BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vliegenthart AD, Tucker CS, Del Pozo J, Dear JW. Zebrafish as model organisms for studying drug-induced liver injury. Br J Clin Pharmacol. 2014;78:1217-1227. [PMID: 24773296 DOI: 10.1111/bcp.12408] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Funk C, Roth A. Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol 2017;91:131-42. [DOI: 10.1007/s00204-016-1874-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
2 Boran H, Şaffak S. Comparison of Dissolved Nickel and Nickel Nanoparticles Toxicity in Larval Zebrafish in Terms of Gene Expression and DNA Damage. Arch Environ Contam Toxicol 2018;74:193-202. [DOI: 10.1007/s00244-017-0468-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
3 van Wijk RC, Krekels EH, Hankemeier T, Spaink HP, van der Graaf PH. Systems pharmacology of hepatic metabolism in zebrafish larvae. Drug Discovery Today: Disease Models 2016;22:27-34. [DOI: 10.1016/j.ddmod.2017.04.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Anju T, Preetha R, Shunmugam R, Mane SR, Arockiaraj J, Kumaresan V. Norbornene derived nanocarrier reduces isoniazid mediated liver toxicity: assessment in HepG2 cell line and zebrafish model. RSC Adv 2016;6:114927-36. [DOI: 10.1039/c6ra23557c] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
5 Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021;37:26. [PMID: 34496973 DOI: 10.1186/s42826-021-00103-2] [Reference Citation Analysis]
6 Verstraelen S, Peers B, Maho W, Hollanders K, Remy S, Berckmans P, Covaci A, Witters H. Phenotypic and biomarker evaluation of zebrafish larvae as an alternative model to predict mammalian hepatotoxicity. J Appl Toxicol 2016;36:1194-206. [PMID: 26946349 DOI: 10.1002/jat.3288] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
7 Zhang Y, Han L, He Q, Chen W, Sun C, Wang X, Chen X, Wang R, Hsiao C, Liu K. A rapid assessment for predicting drug-induced hepatotoxicity using zebrafish. Journal of Pharmacological and Toxicological Methods 2017;84:102-10. [DOI: 10.1016/j.vascn.2016.12.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
8 Reuter I, Knaup S, Romanos M, Lesch KP, Drepper C, Lillesaar C. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae. J Neural Transm (Vienna) 2016;123:841-8. [PMID: 27116683 DOI: 10.1007/s00702-016-1556-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
9 Lee SR, An MY, Hwang HJ, Yoon JG, Cho JA. Antioxidant Effect of Lycium barbarum Leaf through Inflammatory and Endoplasmic Reticulum Stress Mechanism. Antioxidants (Basel) 2020;10:E20. [PMID: 33379227 DOI: 10.3390/antiox10010020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Younes N, Pintus G, Al-asmakh M, Rasool K, Younes S, Calzolari S, Mahmoud KA, Nasrallah GK. “Safe” Chitosan/Zinc Oxide Nanocomposite Has Minimal Organ-Specific Toxicity in Early Stages of Zebrafish Development. ACS Biomater Sci Eng 2020;6:38-47. [DOI: 10.1021/acsbiomaterials.8b01144] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Sun W, Yan B, Wang R, Liu F, Hu Z, Zhou L, Yan L, Zhou K, Huang J, Tong P, Shan L, Efferth T. In vivo acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process. EXCLI J 2018;17:889-99. [PMID: 30564068 DOI: 10.17179/excli2018-1607] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021;22:13417. [PMID: 34948215 DOI: 10.3390/ijms222413417] [Reference Citation Analysis]
13 De Sales-Ribeiro C, Brito-Casillas Y, Fernandez A, Caballero MJ. An end to the controversy over the microscopic detection and effects of pristine microplastics in fish organs. Sci Rep 2020;10:12434. [PMID: 32709913 DOI: 10.1038/s41598-020-69062-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
