BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tian A, Pu K, Li B, Li M, Liu X, Gao L, Mao X. Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis. Hepatol Res 2019;49:1195-206. [PMID: 31177590 DOI: 10.1111/hepr.13386] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Li H, Qu L, Zhang H, Liu J, Zhang X. A comprehensive transcriptomic landscape of cholangiocarcinoma based on bioinformatics analysis from large cohort of patients. Sci Rep 2021;11:13713. [PMID: 34211100 DOI: 10.1038/s41598-021-93250-4] [Reference Citation Analysis]
2 Li C, Xu J. Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma. Sci Rep 2019;9:17283. [PMID: 31754223 DOI: 10.1038/s41598-019-53471-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Huang G, Li H, Zhang H. Abnormal Expression of Mitochondrial Ribosomal Proteins and Their Encoding Genes with Cell Apoptosis and Diseases. Int J Mol Sci 2020;21:E8879. [PMID: 33238645 DOI: 10.3390/ijms21228879] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
4 Shi G, Shen Z, Liu Y, Yin W. Identifying Biomarkers to Predict the Progression and Prognosis of Breast Cancer by Weighted Gene Co-expression Network Analysis. Front Genet 2020;11:597888. [PMID: 33391348 DOI: 10.3389/fgene.2020.597888] [Reference Citation Analysis]
5 Dai Y, Lv Q, Qi T, Qu J, Ni H, Liao Y, Liu P, Qu Q. Identification of hub methylated-CpG sites and associated genes in oral squamous cell carcinoma. Cancer Med 2020;9:3174-87. [PMID: 32155325 DOI: 10.1002/cam4.2969] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
6 Wang W, He Y, Zhao Q, Zhao X, Li Z. Identification of potential key genes in gastric cancer using bioinformatics analysis. Biomed Rep. 2020;12:178-192. [PMID: 32190306 DOI: 10.3892/br.2020.1281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Mohr T, Katz S, Paulitschke V, Aizarani N, Tolios A. Systematic Analysis of the Transcriptome Profiles and Co-Expression Networks of Tumour Endothelial Cells Identifies Several Tumour-Associated Modules and Potential Therapeutic Targets in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:1768. [PMID: 33917186 DOI: 10.3390/cancers13081768] [Reference Citation Analysis]
8 Liu J, Liu W, Li H, Deng Q, Yang M, Li X, Liang Z. Identification of key genes and pathways associated with cholangiocarcinoma development based on weighted gene correlation network analysis. PeerJ 2019;7:e7968. [PMID: 31687280 DOI: 10.7717/peerj.7968] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
9 Tian A, Pu K, Li B, Li M, Liu X, Gao L, Mao X. Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis. Hepatol Res 2019;49:1195-206. [PMID: 31177590 DOI: 10.1111/hepr.13386] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
10 Cai Y, Ma F, Qu L, Liu B, Xiong H, Ma Y, Li S, Hao H. Weighted Gene Co-expression Network Analysis of Key Biomarkers Associated With Bronchopulmonary Dysplasia. Front Genet 2020;11:539292. [PMID: 33033495 DOI: 10.3389/fgene.2020.539292] [Reference Citation Analysis]