BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM, Sánchez-Andrea I. Insight into the sulfur metabolism of Desulfurella amilsii by differential proteomics. Environ Microbiol 2019;21:209-25. [PMID: 30307104 DOI: 10.1111/1462-2920.14442] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. Geohealth 2021;5:e2020GH000380. [PMID: 34632243 DOI: 10.1029/2020GH000380] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Hidalgo-Ulloa A, Sánchez-Andrea I, Buisman C, Weijma J. Sulfur Reduction at Hyperthermoacidophilic Conditions with Mesophilic Anaerobic Sludge as the Inoculum. Environ Sci Technol 2020;54:14656-63. [PMID: 33136376 DOI: 10.1021/acs.est.0c02557] [Reference Citation Analysis]
3 Duarte AG, Barbosa ACC, Ferreira D, Manteigas G, Domingos RM, Pereira IAC. Redox loops in anaerobic respiration - The role of the widespread NrfD protein family and associated dimeric redox module. Biochim Biophys Acta Bioenerg 2021;1862:148416. [PMID: 33753023 DOI: 10.1016/j.bbabio.2021.148416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 van Vliet DM, von Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, Sánchez-Andrea I. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021;23:2834-57. [PMID: 33000514 DOI: 10.1111/1462-2920.15265] [Cited by in Crossref: 88] [Cited by in F6Publishing: 6] [Article Influence: 44.0] [Reference Citation Analysis]
5 Allioux M, Yvenou S, Slobodkina G, Slobodkin A, Shao Z, Jebbar M, Alain K. Genomic Characterization and Environmental Distribution of a Thermophilic Anaerobe Dissulfurirhabdus thermomarina SH388T Involved in Disproportionation of Sulfur Compounds in Shallow Sea Hydrothermal Vents. Microorganisms 2020;8:E1132. [PMID: 32727039 DOI: 10.3390/microorganisms8081132] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Jin Z, Ci M, Yang W, Shen D, Hu L, Fang C, Long Y. Sulfate reduction behavior in the leachate saturated zone of landfill sites. Sci Total Environ 2020;730:138946. [PMID: 32388373 DOI: 10.1016/j.scitotenv.2020.138946] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
7 Sun R, Zhang L, Wang X, Ou C, Lin N, Xu S, Qiu YY, Jiang F. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis. Water Res 2020;185:116230. [PMID: 32784032 DOI: 10.1016/j.watres.2020.116230] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Neukirchen S, Sousa FL. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb Genom 2021;7. [PMID: 34241589 DOI: 10.1099/mgen.0.000603] [Reference Citation Analysis]
9 Löffler M, Wallerang KB, Venceslau SS, Pereira IAC, Dahl C. The Iron-Sulfur Flavoprotein DsrL as NAD(P)H:Acceptor Oxidoreductase in Oxidative and Reductive Dissimilatory Sulfur Metabolism. Front Microbiol 2020;11:578209. [PMID: 33178160 DOI: 10.3389/fmicb.2020.578209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
10 Zhang R, Neu TR, Li Q, Blanchard V, Zhang Y, Schippers A, Sand W. Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis. Front Microbiol 2019;10:896. [PMID: 31133998 DOI: 10.3389/fmicb.2019.00896] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
11 Slobodkin AI, Slobodkina GB. Diversity of Sulfur-Disproportionating Microorganisms. Microbiology 2019;88:509-22. [DOI: 10.1134/s0026261719050138] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
12 Sánchez-Andrea I, Florentino AP, Semerel J, Strepis N, Sousa DZ, Stams AJM. Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Front Microbiol 2018;9:3108. [PMID: 30631314 DOI: 10.3389/fmicb.2018.03108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
13 Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J 2021. [PMID: 33981000 DOI: 10.1038/s41396-021-00992-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Li J, Liu P, Wang J, Roberts AP, Pan Y. Magnetotaxis as an Adaptation to Enable Bacterial Shuttling of Microbial Sulfur and Sulfur Cycling Across Aquatic Oxic‐Anoxic Interfaces. J Geophys Res Biogeosci 2020;125. [DOI: 10.1029/2020jg006012] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Yvenou S, Allioux M, Slobodkin A, Slobodkina G, Jebbar M, Alain K. Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism. Microorganisms 2021;10:60. [PMID: 35056509 DOI: 10.3390/microorganisms10010060] [Reference Citation Analysis]
16 Wang Z, Zhang B, He C, Shi J, Wu M, Guo J. Sulfur-based Mixotrophic Vanadium (V) Bio-reduction towards Lower Organic Requirement and Sulfate Accumulation. Water Res 2021;189:116655. [PMID: 33242787 DOI: 10.1016/j.watres.2020.116655] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
17 Guo G, Li Z, Chen L, Ling Q, Zan F, Isawi H, Hao T, Ma J, Wang Z, Chen G, Lu H. Advances in elemental sulfur-driven bioprocesses for wastewater treatment: From metabolic study to application. Water Res 2022;213:118143. [PMID: 35149365 DOI: 10.1016/j.watres.2022.118143] [Reference Citation Analysis]
18 Johnson DB, Sánchez-Andrea I. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Adv Microb Physiol 2019;75:205-31. [PMID: 31655738 DOI: 10.1016/bs.ampbs.2019.07.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
19 Florentino AP, Costa RB, Hu Y, O'Flaherty V, Lens PNL. Long Chain Fatty Acid Degradation Coupled to Biological Sulfidogenesis: A Prospect for Enhanced Metal Recovery. Front Bioeng Biotechnol 2020;8:550253. [PMID: 33195115 DOI: 10.3389/fbioe.2020.550253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Zhang L, Qiu YY, Zhou Y, Chen GH, van Loosdrecht MCM, Jiang F. Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment. Water Res 2021;202:117373. [PMID: 34243051 DOI: 10.1016/j.watres.2021.117373] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang S. Characterization of Sulfurimonas hydrogeniphila sp. nov., a Novel Bacterium Predominant in Deep-Sea Hydrothermal Vents and Comparative Genomic Analyses of the Genus Sulfurimonas. Front Microbiol 2021;12:626705. [PMID: 33717015 DOI: 10.3389/fmicb.2021.626705] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Löffler M, Feldhues J, Venceslau SS, Kammler L, Grein F, Pereira IAC, Dahl C. DsrL mediates electron transfer between NADH and rDsrAB in Allochromatium vinosum. Environ Microbiol 2020;22:783-95. [PMID: 31854015 DOI: 10.1111/1462-2920.14899] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]