP, Nazaré M, Reichert M, Saur D, Erkan MM, Hopt UT, Sainz B, Birchmeier W, Schmid RM, Lesina M, Algül H. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 2018;24:954-60. [DOI: 10.1038/s41591-018-0024-8] [Cited by in Crossref: 140] [Cited by in F6Publishing: 127] [Article Influence: 35.0] [Reference Citation Analysis]
31 Czako B, Sun Y, McAfoos T, Cross JB, Leonard PG, Burke JP, Carroll CL, Feng N, Harris AL, Jiang Y, Kang Z, Kovacs JJ, Mandal P, Meyers BA, Mseeh F, Parker CA, Yu SS, Williams CC, Wu Q, Di Francesco ME, Draetta G, Heffernan T, Marszalek JR, Kohl NE, Jones P. Discovery of 6-[(3S,4S)-4-Amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a Potent and Orally Bioavailable SHP2 Inhibitor. J Med Chem 2021;64:15141-69. [PMID: 34643390 DOI: 10.1021/acs.jmedchem.1c01132] [Reference Citation Analysis]
32 Huda S, Cao M, De Rosa A, Woodhall M, Rodriguez Cruz PM, Cossins J, Maestri M, Ricciardi R, Evoli A, Beeson D, Vincent A. SHP2 inhibitor protects AChRs from effects of myasthenia gravis MuSK antibody. Neurol Neuroimmunol Neuroinflamm 2020;7:e645. [PMID: 31831571 DOI: 10.1212/NXI.0000000000000645] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Orabona C, Pallotta MT, Grohmann U. Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. Mol Med 2012;18:834-42. [PMID: 22481272 DOI: 10.2119/molmed.2012.00029] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 4.7] [Reference Citation Analysis]
34 Tai Z, Lin Y, He Y, Huang J, Guo J, Yang L, Zhang G, Wang F. Luteolin sensitizes the antiproliferative effect of interferon α/β by activation of Janus kinase/signal transducer and activator of transcription pathway signaling through protein kinase A-mediated inhibition of protein tyrosine phosphatase SHP-2 in cancer cells. Cell Signal 2014;26:619-28. [PMID: 24333668 DOI: 10.1016/j.cellsig.2013.11.039] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
35 Koshimizu T, Kawai M, Kondou H, Tachikawa K, Sakai N, Ozono K, Michigami T. Vinculin functions as regulator of chondrogenesis. J Biol Chem 2012;287:15760-75. [PMID: 22416133 DOI: 10.1074/jbc.M111.308072] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
36 Wu J, Li W, Zheng Z, Lu X, Zhang H, Ma Y, Wang R. Design, synthesis, biological evaluation, common feature pharmacophore model and molecular dynamics simulation studies of ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate as Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. J Biomol Struct Dyn 2021;39:1174-88. [PMID: 32036779 DOI: 10.1080/07391102.2020.1726817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kanazawa Y, Saito Y, Supriatna Y, Tezuka H, Kotani T, Murata Y, Okazawa H, Ohnishi H, Kinouchi Y, Nojima Y, Ohteki T, Shimosegawa T, Matozaki T. Role of SIRPα in regulation of mucosal immunity in the intestine. Genes Cells 2010;15:1189-200. [PMID: 21040253 DOI: 10.1111/j.1365-2443.2010.01453.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
38 Ye X, Carew TJ. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron. 2010;68:340-361. [PMID: 21040840 DOI: 10.1016/j.neuron.2010.09.013] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 6.7] [Reference Citation Analysis]
39 Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA; Clinical Proteomic Tumor Analysis Consortium. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020;182:200-225.e35. [PMID: 32649874 DOI: 10.1016/j.cell.2020.06.013] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 79.0] [Reference Citation Analysis]
40 Zhang L, Yuan C, Peng J, Zhou L, Jiang Y, Lin Y, Yin W, Xu S, Ma J, Lu J. SHP-2-Mediated Upregulation of ZEB1 Is Important for PDGF-B-Induced Cell Proliferation and Metastatic Phenotype in Triple Negative Breast Cancer. Front Oncol 2020;10:1230. [PMID: 32850368 DOI: 10.3389/fonc.2020.01230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Gaipa G, Bugarin C, Cianci P, Sarno J, Bonaccorso P, Biondi A, Selicorni A. Peripheral blood cells from children with RASopathies show enhanced spontaneous colonies growth in vitro and hyperactive RAS signaling. Blood Cancer J 2015;5:e324. [PMID: 26186557 DOI: 10.1038/bcj.2015.52] [Reference Citation Analysis]
