BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liao M, Yao Y. Applications of artificial intelligence‐based modeling for bioenergy systems: A review. GCB Bioenergy 2021;13:774-802. [DOI: 10.1111/gcbb.12816] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Rahimi M, Abbaspour-fard MH, Rohani A. A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique. Renewable Energy 2021;180:980-92. [DOI: 10.1016/j.renene.2021.08.102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
2 Rahimi M, Pourramezan M, Rohani A. Modeling and classifying the in-operando effects of wear and metal contaminations of lubricating oil on diesel engine: A machine learning approach. Expert Systems with Applications 2022;203:117494. [DOI: 10.1016/j.eswa.2022.117494] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Kyriklidis C, Kyriklidis M, Loizou E, Stimoniaris A, Tsanaktsidis CG. Optimal Bio Marine Fuel production evolutionary Computation: Genetic algorithm approach for raw materials mixtures. Fuel 2022;323:124232. [DOI: 10.1016/j.fuel.2022.124232] [Reference Citation Analysis]
4 Chen Z, Liu J, Chen H, Ding Z, Tang X, Evrendilek F. Oxy-fuel and air atmosphere combustions of Chinese medicine residues: Performances, mechanisms, flue gas emission, and ash properties. Renewable Energy 2022;182:102-18. [DOI: 10.1016/j.renene.2021.10.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
5 Felix CB, Chen W, Ubando AT, Park Y, Lin KA, Pugazhendhi A, Nguyen T, Dong C. A comprehensive review of thermogravimetric analysis in lignocellulosic and algal biomass gasification. Chemical Engineering Journal 2022;445:136730. [DOI: 10.1016/j.cej.2022.136730] [Reference Citation Analysis]
6 Liao M, Lan K, Yao Y. Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework. J of Industrial Ecology. [DOI: 10.1111/jiec.13214] [Reference Citation Analysis]
7 Xing Y, Zheng Z, Sun Y, Agha Alikhani M, Baghban A. A Review on Machine Learning Application in Biodiesel Production Studies. International Journal of Chemical Engineering 2021;2021:1-12. [DOI: 10.1155/2021/2154258] [Reference Citation Analysis]
8 Pan I, Mason LR, Matar OK. Data-centric Engineering: integrating simulation, machine learning and statistics. Challenges and opportunities. Chemical Engineering Science 2022;249:117271. [DOI: 10.1016/j.ces.2021.117271] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
9 Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, Fei Q, Gonzalez R. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107954] [Reference Citation Analysis]
10 Meena M, Shubham S, Paritosh K, Pareek N, Vivekanand V. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. Bioresour Technol 2021;340:125642. [PMID: 34315128 DOI: 10.1016/j.biortech.2021.125642] [Reference Citation Analysis]