BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kominami R, Niwa O. Radiation carcinogenesis in mouse thymic lymphomas. Cancer Sci 2006;97:575-81. [PMID: 16827796 DOI: 10.1111/j.1349-7006.2006.00218.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Yoshikai Y, Sato T, Morita S, Kohara Y, Takagi R, Mishima Y, Kominami R. Effect of Bcl11b genotypes and gamma-radiation on the development of mouse thymic lymphomas. Biochem Biophys Res Commun 2008;373:282-5. [PMID: 18558082 DOI: 10.1016/j.bbrc.2008.06.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
2 Labi V, Erlacher M, Krumschnabel G, Manzl C, Tzankov A, Pinon J, Egle A, Villunger A. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev 2010;24:1602-7. [PMID: 20679395 DOI: 10.1101/gad.1940210] [Cited by in Crossref: 79] [Cited by in F6Publishing: 76] [Article Influence: 6.6] [Reference Citation Analysis]
3 Bi X, Feng D, Korczeniewska J, Alper N, Hu G, Barnes BJ. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses γ-irradiation-induced thymic lymphomagenesis. Oncogene 2014;33:3288-97. [PMID: 23912454 DOI: 10.1038/onc.2013.295] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
4 Fleenor CJ, Higa K, Weil MM, DeGregori J. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies. Radiat Res 2015;184:341-51. [PMID: 26414506 DOI: 10.1667/RR14147.1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
5 Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Ser B Phys Biol Sci 2012;88:72-87. [PMID: 22450536 DOI: 10.2183/pjab.88.72] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
6 Rivina L, Davoren MJ, Schiestl RH. Mouse models for radiation-induced cancers. Mutagenesis 2016;31:491-509. [PMID: 27209205 DOI: 10.1093/mutage/gew019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
7 Puccetti MV, Fischer MA, Arrate MP, Boyd KL, Duszynski RJ, Bétous R, Cortez D, Eischen CM. Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution. Oncogene 2017;36:2553-64. [PMID: 27797382 DOI: 10.1038/onc.2016.408] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
8 Daino K, Ishikawa A, Suga T, Amasaki Y, Kodama Y, Shang Y, Hirano-Sakairi S, Nishimura M, Nakata A, Yoshida M, Imai T, Shimada Y, Kakinuma S. Mutational landscape of T-cell lymphoma in mice lacking the DNA mismatch repair gene Mlh1: no synergism with ionizing radiation. Carcinogenesis 2019;40:216-24. [PMID: 30721949 DOI: 10.1093/carcin/bgz013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
9 Go R, Hirose S, Morita S, Yamamoto T, Katsuragi Y, Mishima Y, Kominami R. Bcl11b heterozygosity promotes clonal expansion and differentiation arrest of thymocytes in γ-irradiated mice. Cancer Science 2010;101:1347-53. [DOI: 10.1111/j.1349-7006.2010.01546.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
10 Shimura T. The role of mitochondrial oxidative stress and the tumor microenvironment in radiation-related cancer. J Radiat Res 2021;62:i36-43. [PMID: 33978176 DOI: 10.1093/jrr/rraa090] [Reference Citation Analysis]
11 Go R, Takizawa K, Hirose S, Katsuragi Y, Aoyagi Y, Mishima Y, Kominami R. Impairment in differentiation and cell cycle of thymocytes by loss of a Bcl11b tumor suppressor allele that contributes to leukemogenesis. Leuk Res 2012;36:1035-40. [PMID: 22640496 DOI: 10.1016/j.leukres.2012.04.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
12 Gao F, Chen S, Sun M, Mitchel RE, Li B, Chu Z, Cai J, Liu C. MiR-467a is upregulated in radiation-induced mouse thymic lymphomas and regulates apoptosis by targeting Fas and Bax. Int J Biol Sci 2015;11:109-21. [PMID: 25552935 DOI: 10.7150/ijbs.10276] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
13 Sasaki J, Hiratani K, Sato I, Satoh H, Deguchi Y, Chida H, Natsuhori M, Murata T, Ochiai K, Otani K, Okada K, Ito N. Pathological findings of Japanese Black Cattle living in the restricted area of the Fukushima Daiichi Nuclear Power Plant accident, 2013-2016. Anim Sci J 2017;88:2084-9. [DOI: 10.1111/asj.12873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
14 Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S; ICRP. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2015;44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
15 Sievert W, Stangl S, Steiger K, Multhoff G. Improved Overall Survival of Mice by Reducing Lung Side Effects After High-Precision Heart Irradiation Using a Small Animal Radiation Research Platform. International Journal of Radiation Oncology*Biology*Physics 2018;101:671-9. [DOI: 10.1016/j.ijrobp.2018.02.017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
16 Gapeyev AB, Aripovsky AV, Kulagina TP. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays. International Journal of Radiation Biology 2015;91:277-85. [DOI: 10.3109/09553002.2014.980467] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
17 Hirano S, Kakinuma S, Amasaki Y, Nishimura M, Imaoka T, Fujimoto S, Hino O, Shimada Y. Ikaros is a critical target during simultaneous exposure to X-rays and N-ethyl-N-nitrosourea in mouse T-cell lymphomagenesis. Int J Cancer 2013;132:259-68. [PMID: 22684892 DOI: 10.1002/ijc.27668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
18 Go R, Hirose S, Katsuragi Y, Obata M, Abe M, Mishima Y, Sakimura K, Kominami R. Cell of origin in radiation-induced premalignant thymocytes with differentiation capability in mice conditionally losing one Bcl11b allele. Cancer Sci 2013;104:1009-16. [PMID: 23663453 DOI: 10.1111/cas.12193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