42 Gomes EG, Connelly SF, Summy JM. Targeting the Yin and the Yang: Combined Inhibition of the Tyrosine Kinase c-Src and the Tyrosine Phosphatase SHP-2 Disrupts Pancreatic Cancer Signaling and Biology In Vitro and Tumor Formation In Vivo. Pancreas 2013;42:795-806. [DOI: 10.1097/mpa.0b013e3182793fd7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
43 Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15:306-316. [PMID: 24629337 DOI: 10.1016/j.chom.2014.02.008] [Cited by in Crossref: 251] [Cited by in F6Publishing: 219] [Article Influence: 31.4] [Reference Citation Analysis]
44 Liu X, Qu CK. Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis. J Signal Transduct 2011;2011:195239. [PMID: 21799948 DOI: 10.1155/2011/195239] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 1.2] [Reference Citation Analysis]
45 Spalinger MR, Schwarzfischer M, Scharl M. The Role of Protein Tyrosine Phosphatases in Inflammasome Activation. Int J Mol Sci 2020;21:E5481. [PMID: 32751912 DOI: 10.3390/ijms21155481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Liu Y, Yang X, Wang Y, Yang Y, Sun D, Li H, Chen L. Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021;214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Ben C, Wu X, Takahashi-Kanemitsu A, Knight CT, Hayashi T, Hatakeyama M. Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. J Biol Chem 2020;295:13965-80. [PMID: 32763976 DOI: 10.1074/jbc.RA120.013820] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Chakraborty A. KRASG12C inhibitor: combing for combination. Biochem Soc Trans. 2020;48:2691-2701. [PMID: 33242077 DOI: 10.1042/bst20200473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Kotani T, Ihara N, Okamoto S, Setiawan J, Konno T, Saito Y, Murata Y, Matozaki T. Role of Ras in regulation of intestinal epithelial cell homeostasis and crosstalk with Wnt signaling. PLoS One 2021;16:e0256774. [PMID: 34437645 DOI: 10.1371/journal.pone.0256774] [Reference Citation Analysis]
50 Liotti F, Kumar N, Prevete N, Marotta M, Sorriento D, Ieranò C, Ronchi A, Marino FZ, Moretti S, Colella R, Puxeddu E, Paladino S, Kano Y, Ohh M, Scala S, Melillo RM. PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. J Exp Clin Cancer Res 2021;40:22. [PMID: 33413561 DOI: 10.1186/s13046-020-01818-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Frystyk J, Schou AJ, Heuck C, Vorum H, Lyngholm M, Flyvbjerg A, Wolthers OD. Prednisolone reduces the ability of serum to activate the IGF1 receptor in vitro without affecting circulating total or free IGF1. Eur J Endocrinol 2013;168:1-8. [PMID: 23038624 DOI: 10.1530/EJE-12-0518] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
52 Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018;10:E82. [PMID: 29558404 DOI: 10.3390/cancers10030082] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
53 Chen C, Xue T, Fan P, Meng L, Wei J, Luo D. Cytotoxic activity of Shp2 inhibitor fumosorinone in human cancer cells. Oncol Lett 2018;15:10055-62. [PMID: 29928374 DOI: 10.3892/ol.2018.8593] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
54 Bauler TJ, Kamiya N, Lapinski PE, Langewisch E, Mishina Y, Wilkinson JE, Feng GS, King PD. Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations. Dis Model Mech 2011;4:228-39. [PMID: 21068439 DOI: 10.1242/dmm.006130] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
55 Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, Song L, Lv D, Nakano I, Hu B, Cheng SY, Feng H. SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene 2016;35:5641-52. [PMID: 27041571 DOI: 10.1038/onc.2016.100] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 9.0] [Reference Citation Analysis]
56 Tautz L, Critton DA, Grotegut S. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 2013;1053:179-221. [PMID: 23860656 DOI: 10.1007/978-1-62703-562-0_13] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