14 Zhang MQ, Chen B, Zhang JP, Chen N, Liu CZ, Hu CQ. Liver toxicity of macrolide antibiotics in zebrafish. Toxicology 2020;441:152501. [PMID: 32454074 DOI: 10.1016/j.tox.2020.152501] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Miyawaki I. Application of zebrafish to safety evaluation in drug discovery. J Toxicol Pathol 2020;33:197-210. [PMID: 33239838 DOI: 10.1293/tox.2020-0021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Hale AJ, den Hertog J. Studying Protein-Tyrosine Phosphatases in Zebrafish. Methods Mol Biol 2016;1447:351-72. [PMID: 27514815 DOI: 10.1007/978-1-4939-3746-2_19] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
17 Letrado P, Mole H, Montoya M, Palacios I, Barriuso J, Hurlstone A, Díez-Martínez R, Oyarzabal J. Systematic Roadmap for Cancer Drug Screening Using Zebrafish Embryo Xenograft Cancer Models: Melanoma Cell Line as a Case Study. Cancers (Basel) 2021;13:3705. [PMID: 34359605 DOI: 10.3390/cancers13153705] [Reference Citation Analysis]
18 Sasagawa S, Nishimura Y, Koiwa J, Nomoto T, Shintou T, Murakami S, Yuge M, Kawaguchi K, Kawase R, Miyazaki T, Tanaka T. In Vivo Detection of Mitochondrial Dysfunction Induced by Clinical Drugs and Disease-Associated Genes Using a Novel Dye ZMJ214 in Zebrafish. ACS Chem Biol 2016;11:381-8. [PMID: 26630578 DOI: 10.1021/acschembio.5b00751] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
19 Saad M, Verbueken E, Pype C, Casteleyn C, Van Ginneken C, Maes L, Cos P, Van Cruchten S. In vitro CYP1A activity in the zebrafish: temporal but low metabolite levels during organogenesis and lack of gender differences in the adult stage. Reproductive Toxicology 2016;64:50-6. [DOI: 10.1016/j.reprotox.2016.03.049] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
20 Zhang Y, Cai Y, Zhang SR, Li CY, Jiang LL, Wei P, He MF. Mechanism of hepatotoxicity of first-line tyrosine kinase inhibitors: Gefitinib and afatinib. Toxicol Lett 2021;343:1-10. [PMID: 33571620 DOI: 10.1016/j.toxlet.2021.02.003] [Reference Citation Analysis]
21 Cavalcante LDS, Toner M, Uygun K, Tessier SN. Leveraging the zebrafish to model organ transplantation. Curr Opin Organ Transplant 2019;24:613-9. [PMID: 31483338 DOI: 10.1097/MOT.0000000000000696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018;7:E130. [PMID: 30200518 DOI: 10.3390/cells7090130] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
23 Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2021;41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Guo Q, Yang W, Xiao B, Zhang H, Lei X, Ou H, Qin R, Jin R. Study on early biomarkers of zebrafish liver injury induced by acetaminophen. Toxin Reviews 2014;34:28-36. [DOI: 10.3109/15569543.2014.986282] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
25 Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal G, Lucena MI, Andrade RJ, Fromenty B, Krannendonk M, Cubero FJ, Nelson LJ. ADVANCED PRECLINICAL MODELS FOR EVALUATION OF DRUG INDUCED LIVER INJURY - CONSENSUS STATEMENT BY THE EUROPEAN DRUG-INDUCED LIVER INJURY NETWORK [PRO-EURO-DILI-NET]. J Hepatol 2021:S0168-8278(21)00441-4. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Dos Santos Sampaio TI, de Melo NC, de Freitas Paiva BT, da Silva Aleluia GA, da Silva Neto FLP, da Silva HR, Keita H, Cruz RAS, Sánchez-Ortiz BL, Pineda-Peña EA, Balderas JL, Navarrete A, Carvalho JCT. Leaves of Spondias mombin L. a traditional anxiolytic and antidepressant: Pharmacological evaluation on zebrafish (Danio rerio). J Ethnopharmacol 2018;224:563-78. [PMID: 29852265 DOI: 10.1016/j.jep.2018.05.037] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
27 Truong L, Simonich MT, Tanguay RL. Better, Faster, Cheaper: Getting the Most Out of High-Throughput Screening with Zebrafish. Methods Mol Biol 2016;1473:89-98. [PMID: 27518627 DOI: 10.1007/978-1-4939-6346-1_10] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
