BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Poblete-Castro I, Wittmann C, Nikel PI. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species. Microb Biotechnol 2020;13:32-53. [PMID: 30883020 DOI: 10.1111/1751-7915.13400] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Poblete-Castro I, Aravena-Carrasco C, Orellana-Saez M, Pacheco N, Cabrera A, Borrero-de Acuña JM. Engineering the Osmotic State of Pseudomonas putida KT2440 for Efficient Cell Disruption and Downstream Processing of Poly(3-Hydroxyalkanoates). Front Bioeng Biotechnol 2020;8:161. [PMID: 32211393 DOI: 10.3389/fbioe.2020.00161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
2 Zhou Z, Liu D, Zhao X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews 2021;146:111169. [DOI: 10.1016/j.rser.2021.111169] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
3 Poblete-Castro I, Wittmann C, Nikel PI. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species. Microb Biotechnol 2020;13:32-53. [PMID: 30883020 DOI: 10.1111/1751-7915.13400] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 11.7] [Reference Citation Analysis]
4 Perdigão R, Almeida CMR, Magalhães C, Ramos S, Carolas AL, Ferreira BS, Carvalho MF, Mucha AP. Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria. Microorganisms 2021;9:2285. [PMID: 34835411 DOI: 10.3390/microorganisms9112285] [Reference Citation Analysis]
5 Volke DC, Friis L, Wirth NT, Turlin J, Nikel PI. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab Eng Commun 2020;10:e00126. [PMID: 32215253 DOI: 10.1016/j.mec.2020.e00126] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
6 Batianis C, Kozaeva E, Damalas SG, Martín-Pascual M, Volke DC, Nikel PI, Martins Dos Santos VAP. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida. Microb Biotechnol 2020;13:368-85. [PMID: 32045111 DOI: 10.1111/1751-7915.13533] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
7 Kozaeva E, Volkova S, Matos MRA, Mezzina MP, Wulff T, Volke DC, Nielsen LK, Nikel PI. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired Pseudomonas putida. Metab Eng 2021;67:373-86. [PMID: 34343699 DOI: 10.1016/j.ymben.2021.07.014] [Reference Citation Analysis]
8 Bravakos P, Mandalakis M, Nomikou P, Anastasiou TI, Kristoffersen JB, Stavroulaki M, Kilias S, Kotoulas G, Magoulas A, Polymenakou PN. Genomic adaptation of Pseudomonas strains to acidity and antibiotics in hydrothermal vents at Kolumbo submarine volcano, Greece. Sci Rep 2021;11:1336. [PMID: 33446715 DOI: 10.1038/s41598-020-79359-y] [Reference Citation Analysis]
9 Xu Z, Pan C, Li X, Hao N, Zhang T, Gaffrey MJ, Pu Y, Cort JR, Ragauskas AJ, Qian WJ, Yang B. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Biotechnol Biofuels 2021;14:11. [PMID: 33413621 DOI: 10.1186/s13068-020-01861-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Foreman S, Ferrara K, Hreha TN, Duran-Pinedo AE, Frias-Lopez J, Barquera B. Genetic and Biochemical Characterization of the Na+/H+ Antiporters of Pseudomonas aeruginosa. J Bacteriol 2021;203:e0028421. [PMID: 34280000 DOI: 10.1128/JB.00284-21] [Reference Citation Analysis]
11 Otto M, Wynands B, Lenzen C, Filbig M, Blank LM, Wierckx N. Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate. Front Bioeng Biotechnol 2019;7:312. [PMID: 31824929 DOI: 10.3389/fbioe.2019.00312] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
12 Khandelwal H, Mutyala S, Kim M, Eun Song Y, Li S, Jang M, Oh S, Rae Kim J. Colorimetric isolation of a novel electrochemically active Pseudomonas strain using tungsten nanorods for bioelectrochemical applications. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108136] [Reference Citation Analysis]
13 Fernández-Cabezón L, Cros A, Nikel PI. Spatiotemporal Manipulation of the Mismatch Repair System of Pseudomonas putida Accelerates Phenotype Emergence. ACS Synth Biol 2021;10:1214-26. [PMID: 33843192 DOI: 10.1021/acssynbio.1c00031] [Reference Citation Analysis]
