BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lieu T, Jayaweera G, Bunnett NW. GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br J Pharmacol. 2014;171:1156-1166. [PMID: 24111923 DOI: 10.1111/bph.12426] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Meixiong J, Vasavda C, Snyder SH, Dong X. MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc Natl Acad Sci U S A. 2019;116:10525-10530. [PMID: 31068464 DOI: 10.1073/pnas.1903316116] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
2 Summers RJ. Editorial. Themed issue of the British Journal of Pharmacology. Br J Pharmacol 2014;171:1069-72. [PMID: 24575818 DOI: 10.1111/bph.12587] [Reference Citation Analysis]
3 Gu Y, Li L, Yang M, Liu T, Song X, Qin X, Xu X, Liu J, Wang B, Cao H. Bile acid-gut microbiota crosstalk in irritable bowel syndrome. Crit Rev Microbiol 2022;:1-20. [PMID: 35389754 DOI: 10.1080/1040841X.2022.2058353] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bunnett NW. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. J Physiol 2014;592:2943-50. [PMID: 24614746 DOI: 10.1113/jphysiol.2014.271155] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
5 Urso A, D'Ovidio F, Xu D, Emala CW Sr, Bunnett NW, Perez-Zoghbi JF. Bile acids inhibit cholinergic constriction in proximal and peripheral airways from humans and rodents. Am J Physiol Lung Cell Mol Physiol 2020;318:L264-75. [PMID: 31800261 DOI: 10.1152/ajplung.00242.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Domingue JC, Ao M, Sarathy J, Rao MC. Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl- secretion in human colonic T84 cells. Am J Physiol Cell Physiol 2016;311:C777-92. [PMID: 27558159 DOI: 10.1152/ajpcell.00168.2016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
7 Tough IR, Schwartz TW, Cox HM. Synthetic G protein-coupled bile acid receptor agonists and bile acids act via basolateral receptors in ileal and colonic mucosa. Neurogastroenterol Motil 2020;32:e13943. [PMID: 32656959 DOI: 10.1111/nmo.13943] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Distrutti E, Santucci L, Cipriani S, Renga B, Schiaroli E, Ricci P, Donini A, Fiorucci S. Bile acid activated receptors are targets for regulation of integrity of gastrointestinal mucosa. J Gastroenterol 2015;50:707-19. [DOI: 10.1007/s00535-015-1041-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
9 Asgharpour A, Kumar D, Sanyal A. Bile acids: emerging role in management of liver diseases. Hepatol Int. 2015;9:527-533. [PMID: 26320013 DOI: 10.1007/s12072-015-9656-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
10 Camilleri M, Shin A, Busciglio I, Carlson P, Acosta A, Bharucha AE, Burton D, Lamsam J, Lueke A, Donato LJ, Zinsmeister AR. Genetic variation in GPBAR1 predisposes to quantitative changes in colonic transit and bile acid excretion. Am J Physiol Gastrointest Liver Physiol 2014;307:G508-16. [PMID: 25012842 DOI: 10.1152/ajpgi.00178.2014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
11 Enomoto R, Kurosawa A, Nikaido Y, Mashiko M, Saheki T, Nakajima N, Kuroiwa S, Otobe M, Ohsaki M, Tooyama K, Inoue Y, Kuwabara N, Kikuchi O, Kitamura T, Kojima I, Nakagawa Y, Saito T, Osada H, Futahashi M, Sezutsu H, Takeda S. A novel partial agonist of GPBA reduces blood glucose level in a murine glucose tolerance test. Eur J Pharmacol 2017;814:130-7. [PMID: 28823924 DOI: 10.1016/j.ejphar.2017.08.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
12 Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, Cheong TC, Moon HJ, Cho JA, Kim HR, Han D, Na Y, Seok SH, Cho NH, Lee HC, Nam EH, Cho H, Choi M, Minato N, Seong SY. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 2018;9:1984. [PMID: 30279688 DOI: 10.3389/fimmu.2018.01984] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ackerman HD, Gerhard GS. Bile Acids in Neurodegenerative Disorders. Front Aging Neurosci 2016;8:263. [PMID: 27920719 DOI: 10.3389/fnagi.2016.00263] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
14 Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. Molecules 2022;27:3401. [PMID: 35684337 DOI: 10.3390/molecules27113401] [Reference Citation Analysis]
15 Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. Adv Exp Med Biol 2020;1274:223-58. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kiyama G, Nakashima KI, Shimada K, Murono N, Kakihana W, Imai H, Inoue M, Hirai T. Transmembrane G protein-coupled receptor 5 signaling stimulates fibroblast growth factor 21 expression concomitant with up-regulation of the transcription factor nuclear receptor Nr4a1. Biomed Pharmacother 2021;142:112078. [PMID: 34449315 DOI: 10.1016/j.biopha.2021.112078] [Reference Citation Analysis]
17 Yang ZH, Liu F, Zhu XR, Suo FY, Jia ZJ, Yao SK. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. World J Gastroenterol 2021; 27(24): 3609-3629 [PMID: 34239273 DOI: 10.3748/wjg.v27.i24.3609] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Sepe V, Distrutti E, Limongelli V, Fiorucci S, Zampella A. Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Medicinal Chemistry 2015;7:1109-35. [DOI: 10.4155/fmc.15.54] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