28 Zhang P, Jiang XF, Nie X, Huang Y, Zeng F, Xia X, Wu S. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo. Biomaterials 2016;80:46-56. [PMID: 26706475 DOI: 10.1016/j.biomaterials.2015.11.047] [Cited by in Crossref: 90] [Cited by in F6Publishing: 81] [Article Influence: 12.9] [Reference Citation Analysis]
29 Al-asmakh M, Majdalawieh AF, Abdullah AM, Younes N, Da’as SI, Radwan AB, Sliem MH, Ech-cherif H, Pintus G, Nasrallah GK. AEO-7 surfactant is “super toxic” and induces severe cardiac, liver and locomotion damage in zebrafish embryos. Environ Sci Eur 2020;32. [DOI: 10.1186/s12302-020-00429-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Monteiro DA, Selistre-de-Araújo HS, Tavares D, Fernandes MN, Kalinin AL, Rantin FT. Alternagin-C (ALT-C), a Disintegrin-Like Cys-Rich Protein Isolated from the Venom of the Snake Rhinocerophis alternatus, Stimulates Angiogenesis and Antioxidant Defenses in the Liver of Freshwater Fish, Hoplias malabaricus. Toxins (Basel) 2017;9:E307. [PMID: 28956818 DOI: 10.3390/toxins9100307] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
31 Duan J, Yu Y, Li Y, Jing L, Yang M, Wang J, Li Y, Zhou X, Miller MR, Sun Z. Comprehensive understanding of PM2.5 on gene and microRNA expression patterns in zebrafish (Danio rerio) model. Science of The Total Environment 2017;586:666-74. [DOI: 10.1016/j.scitotenv.2017.02.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
32 Du Z, Zhang Y, Wang G, Peng J, Wang Z, Gao S. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver. Sci Rep 2016;6:21827. [PMID: 26898711 DOI: 10.1038/srep21827] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 9.8] [Reference Citation Analysis]
33 Gutiérrez D, Garrido V, Fernández L, Portilla S, Rodríguez A, Grilló MJ, García P. Phage Lytic Protein LysRODI Prevents Staphylococcal Mastitis in Mice. Front Microbiol 2020;11:7. [PMID: 32038593 DOI: 10.3389/fmicb.2020.00007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
34 Kim M, Gu GJ, Koh YS, Lee SH, Na YR, Seok SH, Lim KM. Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner. Biomol Ther (Seoul) 2018;26:599-607. [PMID: 29429148 DOI: 10.4062/biomolther.2017.225] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
35 Wang Z, Song J, Luo L, Ma J. Loss of Leucyl-tRNA synthetase b leads to ILFS1-like symptoms in zebrafish. Biochem Biophys Res Commun. 2018;505:378-384. [PMID: 30262142 DOI: 10.1016/j.bbrc.2018.09.133] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
36 Saide K, Wheeler GN. In Vivo Assessment of Drug-Induced Hepatotoxicity Using Xenopus Embryos. Cold Spring Harb Protoc 2020;2020:pdb.prot106096. [DOI: 10.1101/pdb.prot106096] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Manjunatha B, Sreevidya B, Lee SJ. Developmental toxicity triggered by benzyl alcohol in the early stage of zebrafish embryos: Cardiovascular defects with inhibited liver formation and degenerated neurogenesis. Sci Total Environ 2021;752:141631. [PMID: 32889257 DOI: 10.1016/j.scitotenv.2020.141631] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Liu H, Wu Q, Chu T, Mo Y, Cai S, Chen M, Zhu G. High-dose acute exposure of paraquat induces injuries of swim bladder, gastrointestinal tract and liver via neutrophil-mediated ROS in zebrafish and their relevance for human health risk assessment. Chemosphere 2018;205:662-73. [DOI: 10.1016/j.chemosphere.2018.04.151] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
39 Zhong R, Chen Y, Ling J, Xia Z, Zhan Y, Sun E, Shi Z, Feng L, Jia X, Song J, Wei Y. The Toxicity and Metabolism Properties of Herba Epimedii Flavonoids on Laval and Adult Zebrafish. Evid Based Complement Alternat Med 2019;2019:3745051. [PMID: 30941194 DOI: 10.1155/2019/3745051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