19 Rivina L, Schiestl R. Mouse models for efficacy testing of agents against radiation carcinogenesis—a literature review. Int J Environ Res Public Health 2012;10:107-43. [PMID: 23271302 DOI: 10.3390/ijerph10010107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
20 Migliorini D, Bogaerts S, Defever D, Vyas R, Denecker G, Radaelli E, Zwolinska A, Depaepe V, Hochepied T, Skarnes WC. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J Clin Invest. 2011;121:1329-1343. [PMID: 21403399 DOI: 10.1172/JCI45784] [Cited by in Crossref: 81] [Cited by in F6Publishing: 58] [Article Influence: 7.4] [Reference Citation Analysis]
21 Maruyama M, Yamamoto T, Kohara Y, Katsuragi Y, Mishima Y, Aoyagi Y, Kominami R. Mtf-1 lymphoma-susceptibility locus affects retention of large thymocytes with high ROS levels in mice after γ-irradiation. Biochemical and Biophysical Research Communications 2007;354:209-15. [DOI: 10.1016/j.bbrc.2006.12.192] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
22 Lugli N, Sotiriou SK, Halazonetis TD. The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair (Amst) 2017;56:129-34. [PMID: 28623093 DOI: 10.1016/j.dnarep.2017.06.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
23 Beltran E, Fresquet V, Martinez-Useros J, Richter-Larrea JA, Sagardoy A, Sesma I, Almada LL, Montes-Moreno S, Siebert R, Gesk S, Calasanz MJ, Malumbres R, Rieger M, Prosper F, Lossos IS, Piris MA, Fernandez-Zapico ME, Martinez-Climent JA. A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma. Proc Natl Acad Sci U S A 2011;108:12461-6. [PMID: 21746927 DOI: 10.1073/pnas.1018941108] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
24 Rivina L, Schiestl R. Mouse models of radiation-induced cancers. Adv Genet 2013;84:83-122. [PMID: 24262097 DOI: 10.1016/B978-0-12-407703-4.00003-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
25 Hasegawa S, Morokoshi Y, Tsuji AB, Kokubo T, Aoki I, Furukawa T, Zhang MR, Saga T. Quantifying initial cellular events of mouse radiation lymphomagenesis and its tumor prevention in vivo by positron emission tomography and magnetic resonance imaging. Mol Oncol. 2015;9:740-748. [PMID: 25510653 DOI: 10.1016/j.molonc.2014.11.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
26 Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS, Ferguson VL, Pecaut MJ. Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol (1985) 2009;106:194-202. [PMID: 18988762 DOI: 10.1152/japplphysiol.91126.2008] [Cited by in Crossref: 101] [Cited by in F6Publishing: 82] [Article Influence: 7.2] [Reference Citation Analysis]
27 Hasapis S, Caraballo I, Lee CL. Transplantation of Unirradiated Bone Marrow Cells after Total-Body Irradiation Prevents the Development of Thymic Lymphoma in Mice through Niche Competition. Radiat Res 2021;195:301-6. [PMID: 33347573 DOI: 10.1667/RADE-20-00221.1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Yamamoto T, Morita S, Go R, Obata M, Katsuragi Y, Fujita Y, Maeda Y, Yokoyama M, Aoyagi Y, Ichikawa H, Mishima Y, Kominami R. Clonally Expanding Thymocytes Having Lineage Capability in Gamma-Ray–Induced Mouse Atrophic Thymus. International Journal of Radiation Oncology*Biology*Physics 2010;77:235-43. [DOI: 10.1016/j.ijrobp.2009.11.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
29 Bugelski PJ, Volk A, Walker MR, Krayer JH, Martin P, Descotes J. Critical Review of Preclinical Approaches to Evaluate the Potential of Immunosuppressive Drugs to Influence Human Neoplasia. Int J Toxicol 2010;29:435-66. [DOI: 10.1177/1091581810374654] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
30 Hasegawa S, Morokoshi Y, Kanda H, Tsukamoto S, Zheng J, Tsuji AB, Furukawa T, Kakinuma S, Shimada Y, Saga T. H-ferritin overexpression promotes radiation-induced leukemia/lymphoma in mice. Carcinogenesis 2012;33:2269-75. [DOI: 10.1093/carcin/bgs251] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
31 Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, Shimada Y, Kakinuma S. Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. Int J Radiat Biol 2019;95:1431-40. [PMID: 30495977 DOI: 10.1080/09553002.2018.1547848] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
32 Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013;8:e75097. [PMID: 24069384 DOI: 10.1371/journal.pone.0075097] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
33 Fleenor CJ, Marusyk A, DeGregori J. Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 2010;9:3005-11. [PMID: 20676038 DOI: 10.4161/cc.9.15.12311] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
34 Jayakumar S, Bhilwade HN, Dange PS, Sarma HD, Chaubey RC, Pandey BN. Magnitude of radiation-induced DNA damage in peripheral blood leukocytes and its correlation with aggressiveness of thymic lymphoma in Swiss mice. International Journal of Radiation Biology 2011;87:1113-9. [DOI: 10.3109/09553002.2011.622032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
35 Ohi H, Mishima Y, Kamimura K, Maruyama M, Sasai K, Kominami R. Multi-step lymphomagenesis deduced from DNA changes in thymic lymphomas and atrophic thymuses at various times after gamma-irradiation. Oncogene 2007;26:5280-9. [PMID: 17325664 DOI: 10.1038/sj.onc.1210325] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]