BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vercauteren T, Unberath M, Padoy N, Navab N. CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions. Proc IEEE Inst Electr Electron Eng. 2020;108:198-214. [PMID: 31920208 DOI: 10.1109/jproc.2019.2946993] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Chadebecq F, Lovat LB, Stoyanov D. Artificial intelligence and automation in endoscopy and surgery. Nat Rev Gastroenterol Hepatol 2022. [PMID: 36352158 DOI: 10.1038/s41575-022-00701-y] [Reference Citation Analysis]
2 Srivastav V, Gangi A, Padoy N. Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room. Medical Image Analysis 2022;80:102525. [DOI: 10.1016/j.media.2022.102525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Haidegger T, Speidel S, Stoyanov D, Satava RM. Robot-Assisted Minimally Invasive Surgery—Surgical Robotics in the Data Age. Proc IEEE 2022;110:835-46. [DOI: 10.1109/jproc.2022.3180350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhang A, Min Z, Yang X, Zhang Z, Pan J, Meng MQ. Generalized 3D Rigid Point Set Registration with Anisotropic Positional Error Based on Bayesian Coherent Point Drift. 2022 International Conference on Robotics and Automation (ICRA) 2022. [DOI: 10.1109/icra46639.2022.9812395] [Reference Citation Analysis]
5 Mora J. Proyecciones de la ciencia de datos en la cirugía cardíaca. Revista Médica Clínica Las Condes 2022;33:294-306. [DOI: 10.1016/j.rmclc.2022.05.007] [Reference Citation Analysis]
6 Li N, Yu Y, Qu Z. Design and Application of Improved Ant Colony Algorithm in E-Commerce System. Wireless Communications and Mobile Computing 2022;2022:1-12. [DOI: 10.1155/2022/9467095] [Reference Citation Analysis]
7 Kadkhodamohammadi A, Luengo I, Stoyanov D. PATG: position-aware temporal graph networks for surgical phase recognition on laparoscopic videos. Int J Comput Assist Radiol Surg 2022. [PMID: 35353299 DOI: 10.1007/s11548-022-02600-8] [Reference Citation Analysis]
8 Wang H, Ding S, Yang S, Liu C, Yu S, Zheng X. Guided Activity Prediction for Minimally Invasive Surgery Safety Improvement in the Internet of Medical Things. IEEE Internet Things J 2022;9:4758-68. [DOI: 10.1109/jiot.2021.3108457] [Reference Citation Analysis]
9 Nwoye CI, Yu T, Gonzalez C, Seeliger B, Mascagni P, Mutter D, Marescaux J, Padoy N. Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Medical Image Analysis 2022. [DOI: 10.1016/j.media.2022.102433] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
10 Senk S, Ulbricht M, Tsokalo I, Rischke J, Li SC, Speidel S, Nguyen GT, Seeling P, Fitzek FHP. Healing Hands: The Tactile Internet in Future Tele-Healthcare. Sensors (Basel) 2022;22:1404. [PMID: 35214306 DOI: 10.3390/s22041404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li L, Feng P, Ding H, Wang G. A Preliminary Exploration to Make Stereotactic Surgery Robots Aware of the Semantic 2D/3D Working Scene. IEEE Trans Med Robot Bionics 2022;4:17-27. [DOI: 10.1109/tmrb.2021.3124160] [Reference Citation Analysis]
12 Mottaghi A, Sharghi A, Yeung S, Mohareri O. Adaptation of Surgical Activity Recognition Models Across Operating Rooms. Lecture Notes in Computer Science 2022. [DOI: 10.1007/978-3-031-16449-1_51] [Reference Citation Analysis]
13 Barber RD, Kroeger K. Towards Network Medicine: Implementation of Panomics and Artificial Intelligence for Precision Medicine. Digital Disruption in Health Care 2022. [DOI: 10.1007/978-3-030-95675-2_3] [Reference Citation Analysis]
14 Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, Fallert J, Feussner H, Giannarou S, Mascagni P, Nakawala H, Park A, Pugh C, Stoyanov D, Vedula SS, Cleary K, Fichtinger G, Forestier G, Gibaud B, Grantcharov T, Hashizume M, Heckmann-Nötzel D, Kenngott HG, Kikinis R, Mündermann L, Navab N, Onogur S, Roß T, Sznitman R, Taylor RH, Tizabi MD, Wagner M, Hager GD, Neumuth T, Padoy N, Collins J, Gockel I, Goedeke J, Hashimoto DA, Joyeux L, Lam K, Leff DR, Madani A, Marcus HJ, Meireles O, Seitel A, Teber D, Ückert F, Müller-Stich BP, Jannin P, Speidel S. Surgical data science - from concepts toward clinical translation. Med Image Anal 2021;76:102306. [PMID: 34879287 DOI: 10.1016/j.media.2021.102306] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 20.0] [Reference Citation Analysis]