40 Al-Jamal O, Al-Jighefee H, Younes N, Abdin R, Al-Asmakh MA, Radwan AB, Sliem MH, Majdalawieh AF, Pintus G, Yassine HM, Abdullah AM, Da'as SI, Nasrallah GK. Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos. Sci Total Environ 2020;741:140450. [PMID: 32886985 DOI: 10.1016/j.scitotenv.2020.140450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Ericsson AC, Busi SB, Davis DJ, Nabli H, Eckhoff DC, Dorfmeyer RA, Turner G, Oswalt PS, Crim MJ, Bryda EC. Molecular and culture-based assessment of the microbiome in a zebrafish (Danio rerio) housing system during set-up and equilibration. Anim Microbiome 2021;3:55. [PMID: 34353374 DOI: 10.1186/s42523-021-00116-1] [Reference Citation Analysis]
42 Chang Z, Chen PY, Chuang YJ, Akhtar R. Zebrafish as a model to study bone maturation: Nanoscale structural and mechanical characterization of age-related changes in the zebrafish vertebral column. J Mech Behav Biomed Mater 2018;84:54-63. [PMID: 29747057 DOI: 10.1016/j.jmbbm.2018.05.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
43 Podechard N, Chevanne M, Fernier M, Tête A, Collin A, Cassio D, Kah O, Lagadic-Gossmann D, Sergent O. Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. J Appl Toxicol 2017;37:732-46. [PMID: 27896850 DOI: 10.1002/jat.3421] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
44 Cocci P, Mosconi G, Palermo FA. Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants. Aquat Toxicol 2019;209:81-90. [PMID: 30753973 DOI: 10.1016/j.aquatox.2019.02.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
45 Caballero-Gallardo K, Olivero-Verbel J, Freeman JL. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model. Curr Genomics 2016;17:515-27. [PMID: 28217008 DOI: 10.2174/1389202917666160513105959] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
46 Higuchi A, Wakai E, Tada T, Koiwa J, Adachi Y, Shiromizu T, Goto H, Tanaka T, Nishimura Y. Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis. Pharmaceuticals (Basel) 2021;14:1117. [PMID: 34832899 DOI: 10.3390/ph14111117] [Reference Citation Analysis]
47 Duan XY, Ma RJ, Hsiao CD, Jiang ZZ, Zhang LY, Zhang Y, Liu KC. Tripterygium wilfordii multiglycoside-induced hepatotoxicity via inflammation and apoptosis in zebrafish. Chin J Nat Med 2021;19:750-7. [PMID: 34688465 DOI: 10.1016/S1875-5364(21)60078-X] [Reference Citation Analysis]
48 Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, Sun Z. Multi-organ toxicity induced by fine particulate matter PM2.5 in zebrafish (Danio rerio) model. Chemosphere 2017;180:24-32. [PMID: 28391149 DOI: 10.1016/j.chemosphere.2017.04.013] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
49 Mukherjee U, Samanta A, Biswas S, Ghosh S, Das S, Banerjee S, Maitra S. Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chem Biol Interact 2022;351:109762. [PMID: 34843692 DOI: 10.1016/j.cbi.2021.109762] [Reference Citation Analysis]
50 Tomazi R, Figueira ÂC, Ferreira AM, Ferreira DQ, de Souza GC, de Souza Pinheiro WB, Pinheiro Neto JR, da Silva GA, de Lima HB, da Silva Hage-Melim LI, Pereira ACM, Carvalho JCT, da Silva de Almeida SSM. Hypoglycemic Activity of Aqueous Extract of Latex from Hancornia speciosa Gomes: A Study in Zebrafish and In Silico. Pharmaceuticals (Basel) 2021;14:856. [PMID: 34577555 DOI: 10.3390/ph14090856] [Reference Citation Analysis]