14 Volke DC, Olavarría K, Nikel PI. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. mSystems 2021;6:e00014-21. [PMID: 33727391 DOI: 10.1128/mSystems.00014-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Alhasawi AA, Thomas SC, Tharmalingam S, Legendre F, Appanna VD. Isocitrate Lyase and Succinate Semialdehyde Dehydrogenase Mediate the Synthesis of α-Ketoglutarate in Pseudomonas fluorescens. Front Microbiol 2019;10:1929. [PMID: 31507554 DOI: 10.3389/fmicb.2019.01929] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
16 Gahlawat G, Kumari P, Bhagat NR. Technological Advances in the Production of Polyhydroxyalkanoate Biopolymers. Curr Sustainable Renewable Energy Rep 2020;7:73-83. [DOI: 10.1007/s40518-020-00154-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
17 Zhao F, Wu Y, Wang Q, Zheng M, Cui Q. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids. Microb Cell Fact 2021;20:185. [PMID: 34556134 DOI: 10.1186/s12934-021-01676-2] [Reference Citation Analysis]
18 Koller M, Obruča S. Biotechnological production of polyhydroxyalkanoates from glycerol: A review. Biocatalysis and Agricultural Biotechnology 2022;42:102333. [DOI: 10.1016/j.bcab.2022.102333] [Reference Citation Analysis]
19 Sánchez-pascuala A, Fernández-cabezón L, de Lorenzo V, Nikel PI. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metabolic Engineering 2019;54:200-11. [DOI: 10.1016/j.ymben.2019.04.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
20 Gajdoš P, Hambalko J, Slaný O, Čertík M. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica. FEMS Microbiology Letters 2020;367:fnaa042. [DOI: 10.1093/femsle/fnaa042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021;11:10994. [PMID: 34040089 DOI: 10.1038/s41598-021-90488-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Vitale GA, Sciarretta M, Cassiano C, Buonocore C, Festa C, Mazzella V, Núñez Pons L, D'Auria MV, de Pascale D. Molecular Network and Culture Media Variation Reveal a Complex Metabolic Profile in Pantoea cf. eucrina D2 Associated with an Acidified Marine Sponge. Int J Mol Sci 2020;21:E6307. [PMID: 32878176 DOI: 10.3390/ijms21176307] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Pacheco N, Orellana-saez M, Pepczynska M, Enrione J, Bassas-galia M, Borrero-de Acuña JM, Zacconi FC, Marcoleta AE, Poblete-castro I. Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers. Journal of Industrial Microbiology and Biotechnology 2019;46:1139-53. [DOI: 10.1007/s10295-019-02186-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
24 Dolan SK, Kohlstedt M, Trigg S, Vallejo Ramirez P, Kaminski CF, Wittmann C, Welch M. Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. mBio 2020;11:e02684-19. [PMID: 32184246 DOI: 10.1128/mBio.02684-19] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
25 Borrero-de Acuña JM, Rohde M, Saldias C, Poblete-Castro I. Fed-Batch mcl- Polyhydroxyalkanoates Production in Pseudomonas putida KT2440 and ΔphaZ Mutant on Biodiesel-Derived Crude Glycerol. Front Bioeng Biotechnol 2021;9:642023. [PMID: 33796510 DOI: 10.3389/fbioe.2021.642023] [Reference Citation Analysis]
26 Zhang B, Jiang Y, Li Z, Wang F, Wu XY. Recent Progress on Chemical Production From Non-food Renewable Feedstocks Using Corynebacterium glutamicum. Front Bioeng Biotechnol 2020;8:606047. [PMID: 33392171 DOI: 10.3389/fbioe.2020.606047] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Orellana-Saez M, Pacheco N, Costa JI, Mendez KN, Miossec MJ, Meneses C, Castro-Nallar E, Marcoleta AE, Poblete-Castro I. In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential. Front Microbiol 2019;10:1154. [PMID: 31178851 DOI: 10.3389/fmicb.2019.01154] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
28 Schoppel K, Trachtmann N, Mittermeier F, Sprenger GA, Weuster-Botz D. Metabolic control analysis of L-tryptophan producing Escherichia coli applying targeted perturbation with shikimate. Bioprocess Biosyst Eng 2021;44:2591-613. [PMID: 34519841 DOI: 10.1007/s00449-021-02630-7] [Reference Citation Analysis]
29 Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020;104:7745-66. [PMID: 32789744 DOI: 10.1007/s00253-020-10811-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
30 Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020;21:2551-71. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]