57 Feng H, Liu KW, Guo P, Zhang P, Cheng T, McNiven MA, Johnson GR, Hu B, Cheng SY. Dynamin 2 mediates PDGFRα-SHP-2-promoted glioblastoma growth and invasion. Oncogene. 2012;31:2691-2702. [PMID: 21996738 DOI: 10.1038/onc.2011.436] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 4.1] [Reference Citation Analysis]
58 Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. Toward a More Precise Future for Oncology. Cancer Cell 2020;37:431-42. [PMID: 32289268 DOI: 10.1016/j.ccell.2020.03.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
59 Paz C, Cornejo Maciel F, Gorostizaga A, Castillo AF, Mori Sequeiros García MM, Maloberti PM, Orlando UD, Mele PG, Poderoso C, Podesta EJ. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function. Front Endocrinol (Lausanne) 2016;7:60. [PMID: 27375556 DOI: 10.3389/fendo.2016.00060] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
60 Zhang H, Gao Z, Meng C, Li X, Shi D. Inhibitor Binding Sites in the Protein Tyrosine Phosphatase SHP-2. Mini Rev Med Chem 2020;20:1017-30. [PMID: 32124695 DOI: 10.2174/1389557520666200303130833] [Reference Citation Analysis]
61 Shen D, Chen W, Zhu J, Wu G, Shen R, Xi M, Sun H. Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur J Med Chem 2020;190:112117. [PMID: 32061959 DOI: 10.1016/j.ejmech.2020.112117] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
62 Halliday PR, Blakely CM, Bivona TG. Emerging Targeted Therapies for the Treatment of Non-small Cell Lung Cancer. Curr Oncol Rep 2019;21:21. [PMID: 30806814 DOI: 10.1007/s11912-019-0770-x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 13.7] [Reference Citation Analysis]
63 Kusakari S, Saitow F, Ago Y, Shibasaki K, Sato-Hashimoto M, Matsuzaki Y, Kotani T, Murata Y, Hirai H, Matsuda T, Suzuki H, Matozaki T, Ohnishi H. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice. Mol Cell Biol 2015;35:1557-72. [PMID: 25713104 DOI: 10.1128/MCB.01339-14] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
64 Saito Y, Iwamura H, Kaneko T, Ohnishi H, Murata Y, Okazawa H, Kanazawa Y, Sato-Hashimoto M, Kobayashi H, Oldenborg PA, Naito M, Kaneko Y, Nojima Y, Matozaki T. Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues. Blood 2010;116:3517-25. [PMID: 20682853 DOI: 10.1182/blood-2010-03-277244] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 4.6] [Reference Citation Analysis]
65 Galbaugh T, Feeney YB, Clevenger CV. Prolactin receptor-integrin cross-talk mediated by SIRPα in breast cancer cells. Mol Cancer Res 2010;8:1413-24. [PMID: 20826546 DOI: 10.1158/1541-7786.MCR-10-0130] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
66 Li SM. The biological function of SHP2 in human disease. Mol Biol 2016;50:22-7. [DOI: 10.1134/s0026893316010118] [Cited by in Crossref: 7] [Article Influence: 1.2] [Reference Citation Analysis]
67 Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice. PLoS One 2014;9:e89584. [PMID: 24586890 DOI: 10.1371/journal.pone.0089584] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
68 Cao Y, Jin Y, Yu J, Wang J, Yan J, Zhao Q. Research progress of neuroblastoma related gene variations. Oncotarget. 2017;8:18444-18455. [PMID: 28055978 DOI: 10.18632/oncotarget.14408] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
69 Cheng H, Schwell V, Curtis BR, Fazlieva R, Roder H, Campbell KS. Conformational Changes in the Cytoplasmic Region of KIR3DL1 upon Interaction with SHP-2. Structure 2019;27:639-650.e2. [PMID: 30773397 DOI: 10.1016/j.str.2019.01.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
70 Liu KW, Feng H, Bachoo R, Kazlauskas A, Smith EM, Symes K, Hamilton RL, Nagane M, Nishikawa R, Hu B, Cheng SY. SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J Clin Invest 2011;121:905-17. [PMID: 21393858 DOI: 10.1172/JCI43690] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 4.9] [Reference Citation Analysis]
71 Wisanwattana W, Wongkrajang K, Cao DY, Shi XK, Zhang ZH, Zhou ZY, Li F, Mei QG, Wang C, Suksamrarn A, Zhang GL, Wang F. Inhibition of Phosphodiesterase 5 Promotes the Aromatase-Mediated Estrogen Biosynthesis in Osteoblastic Cells by Activation of cGMP/PKG/SHP2 Pathway. Front Endocrinol (Lausanne) 2021;12:636784. [PMID: 33776932 DOI: 10.3389/fendo.2021.636784] [Reference Citation Analysis]