51 Sun M, Liu Q, Liang Q, Gao S, Zhuang K, Zhang Y, Zhang H, Liu K, She G, Xia Q. Toosendanin triggered hepatotoxicity in zebrafish via inflammation, autophagy, and apoptosis pathways. Comp Biochem Physiol C Toxicol Pharmacol 2021;250:109171. [PMID: 34454086 DOI: 10.1016/j.cbpc.2021.109171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Farghali H, Kgalalelo Kemelo M, Wojnarová L, Kutinová Canová N. In Vitro and In Vivo Experimental Hepatotoxic Models in Liver Research: Applications to the Assessment of Potential Hepatoprotective Drugs. Physiol Res. [DOI: 10.33549/physiolres.933506] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
53 Huang Y, Yang P, Chen H, Bai X, Wang X, Vistro WA, Haseeb A, Shi Y, Chen Q. A "Lamellar structure" contributes to autophagosome biogenesis and mitophagy in zebrafish hepatocytes. Fish Shellfish Immunol 2018;81:83-91. [PMID: 29960063 DOI: 10.1016/j.fsi.2018.06.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
54 Alves-Pimenta S, Colaço B, Oliveira PA, Venâncio C. Biological Concerns on the Selection of Animal Models for Teratogenic Testing. Methods Mol Biol 2018;1797:61-93. [PMID: 29896687 DOI: 10.1007/978-1-4939-7883-0_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
55 Félix L, Coimbra AM, Valentim AM, Antunes L. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol 2019;49:357-70. [PMID: 31314655 DOI: 10.1080/10408444.2019.1617236] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
56 Wang B, Liu L, Li Y, Zou J, Li D, Zhao D, Li W, Sun W. Ustilaginoidin D induces hepatotoxicity and behaviour aberrations in zebrafish larvae. Toxicology 2021;456:152786. [PMID: 33872729 DOI: 10.1016/j.tox.2021.152786] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Cornet C, Calzolari S, Miñana-Prieto R, Dyballa S, van Doornmalen E, Rutjes H, Savy T, D'Amico D, Terriente J. ZeGlobalTox: An Innovative Approach to Address Organ Drug Toxicity Using Zebrafish. Int J Mol Sci 2017;18:E864. [PMID: 28422076 DOI: 10.3390/ijms18040864] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 8.8] [Reference Citation Analysis]
58 Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 2016;13:473-485. [PMID: 27353402 DOI: 10.1038/nrgastro.2016.97] [Cited by in Crossref: 152] [Cited by in F6Publishing: 138] [Article Influence: 25.3] [Reference Citation Analysis]
59 Chen H, Sheng L, Gong Z, Ru S, Bian H. Investigation of the molecular mechanisms of hepatic injury upon naphthalene exposure in zebrafish (Danio rerio). Ecotoxicology 2018;27:650-60. [PMID: 29748829 DOI: 10.1007/s10646-018-1943-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
60 Ray A, Shelly A, Roy S, Mazumder S. Arsenic induced alteration in Mrp-1 like activity leads to zebrafish hepatocyte apoptosis: The cellular GSH connection. Environ Toxicol Pharmacol 2020;79:103427. [PMID: 32470611 DOI: 10.1016/j.etap.2020.103427] [Reference Citation Analysis]
61 Quan Y, Gong L, He J, Zhou Y, Liu M, Cao Z, Li Y, Peng C. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 2019;306:66-79. [PMID: 30771440 DOI: 10.1016/j.toxlet.2019.02.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
62 Liu M, Ai W, Sun L, Fang F, Wang X, Chen S, Wang H. Triclosan-induced liver injury in zebrafish (Danio rerio) via regulating MAPK/p53 signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2019;222:108-17. [PMID: 31048017 DOI: 10.1016/j.cbpc.2019.04.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
63 Wolf JC, Wheeler JR. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models. Aquat Toxicol 2018;197:60-78. [PMID: 29448125 DOI: 10.1016/j.aquatox.2018.01.013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 14.5] [Reference Citation Analysis]
64 Jakhar R, Dangi M, Khichi A, Chhillar AK. Relevance of Molecular Docking Studies in Drug Designing. CBIO 2020;15:270-8. [DOI: 10.2174/1574893615666191219094216] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