19 Li WT, Luo QQ, Wang B, Chen X, Yan XJ, Qiu HY, Chen SL. Bile acids induce visceral hypersensitivity via mucosal mast cell-to-nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis. FASEB J. 2019;33:2435-2450. [PMID: 30260705 DOI: 10.1096/fj.201800935rr] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
20 Yilmaz A, Ugur Z, Ustun I, Akyol S, Bahado-Singh RO, Maddens M, Aasly JO, Graham SF. Metabolic Profiling of CSF from People Suffering from Sporadic and LRRK2 Parkinson's Disease: A Pilot Study. Cells 2020;9:E2394. [PMID: 33142859 DOI: 10.3390/cells9112394] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQ. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020;12:E3709. [PMID: 33266235 DOI: 10.3390/nu12123709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Zhu L, Wang W, Xie TH, Zou J, Nie X, Wang X, Zhang MY, Wang ZY, Gu S, Zhuang M, Tan J, Shen C, Dai Y, Yang X, Yao Y, Wei TT. TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling. FASEB J 2020;34:4189-203. [PMID: 31957105 DOI: 10.1096/fj.201902496RR] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018;98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 27.0] [Reference Citation Analysis]
24 Renga B, Bucci M, Cipriani S, Carino A, Monti MC, Zampella A, Gargiulo A, d'Emmanuele di Villa Bianca R, Distrutti E, Fiorucci S. Cystathionine γ-lyase, a H2S-generating enzyme, is a GPBAR1-regulated gene and contributes to vasodilation caused by secondary bile acids. Am J Physiol Heart Circ Physiol 2015;309:H114-26. [PMID: 25934094 DOI: 10.1152/ajpheart.00087.2015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
25 Camilleri M, Sellin JH, Barrett KE. Pathophysiology, Evaluation, and Management of Chronic Watery Diarrhea. Gastroenterology. 2017;152:515-532.e2. [PMID: 27773805 DOI: 10.1053/j.gastro.2016.10.014] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 7.7] [Reference Citation Analysis]
26 Fu X, Xiao Y, Golden J, Niu S, Gayer CP. Serum bile acids profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application on pediatric liver and intestinal diseases. Clinical Chemistry and Laboratory Medicine (CCLM) 2020;58:787-97. [DOI: 10.1515/cclm-2019-0354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017;69:316-53. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
28 Zhang Y, Zhang GX, Wang K, Tan Y, Zhan C. Obstructive jaundice induced kidney damage is mediated by down-regulation of bile acid receptors FXR and TGR5. Shijie Huaren Xiaohua Zazhi 2018; 26(20): 1234-1240 [DOI: 10.11569/wcjd.v26.i20.1234] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Ma SY, Ning MM, Zou QA, Feng Y, Ye YL, Shen JH, Leng Y. OL3, a novel low-absorbed TGR5 agonist with reduced side effects, lowered blood glucose via dual actions on TGR5 activation and DPP-4 inhibition. Acta Pharmacol Sin 2016;37:1359-69. [PMID: 27264313 DOI: 10.1038/aps.2016.27] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
30 Liu H, Wang W, Xu Z, Liu C, He D, Du L, Li M, Yu X, Sun J. FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. European Journal of Pharmacology 2015;763:160-8. [DOI: 10.1016/j.ejphar.2015.06.028] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
31 Camilleri M. Intestinal secretory mechanisms in irritable bowel syndrome-diarrhea. Clin Gastroenterol Hepatol 2015;13:1051-7; quiz e61-2. [PMID: 25041862 DOI: 10.1016/j.cgh.2014.07.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
32 Wang Q, Li ZX, Liu BW, He ZG, Liu C, Chen M, Liu SG, Wu WZ, Xiang HB. Altered expression of differential gene and lncRNA in the lower thoracic spinal cord on different time courses of experimental obstructive jaundice model accompanied with altered peripheral nociception in rats. Oncotarget 2017;8:106098-112. [PMID: 29285317 DOI: 10.18632/oncotarget.22532] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
33 Kumar DP, Asgharpour A, Mirshahi F, Park SH, Liu S, Imai Y, Nadler JL, Grider JR, Murthy KS, Sanyal AJ. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. J Biol Chem 2016;291:6626-40. [PMID: 26757816 DOI: 10.1074/jbc.M115.699504] [Cited by in Crossref: 57] [Cited by in F6Publishing: 29] [Article Influence: 9.5] [Reference Citation Analysis]
34 Li S, Hua D, Wang Q, Yang L, Wang X, Luo A, Yang C. The Role of Bacteria and Its Derived Metabolites in Chronic Pain and Depression: Recent Findings and Research Progress. Int J Neuropsychopharmacol 2020;23:26-41. [PMID: 31760425 DOI: 10.1093/ijnp/pyz061] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
35 Renga B, Cipriani S, Carino A, Simonetti M, Zampella A, Fiorucci S. Reversal of Endothelial Dysfunction by GPBAR1 Agonism in Portal Hypertension Involves a AKT/FOXOA1 Dependent Regulation of H2S Generation and Endothelin-1. PLoS One 2015;10:e0141082. [PMID: 26539823 DOI: 10.1371/journal.pone.0141082] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
36 Graham SF, Rey NL, Ugur Z, Yilmaz A, Sherman E, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P. Metabolomic Profiling of Bile Acids in an Experimental Model of Prodromal Parkinson's Disease. Metabolites 2018;8:E71. [PMID: 30384419 DOI: 10.3390/metabo8040071] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]