72 Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010;51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 3.9] [Reference Citation Analysis]
73 Wang M, Lu J, Wang M, Yang C, Wang S. Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. J Med Chem 2020;63:7510-28. [DOI: 10.1021/acs.jmedchem.0c00471] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
74 Xie J, Si X, Gu S, Wang M, Shen J, Li H, Shen J, Li D, Fang Y, Liu C, Zhu J. Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment. J Med Chem 2017;60:10205-19. [DOI: 10.1021/acs.jmedchem.7b01520] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
75 Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021;9:642235. [PMID: 34124035 DOI: 10.3389/fcell.2021.642235] [Reference Citation Analysis]
76 Esposito MT. The Impact of PI3-kinase/RAS Pathway Cooperating Mutations in the Evolution of KMT2A-rearranged Leukemia. Hemasphere 2019;3:e195. [PMID: 31723831 DOI: 10.1097/HS9.0000000000000195] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
77 Sivaganesh V, Sivaganesh V, Scanlon C, Iskander A, Maher S, Lê T, Peethambaran B. Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021;22:12865. [PMID: 34884670 DOI: 10.3390/ijms222312865] [Reference Citation Analysis]
78 Ma J, Tang W, Gu R, Hu F, Zhang L, Wu J, Xu G. SHP-2-Induced Activation of c-Myc Is Involved in PDGF-B-Regulated Cell Proliferation and Angiogenesis in RMECs. Front Physiol 2020;11:555006. [PMID: 33329018 DOI: 10.3389/fphys.2020.555006] [Reference Citation Analysis]
79 Hou Z, Wang Z, Liu R, Li H, Zhang Z, Su T, Yang J, Liu H. The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery. J Nanobiotechnology 2019;17:88. [PMID: 31426815 DOI: 10.1186/s12951-019-0522-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
80 Lapinski PE, Meyer MF, Feng GS, Kamiya N, King PD. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice. Dis Model Mech 2013;6:1448-58. [PMID: 24077964 DOI: 10.1242/dmm.012849] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
81 Rodríguez F, Vallejos C, Giraudo F, Unanue N, Hernández MI, Godoy P, Célis S, Martín-Arenas R, Palomares-Bralo M, Heath KE, López MT, Cassorla F. Copy number variants of Ras/MAPK pathway genes in patients with isolated cryptorchidism. Andrology 2017;5:923-30. [PMID: 28914499 DOI: 10.1111/andr.12390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
82 Cooke M, Orlando U, Maloberti P, Podestá EJ, Cornejo Maciel F. Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. J Lipid Res. 2011;52:1936-1948. [PMID: 21903867 DOI: 10.1194/jlr.m015552] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
83 Tibaldi E, Zonta F, Bordin L, Magrin E, Gringeri E, Cillo U, Idotta G, Pagano MA, Brunati AM. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling. Biochim Biophys Acta 2014;1843:288-98. [PMID: 24140598 DOI: 10.1016/j.bbamcr.2013.10.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
84 Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 2011;15:233-70. [PMID: 21235352 DOI: 10.1089/ars.2010.3540] [Cited by in Crossref: 165] [Cited by in F6Publishing: 157] [Article Influence: 15.0] [Reference Citation Analysis]
85 Zhu D, Pan C, Li L, Bian Z, Lv Z, Shi L, Zhang J, Li D, Gu H, Zhang CY, Liu Y, Zen K. MicroRNA-17/20a/106a modulate macrophage inflammatory responses through targeting signal-regulatory protein α. J Allergy Clin Immunol 2013;132:426-36.e8. [PMID: 23562609 DOI: 10.1016/j.jaci.2013.02.005] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 8.3] [Reference Citation Analysis]
86 Gimple RC, Wang X. RAS: Striking at the Core of the Oncogenic Circuitry. Front Oncol 2019;9:965. [PMID: 31681559 DOI: 10.3389/fonc.2019.00965] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
87 Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci. 2011;102:36-43. [PMID: 20942897 DOI: 10.1111/j.1349-7006.2010.01743.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 4.8] [Reference Citation Analysis]