65 Chan JY, Zhou H, Kwan YW, Chan SW, Radis-Baptista G, Lee SM. Evaluation in zebrafish model of the toxicity of rhodamine B-conjugated crotamine, a peptide potentially useful for diagnostics and therapeutics. J Biochem Mol Toxicol 2017;31. [PMID: 28815806 DOI: 10.1002/jbt.21964] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
66 Loerracher AK, Braunbeck T. Inducibility of cytochrome P450-mediated 7-methoxycoumarin-O-demethylase activity in zebrafish (Danio rerio) embryos. Aquat Toxicol 2020;225:105540. [PMID: 32569997 DOI: 10.1016/j.aquatox.2020.105540] [Reference Citation Analysis]
67 Wang S, Zhang B, Wang W, Feng G, Yuan D, Zhang X. Elucidating the Structure-Reactivity Correlations of Phenothiazine-Based Fluorescent Probes toward ClO . Chem Eur J 2018;24:8157-66. [DOI: 10.1002/chem.201800356] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
68 Saide K, Sherwood V, Wheeler GN. Paracetamol-induced liver injury modelled in Xenopus laevis embryos. Toxicology Letters 2019;302:83-91. [DOI: 10.1016/j.toxlet.2018.09.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
69 Pasqualotto A, Ayres R, Longo L, Del Duca Lima D, Losch de Oliveira D, Alvares-da-Silva MR, Reverbel da Silveira T, Uribe-Cruz C. Chronic exposure to ethanol alters the expression of miR-155, miR-122 and miR-217 in alcoholic liver disease in an adult zebrafish model. Biomarkers 2021;26:146-51. [PMID: 33435755 DOI: 10.1080/1354750X.2021.1874051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Song Z, Zhang Y, Zhang H, Rajendran RS, Wang R, Hsiao C, Li J, Xia Q, Liu K. Isoliquiritigenin triggers developmental toxicity and oxidative stress–mediated apoptosis in zebrafish embryos/larvae via Nrf2-HO1/JNK-ERK/mitochondrion pathway. Chemosphere 2020;246:125727. [DOI: 10.1016/j.chemosphere.2019.125727] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
71 Abou-Saleh H, Younes N, Rasool K, Younis MH, Prieto RM, Yassine HM, Mahmoud KA, Pintus G, Nasrallah GK. Impaired Liver Size and Compromised Neurobehavioral Activity are Elicited by Chitosan Nanoparticles in the Zebrafish Embryo Model. Nanomaterials (Basel) 2019;9:E122. [PMID: 30669437 DOI: 10.3390/nano9010122] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
72 Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. J Ethnopharmacol 2022;282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Reference Citation Analysis]
73 Gong L, Zhou H, Wang C, He L, Guo C, Peng C, Li Y. Hepatoprotective effect of forsythiaside a against acetaminophen-induced liver injury in zebrafish: Coupling network pharmacology with biochemical pharmacology. J Ethnopharmacol 2021;271:113890. [PMID: 33516931 DOI: 10.1016/j.jep.2021.113890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Qiu L, Jia K, Huang L, Liao X, Guo X, Lu H. Hepatotoxicity of tricyclazole in zebrafish (Danio rerio). Chemosphere 2019;232:171-9. [DOI: 10.1016/j.chemosphere.2019.05.159] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
75 [DOI: 10.1063/1.5000196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
76 Ranadive I, Patel S, Mhaske A, Uggini GK, Desai I, Balakrishnan S. Evaluation of multikinase inhibitor LDN193189 induced hepatotoxicity in teleost fish Poecilia latipinna. Drug Chem Toxicol 2019;42:565-76. [PMID: 29498548 DOI: 10.1080/01480545.2018.1441865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
77 Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2020;33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 28.7] [Reference Citation Analysis]
78 Manjunatha B, Seo E, Park SH, Kundapur RR, Lee SJ. Pristine graphene and graphene oxide induce multi-organ defects in zebrafish (Danio rerio) larvae/juvenile: an in vivo study. Environ Sci Pollut Res 2021;28:34664-75. [DOI: 10.1007/s11356-021-13058-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