15 Unberath M, Gao C, Hu Y, Judish M, Taylor RH, Armand M, Grupp R. The Impact of Machine Learning on 2D/3D Registration for Image-Guided Interventions: A Systematic Review and Perspective. Front Robot AI 2021;8:716007. [PMID: 34527706 DOI: 10.3389/frobt.2021.716007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Tampu IE, Haj-Hosseini N, Eklund A. Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation? Diagnostics (Basel) 2021;11:1159. [PMID: 34201964 DOI: 10.3390/diagnostics11071159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Solanki SL, Pandrowala S, Nayak A, Bhandare M, Ambulkar RP, Shrikhande SV. Artificial intelligence in perioperative management of major gastrointestinal surgeries. World J Gastroenterol 2021; 27(21): 2758-2770 [PMID: 34135552 DOI: 10.3748/wjg.v27.i21.2758] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mascagni P, Padoy N. Boîte noire et tour de contrôle chirurgical : enregistrement et diffusion en temps-réel des données et de leur analyse pour améliorer les soins chirurgicaux. Journal de Chirurgie Viscérale 2021;158:S19-S27. [DOI: 10.1016/j.jchirv.2021.01.002] [Reference Citation Analysis]
19 Ramesh S, Dall'Alba D, Gonzalez C, Yu T, Mascagni P, Mutter D, Marescaux J, Fiorini P, Padoy N. Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures. Int J Comput Assist Radiol Surg 2021;16:1111-9. [PMID: 34013464 DOI: 10.1007/s11548-021-02388-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
20 Sahu M, Mukhopadhyay A, Zachow S. Simulation-to-real domain adaptation with teacher-student learning for endoscopic instrument segmentation. Int J Comput Assist Radiol Surg 2021;16:849-59. [PMID: 33982232 DOI: 10.1007/s11548-021-02383-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Min Z, Zhu D, Liu J, Ren H, Meng MQ. Aligning 3D Curve With Surface Using Tangent and Normal Vectors for Computer-Assisted Orthopedic Surgery. IEEE Trans Med Robot Bionics 2021;3:372-83. [DOI: 10.1109/tmrb.2021.3075784] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
22 Lavanchy JL, Zindel J, Kirtac K, Twick I, Hosgor E, Candinas D, Beldi G. Automation of surgical skill assessment using a three-stage machine learning algorithm. Sci Rep 2021;11:5197. [PMID: 33664317 DOI: 10.1038/s41598-021-84295-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
23 Wilhelm D, Berlet M, Feussner H, Ostler D. Digitalisierung in der onkologischen Chirurgie. Forum 2021;36:22-28. [DOI: 10.1007/s12312-020-00879-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 K K. Evaluation of Biomedical Imaging in Deep Neural Networks. JBSHA 2021. [DOI: 10.53759/0088/jbsha202101004] [Reference Citation Analysis]
25 Bibliography. Tactile Internet 2021. [DOI: 10.1016/b978-0-12-821343-8.00030-7] [Reference Citation Analysis]
26 Speidel S, Bodenstedt S, von Bechtolsheim F, Rivoir D, Funke I, Goebel E, Mitschick A, Dachselt R, Weitz J. Surgical assistance and training. Tactile Internet 2021. [DOI: 10.1016/b978-0-12-821343-8.00012-5] [Reference Citation Analysis]
27 Xing L, Kapp DS, Giger ML, Min JK. Outlook of the future landscape of artificial intelligence in medicine and new challenges. Artificial Intelligence in Medicine 2021. [DOI: 10.1016/b978-0-12-821259-2.00025-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ackermann J, Wieland M, Hoch A, Ganz R, Snedeker JG, Oswald MR, Pollefeys M, Zingg PO, Esfandiari H, Fürnstahl P. A New Approach to Orthopedic Surgery Planning Using Deep Reinforcement Learning and Simulation. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 2021. [DOI: 10.1007/978-3-030-87202-1_52] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Mondal SB, Achilefu S. Virtual and Augmented Reality Technologies in Molecular and Anatomical Imaging. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00066-1] [Reference Citation Analysis]