88 Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. J Biol Chem 2021;296:100538. [PMID: 33722610 DOI: 10.1016/j.jbc.2021.100538] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol 2011;4:36. [PMID: 21917154 DOI: 10.1186/1756-8722-4-36] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 6.0] [Reference Citation Analysis]
90 Ng GY, Yeh LK, Zhang Y, Liu H, Feng GS, Kao WW, Liu CY. Role of SH2-containing tyrosine phosphatase Shp2 in mouse corneal epithelial stratification. Invest Ophthalmol Vis Sci 2013;54:7933-42. [PMID: 24204042 DOI: 10.1167/iovs.13-12646] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
91 Chen X, Zou F, Hu Z, Du G, Yu P, Wang W, Wang H, Ye L, Tian J. PCC0208023, a potent SHP2 allosteric inhibitor, imparts an antitumor effect against KRAS mutant colorectal cancer. Toxicol Appl Pharmacol 2020;398:115019. [PMID: 32335126 DOI: 10.1016/j.taap.2020.115019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
92 Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47-SIRPα signalling system: its physiological roles and therapeutic application. J Biochem 2014;155:335-44. [PMID: 24627525 DOI: 10.1093/jb/mvu017] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 9.9] [Reference Citation Analysis]
93 Matozaki T, Kotani T, Murata Y, Saito Y. Roles of Src family kinase, Ras, and mTOR signaling in intestinal epithelial homeostasis and tumorigenesis. Cancer Sci 2021;112:16-21. [PMID: 33073467 DOI: 10.1111/cas.14702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018;8:14684. [PMID: 30279491 DOI: 10.1038/s41598-018-33014-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
95 Butterworth S, Overduin M, Barr AJ. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry 2014;6:1423-37. [DOI: 10.4155/fmc.14.88] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
96 Zhao M, Guo W, Wu Y, Yang C, Zhong L, Deng G, Zhu Y, Liu W, Gu Y, Lu Y, Kong L, Meng X, Xu Q, Sun Y. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm Sin B 2019;9:304-15. [PMID: 30972278 DOI: 10.1016/j.apsb.2018.08.009] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 13.8] [Reference Citation Analysis]
97 Chen C, Cao M, Zhu S, Wang C, Liang F, Yan L, Luo D. Discovery of a Novel Inhibitor of the Protein Tyrosine Phosphatase Shp2. Sci Rep 2015;5:17626. [PMID: 26626996 DOI: 10.1038/srep17626] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
98 Patel Y, Shah N, Lee JS, Markoutsa E, Jie C, Liu S, Botbyl R, Reisman D, Xu P, Chen H. A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth. Oncotarget 2016;7:18295-308. [PMID: 26918448 DOI: 10.18632/oncotarget.7577] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
99 Murata Y, Saito Y, Kaneko T, Kotani T, Kaneko Y, Ohnishi H, Matozaki T. Autoimmune animal models in the analysis of the CD47-SIRPα signaling pathway. Methods 2014;65:254-9. [PMID: 24091004 DOI: 10.1016/j.ymeth.2013.09.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
100 Salmaninejad A, Khoramshahi V, Azani A, Soltaninejad E, Aslani S, Zamani MR, Zal M, Nesaei A, Hosseini SM. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics. 2018;70:73-86. [PMID: 28642997 DOI: 10.1007/s00251-017-1015-5] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
101 Feng J, Gong XY, Jia YJ, Liu KQ, Li Y, Dong XB, Fang QY, Ru K, Li QH, Wang HJ, Zhao XL, Jia YN, Song Y, Tian Z, Wang M, Tang KJ, Wang JX, Mi YC. [Spectrum of somatic mutations and their prognostic significance in adult patients with B cell acute lymphoblastic leukemia]. Zhonghua Xue Ye Xue Za Zhi 2018;39:98-104. [PMID: 29562441 DOI: 10.3760/cma.j.issn.0253-2727.2018.02.004] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta 2013;1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 25] [Article Influence: 0.9] [Reference Citation Analysis]
103 Wang YC, Chen CL, Sheu BS, Yang YJ, Tseng PC, Hsieh CY, Lin CF. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling. J Immunol 2014;193:4149-58. [PMID: 25225672 DOI: 10.4049/jimmunol.1400594] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
