1 |
Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front Immunol 2020;11:1301. [PMID: 32695107 DOI: 10.3389/fimmu.2020.01301] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
2 |
Tourdot S, Hickling TP. Nonclinical immunogenicity risk assessment of therapeutic proteins. Bioanalysis 2019;11:1631-43. [PMID: 31208200 DOI: 10.4155/bio-2018-0246] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
|
3 |
Yogurtcu ON, Sauna ZE, McGill JR, Tegenge MA, Yang H. TCPro: an In Silico Risk Assessment Tool for Biotherapeutic Protein Immunogenicity. AAPS J 2019;21:96. [PMID: 31376048 DOI: 10.1208/s12248-019-0368-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
4 |
Zhang H, Chen P, Ma H, Woińska M, Liu D, Cooper DR, Peng G, Peng Y, Deng L, Minor W, Zheng H. virusMED: an atlas of hotspots of viral proteins. IUCrJ 2021;8. [PMID: 34614039 DOI: 10.1107/S2052252521009076] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Dellas N, Liu J, Botham RC, Huisman GW. Adapting protein sequences for optimized therapeutic efficacy. Curr Opin Chem Biol 2021;64:38-47. [PMID: 33933937 DOI: 10.1016/j.cbpa.2021.03.005] [Reference Citation Analysis]
|
6 |
Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, Jurtz V, Andreatta M, Greenbaum JA, Marcatili P, Sette A, Nielsen M, Peters B. IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res 2019;47:W502-6. [PMID: 31114900 DOI: 10.1093/nar/gkz452] [Cited by in Crossref: 93] [Cited by in F6Publishing: 80] [Article Influence: 46.5] [Reference Citation Analysis]
|
7 |
Nelapati AK, Das BK, Ponnan Ettiyappan JB, Chakraborty D. In-silico epitope identification and design of Uricase mutein with reduced immunogenicity. Process Biochemistry 2020;92:288-302. [DOI: 10.1016/j.procbio.2020.01.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Dhanda SK, Vita R, Ha B, Grifoni A, Peters B, Sette A. ImmunomeBrowser: a tool to aggregate and visualize complex and heterogeneous epitopes in reference proteins. Bioinformatics 2018;34:3931-3. [PMID: 29878047 DOI: 10.1093/bioinformatics/bty463] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
|
9 |
Pratt KP. Anti-Drug Antibodies: Emerging Approaches to Predict, Reduce or Reverse Biotherapeutic Immunogenicity. Antibodies (Basel) 2018;7:E19. [PMID: 31544871 DOI: 10.3390/antib7020019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
|
10 |
Deptuła M, Wardowska A, Dzierżyńska M, Rodziewicz-Motowidło S, Pikuła M. Antibacterial Peptides in Dermatology-Strategies for Evaluation of Allergic Potential. Molecules 2018;23:E414. [PMID: 29443886 DOI: 10.3390/molecules23020414] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
11 |
Stickler M, Reddy A, Xiong JM, Wong MH, Akamatsu Y, Hinton PR, Harding FA. Design, creation and in vitro testing of a reduced immunogenicity humanized anti-CD25 monoclonal antibody that retains functional activity. Protein Eng Des Sel 2019;32:543-54. [PMID: 32725169 DOI: 10.1093/protein/gzaa017] [Reference Citation Analysis]
|
12 |
Attermann AS, Barra C, Reynisson B, Schultz HS, Leurs U, Lamberth K, Nielsen M. Improved prediction of HLA antigen presentation hotspots: Applications for immunogenicity risk assessment of therapeutic proteins. Immunology 2021;162:208-19. [PMID: 33010039 DOI: 10.1111/imm.13274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
13 |
[DOI: 10.1101/2020.04.12.024844] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
|
14 |
Coronado L, Rios L, Frías MT, Amarán L, Naranjo P, Percedo MI, Perera CL, Prieto F, Fonseca-Rodriguez O, Perez LJ. Positive selection pressure on E2 protein of classical swine fever virus drives variations in virulence, pathogenesis and antigenicity: Implication for epidemiological surveillance in endemic areas. Transbound Emerg Dis 2019;66:2362-82. [PMID: 31306567 DOI: 10.1111/tbed.13293] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
15 |
Kovalova N, Boyles J, Wen Y, Witcher DR, Brown-Augsburger PL, Wroblewski VJ, Chlewicki LK. Validation of a de-immunization strategy for monoclonal antibodies using cynomolgus macaque as a surrogate for human. Biopharm Drug Dispos 2020;41:111-25. [PMID: 32080869 DOI: 10.1002/bdd.2222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|