BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cornilescu G, Vinarov DA, Tyler EM, Markley JL, Cornilescu CC. Solution structure of a single-domain thiosulfate sulfurtransferase from Arabidopsis thaliana. Protein Sci 2006;15:2836-41. [PMID: 17088324 DOI: 10.1110/ps.062395206] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
Number Citing Articles
1 Papenbrock J, Guretzki S, Henne M. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids 2011;41:43-57. [PMID: 20135153 DOI: 10.1007/s00726-010-0478-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
2 Giuliani M, Tron P, Leroy G, Aubert C, Tauc P, Giudici-orticoni M. A new sulfurtransferase from the hyperthermophilic bacterium Aquifex aeolicus: Being single is not so simple when temperature gets high. FEBS Journal 2007;274:4572-87. [DOI: 10.1111/j.1742-4658.2007.05985.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
3 Kaas Q, Craik DJ. NMR of plant proteins. Progress in Nuclear Magnetic Resonance Spectroscopy 2013;71:1-34. [DOI: 10.1016/j.pnmrs.2013.01.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
4 Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C, Leyva A. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 2014;5:4617. [PMID: 25099865 DOI: 10.1038/ncomms5617] [Cited by in Crossref: 97] [Cited by in F6Publishing: 80] [Article Influence: 12.1] [Reference Citation Analysis]
5 Li H, Yang F, Kang X, Xia B, Jin C. Solution Structures and Backbone Dynamics of Escherichia coli Rhodanese PspE in Its Sulfur-Free and Persulfide-Intermediate Forms: Implications for the Catalytic Mechanism of Rhodanese ,. Biochemistry 2008;47:4377-85. [DOI: 10.1021/bi800039n] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
6 Giuliani MC, Jourlin-Castelli C, Leroy G, Hachani A, Giudici-Orticoni MT. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus. Biochimie 2010;92:388-97. [PMID: 20060433 DOI: 10.1016/j.biochi.2009.12.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
7 Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KH, Zhou W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany 2016;132:42-52. [DOI: 10.1016/j.envexpbot.2016.08.004] [Cited by in Crossref: 120] [Cited by in F6Publishing: 75] [Article Influence: 20.0] [Reference Citation Analysis]
8 Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. J Exp Bot 2019;70:4139-54. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
9 Klukowski P, Augoff M, Zięba M, Drwal M, Gonczarek A, Walczak MJ, Valencia A. NMRNet: a deep learning approach to automated peak picking of protein NMR spectra. Bioinformatics 2018;34:2590-7. [DOI: 10.1093/bioinformatics/bty134] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]