104 Yang D, Xiao P, Li Q, Fu X, Pan C, Lu D, Wen S, Xia W, He D, Li H, Fang H, Shen Y, Xu Z, Lin A, Wang C, Yu X, Wu J, Sun J. Allosteric modulation of the catalytic VYD loop in Slingshot by its N-terminal domain underlies both Slingshot auto-inhibition and activation. J Biol Chem 2018;293:16226-41. [PMID: 30154244 DOI: 10.1074/jbc.RA118.004175] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Yamashita H, Kotani T, Park JH, Murata Y, Okazawa H, Ohnishi H, Ku Y, Matozaki T. Role of the protein tyrosine phosphatase Shp2 in homeostasis of the intestinal epithelium. PLoS One 2014;9:e92904. [PMID: 24675817 DOI: 10.1371/journal.pone.0092904] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
106 Liu Y, Song F, Wu S, He S, Meng M, Lv C, Yang Q, Chen S. Protein and mRNA expressions of IL-6 and its key signaling factors under orthodontic forces in mice: An in-vivo study. Am J Orthod Dentofacial Orthop 2017;152:654-62. [PMID: 29103443 DOI: 10.1016/j.ajodo.2017.03.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
107 Chen YP, Lamarche MJ, Chan HM, Fekkes P, Garcia-fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao H, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang J, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016;535:148-52. [DOI: 10.1038/nature18621] [Cited by in Crossref: 367] [Cited by in F6Publishing: 324] [Article Influence: 61.2] [Reference Citation Analysis]
108 Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 2015;6:8859. [PMID: 26617336 DOI: 10.1038/ncomms9859] [Cited by in Crossref: 89] [Cited by in F6Publishing: 84] [Article Influence: 12.7] [Reference Citation Analysis]
109 Nevzorova YA, Liedtke C. Sh(i)pping signals protect against Stat3-driven liver cancer. Hepatology. 2012;55:322-324. [PMID: 22190379 DOI: 10.1002/hep.24742] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
110 Keri RA, Distelhorst CW, Sharifi N, Berger NA. Hormone Effects on Tumors. Hormonal Signaling in Biology and Medicine. Elsevier; 2020. pp. 667-93. [DOI: 10.1016/b978-0-12-813814-4.00031-6] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Kamiya N, Kim HK, King PD. Regulation of bone and skeletal development by the SHP-2 protein tyrosine phosphatase. Bone 2014;69:55-60. [DOI: 10.1016/j.bone.2014.08.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
112 Hang TC, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, Kamm RD, Lauffenburger DA. Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics 2013;12:3704-18. [PMID: 24023389 DOI: 10.1074/mcp.M113.030528] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
113 Nunes-xavier CE, Zaldumbide L, Mosteiro L, López-almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021;9:811297. [DOI: 10.3389/fcell.2021.811297] [Reference Citation Analysis]
114 Nardozza AP, D'Orazio M, Trapannone R, Corallino S, Filomeni G, Tartaglia M, Battistoni A, Cesareni G, Castagnoli L. Reactive oxygen species and epidermal growth factor are antagonistic cues controlling SHP-2 dimerization. Mol Cell Biol 2012;32:1998-2009. [PMID: 22411627 DOI: 10.1128/MCB.06674-11] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
115 Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2:344-358. [PMID: 21779504 DOI: 10.1177/1947601911411084] [Cited by in Crossref: 500] [Cited by in F6Publishing: 460] [Article Influence: 45.5] [Reference Citation Analysis]
116 Nagamura Y, Miyazaki M, Nagano Y, Tomiyama A, Ohki R, Yanagihara K, Sakai R, Yamaguchi H. SHP2 as a Potential Therapeutic Target in Diffuse-Type Gastric Carcinoma Addicted to Receptor Tyrosine Kinase Signaling. Cancers (Basel) 2021;13:4309. [PMID: 34503119 DOI: 10.3390/cancers13174309] [Reference Citation Analysis]
117 Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y, Wei L. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2012;138:637-646. [PMID: 22228034 DOI: 10.1007/s00432-011-1143-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
118 Yang H, Liang SQ, Schmid RA, Peng RW. New Horizons in KRAS-Mutant Lung Cancer: Dawn After Darkness. Front Oncol 2019;9:953. [PMID: 31612108 DOI: 10.3389/fonc.2019.00953] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