79 Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. Green Chem 2016;18:6410-30. [PMID: 28461781 DOI: 10.1039/C6GC02061E] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 3.2] [Reference Citation Analysis]
80 Zheng C, Shan L, Tong P, Efferth T. Cardiotoxicity and Cardioprotection by Artesunate in Larval Zebrafish. Dose Response 2020;18:1559325819897180. [PMID: 31975974 DOI: 10.1177/1559325819897180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
81 Jamalpoor A, van Gelder CA, Yousef Yengej FA, Zaal EA, Berlingerio SP, Veys KR, Pou Casellas C, Voskuil K, Essa K, Ammerlaan CM, Rega LR, van der Welle RE, Lilien MR, Rookmaaker MB, Clevers H, Klumperman J, Levtchenko E, Berkers CR, Verhaar MC, Altelaar M, Masereeuw R, Janssen MJ. Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol Med 2021;13:e13067. [PMID: 34165243 DOI: 10.15252/emmm.202013067] [Reference Citation Analysis]
82 Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21(42): 12042-12058 [PMID: 26576090 DOI: 10.3748/wjg.v21.i42.12042] [Cited by in CrossRef: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
83 Echeazarra L, Hortigón-Vinagre MP, Casis O, Gallego M. Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry. Front Physiol 2020;11:607860. [PMID: 33519514 DOI: 10.3389/fphys.2020.607860] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Mesens N, Crawford AD, Menke A, Hung PD, Van Goethem F, Nuyts R, Hansen E, Wolterbeek A, Van Gompel J, De Witte P, Esguerra CV. Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates? J Appl Toxicol 2015;35:1017-29. [PMID: 25663337 DOI: 10.1002/jat.3091] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
85 Vliegenthart ADB, Wei C, Buckley C, Berends C, de Potter CMJ, Schneemann S, Del Pozo J, Tucker C, Mullins JJ, Webb DJ, Dear JW. Characterization of Triptolide-Induced Hepatotoxicity by Imaging and Transcriptomics in a Novel Zebrafish Model. Toxicol Sci 2017;159:380-91. [PMID: 28962522 DOI: 10.1093/toxsci/kfx144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
86 Rodrigues S, Antunes S, Correia A, Nunes B. Ecotoxicological evaluation of gilthead seabream (Sparus aurata) exposed to the antibiotic oxytetracycline using a multibiomarker approach. Marine Environmental Research 2018;141:233-46. [DOI: 10.1016/j.marenvres.2018.09.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
87 Yesudhason BV, Kanniah P, Subramanian ER, Ponesakki V, Rajendiran V, Sivasubramaniam S. Exploiting the unique phenotypes of the earthworm Eudrilus eugeniae to evaluate the toxicity of chemical substances. Environ Monit Assess 2018;190. [DOI: 10.1007/s10661-018-6477-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
88 Cha S, Lee J, Kim E, Shin CH, Jun H, Jeon Y. Phloroglucinol accelerates the regeneration of liver damaged by H 2 O 2 or MNZ treatment in zebrafish. RSC Adv 2017;7:46164-70. [DOI: 10.1039/c7ra05994a] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
89 Hu J, Xia M, Wang Y, Tian F, Sun B, Yang M, Yang W, Ding X, Xu H, Li W. Paternal exposure to di-n-butyl-phthalate induced developmental toxicity in zebrafish (Danio rerio). Birth Defects Res 2021;113:14-21. [PMID: 33009721 DOI: 10.1002/bdr2.1812] [Reference Citation Analysis]
90 Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int J Toxicol 2019;38:357-84. [PMID: 31462100 DOI: 10.1177/1091581819863130] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
91 Kantae V, Krekels EH, Ordas A, González O, van Wijk RC, Harms AC, Racz PI, van der Graaf PH, Spaink HP, Hankemeier T. Pharmacokinetic Modeling of Paracetamol Uptake and Clearance in Zebrafish Larvae: Expanding the Allometric Scale in Vertebrates with Five Orders of Magnitude. Zebrafish 2016;13:504-10. [PMID: 27632065 DOI: 10.1089/zeb.2016.1313] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]