30 Pepe A, Trotta GF, Gsaxner C, Brunetti A, Cascarano GD, Bevilacqua V, Shen D, Egger J. Deep learning and generative adversarial networks in oral and maxillofacial surgery. Computer-Aided Oral and Maxillofacial Surgery 2021. [DOI: 10.1016/b978-0-12-823299-6.00003-1] [Reference Citation Analysis]
31 Wang H, Wang Z, Sun G, Zhang L, Gao Y, Zhang Y, Bi C. Design of a Biometric Access Control System Based on Fingerprint Identification Technology. Lecture Notes in Electrical Engineering 2021. [DOI: 10.1007/978-981-15-8599-9_5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Kadkhodamohammadi A, Sivanesan Uthraraj N, Giataganas P, Gras G, Kerr K, Luengo I, Oussedik S, Stoyanov D. Towards video-based surgical workflow understanding in open orthopaedic surgery. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2021;9:286-93. [DOI: 10.1080/21681163.2020.1835552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
33 Kennedy-Metz LR, Mascagni P, Torralba A, Dias RD, Perona P, Shah JA, Padoy N, Zenati MA. Computer Vision in the Operating Room: Opportunities and Caveats. IEEE Trans Med Robot Bionics 2021;3:2-10. [PMID: 33644703 DOI: 10.1109/tmrb.2020.3040002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
34 Bodenstedt S, Wagner M, Müller-Stich BP, Weitz J, Speidel S. Artificial Intelligence-Assisted Surgery: Potential and Challenges. Visc Med 2020;36:450-5. [PMID: 33447600 DOI: 10.1159/000511351] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
35 Chadebecq F, Vasconcelos F, Mazomenos E, Stoyanov D. Computer Vision in the Surgical Operating Room. Visc Med 2020;36:456-62. [PMID: 33447601 DOI: 10.1159/000511934] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
36 Min Z, Meng MQ. General first-order target registration error model considering a coordinate reference frame in an image-guided surgical system. Med Biol Eng Comput 2020;58:2989-3002. [PMID: 33029759 DOI: 10.1007/s11517-020-02265-y] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Dias RD, Shah JA, Zenati MA. Artificial intelligence in cardiothoracic surgery. Minerva Cardioangiol 2020;68:532-8. [PMID: 32989966 DOI: 10.23736/S0026-4725.20.05235-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
38 Buettner R, Wannenwetsch K, Loskan D. A Systematic Literature Review of Computer Support for Surgical Interventions. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC) 2020. [DOI: 10.1109/compsac48688.2020.0-173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Unberath M, Ghobadi K, Levin S, Hinson J, Hager GD. Artificial Intelligence-Based Clinical Decision Support for COVID-19-Where Art Thou? Adv Intell Syst 2020;:2000104. [PMID: 32838300 DOI: 10.1002/aisy.202000104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
40 Ahmad MA, Ourak M, Gruijthuijsen C, Deprest J, Vercauteren T, Vander Poorten E. Deep learning-based monocular placental pose estimation: towards collaborative robotics in fetoscopy. Int J Comput Assist Radiol Surg 2020;15:1561-71. [PMID: 32350788 DOI: 10.1007/s11548-020-02166-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
41 Vadillo Bueno G. Inteligencia artificial: un punto de encuentro para todos. RDU 2020;21. [DOI: 10.22201/codeic.16076079e.2020.v21n1.a0] [Reference Citation Analysis]
42 Sharghi A, Haugerud H, Oh D, Mohareri O. Automatic Operating Room Surgical Activity Recognition for Robot-Assisted Surgery. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 2020. [DOI: 10.1007/978-3-030-59716-0_37] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
43 Srivastav V, Gangi A, Padoy N. Self-supervision on Unlabelled or Data for Multi-person 2D/3D Human Pose Estimation. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 2020. [DOI: 10.1007/978-3-030-59710-8_74] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Kügler D, Uecker M, Kuijper A, Mukhopadhyay A. AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 2020. [DOI: 10.1007/978-3-030-59716-0_36] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]