119 Menheniott TR, Judd LM, Giraud AS. STAT3: a critical component in the response to Helicobacter pylori infection. Cell Microbiol 2015;17:1570-82. [PMID: 26332850 DOI: 10.1111/cmi.12518] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
120 Fontanillo M, Köhn M. Phosphatases: Their Roles in Cancer and Their Chemical Modulators. Adv Exp Med Biol 2016;917:209-40. [PMID: 27236558 DOI: 10.1007/978-3-319-32805-8_10] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
121 Gu Z, Fang X, Li C, Chen C, Liang G, Zheng X, Fan Q. Increased PTPRA expression leads to poor prognosis through c-Src activation and G1 phase progression in squamous cell lung cancer. Int J Oncol 2017;51:489-97. [PMID: 28656243 DOI: 10.3892/ijo.2017.4055] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
122 Tassidis H, Brokken LJS, Jirström K, Bjartell A, Ulmert D, Härkönen P, Wingren AG. Low expression of SHP-2 is associated with less favorable prostate cancer outcomes. Tumor Biol 2013;34:637-42. [DOI: 10.1007/s13277-012-0590-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
123 Matsuo Y, Kido Y, Akada J, Shiota S, Binh TT, Trang TTH, Dung HDQ, Tung PH, Tri TD, Thuan NPM, Tam LQ, Nam BC, Khien VV, Yamaoka Y. Novel CagA ELISA exhibits enhanced sensitivity of Helicobacter pylori CagA antibody. World J Gastroenterol 2017; 23(1): 48-59 [PMID: 28104980 DOI: 10.3748/wjg.v23.i1.48] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
124 Tani H, Kurita S, Miyamoto R, Ochiai K, Tamura K, Bonkobara M. Canine histiocytic sarcoma cell lines with SHP2 p.Glu76Gln or p.Glu76Ala mutations are sensitive to allosteric SHP2 inhibitor SHP099. Vet Comp Oncol 2020;18:161-8. [PMID: 31339650 DOI: 10.1111/vco.12524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
125 Li FF, Shen J, Shen HJ, Zhang X, Cao R, Zhang Y, Qui Q, Lin XX, Xie YC, Zhang LH, Jia YL, Dong XW, Jiang JX, Bao MJ, Zhang S, Ma WJ, Wu XM, Shen H, Xie QM, Ke Y. Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. J Immunol 2012;189:3159-67. [PMID: 22891281 DOI: 10.4049/jimmunol.1200197] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 4.1] [Reference Citation Analysis]
126 Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019;76:2571-92. [PMID: 30982078 DOI: 10.1007/s00018-019-03095-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
127 Zhou R, Lin X, Li DY, Wang XF, Greenbaum J, Chen YC, Zeng CP, Lu JM, Ao ZX, Peng LP, Bai XC, Shen J, Deng HW. Identification of novel genetic loci for osteoporosis and/or rheumatoid arthritis using cFDR approach. PLoS One 2017;12:e0183842. [PMID: 28854271 DOI: 10.1371/journal.pone.0183842] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
128 Farrokhzadeh A, Akher FB, Soliman MES. Probing the Dynamic Mechanism of Uncommon Allosteric Inhibitors Optimized to Enhance Drug Selectivity of SHP2 with Therapeutic Potential for Cancer Treatment. Appl Biochem Biotechnol 2019;188:260-81. [DOI: 10.1007/s12010-018-2914-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
129 Novak RL, Harper DP, Caudell D, Slape C, Beachy SH, Aplan PD. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes. Exp Hematol 2012;40:1016-27. [PMID: 22885519 DOI: 10.1016/j.exphem.2012.08.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
130 Pan YR, Cho KH, Lee HH, Chang ZF, Chen HC. Protein tyrosine phosphatase SHP2 suppresses podosome rosette formation in Src-transformed fibroblasts. J Cell Sci 2013;126:657-66. [PMID: 23178938 DOI: 10.1242/jcs.116624] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
131 Guo W, Xu Q. Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 2020;144:139-46. [PMID: 32921395 DOI: 10.1016/j.jphs.2020.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Nagano M, Hoshino D, Koshikawa N, Akizawa T, Seiki M. Turnover of focal adhesions and cancer cell migration. Int J Cell Biol 2012;2012:310616. [PMID: 22319531 DOI: 10.1155/2012/310616] [Cited by in Crossref: 131] [Cited by in F6Publishing: 131] [Article Influence: 13.1] [Reference Citation Analysis]