BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xia FN, Zeng B, Liu HS, Qi H, Xie LJ, Yu LJ, Chen QF, Li JF, Chen YQ, Jiang L, Xiao S. SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. Plant Cell 2020;32:3290-310. [PMID: 32753431 DOI: 10.1105/tpc.20.00267] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma S, Li H, Wang L, Li B, Wang Z, Ma B, Ma F, Li M. F-box protein MdAMR1L1 regulates ascorbate biosynthesis in apple by modulating GDP-mannose pyrophosphorylase. Plant Physiol 2022;188:653-69. [PMID: 35051284 DOI: 10.1093/plphys/kiab427] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the Ubiquitin Proteasome System and Ubiquitin-Mediated Autophagy in Plants. Cells 2020;9:E2219. [PMID: 33019500 DOI: 10.3390/cells9102219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
3 Wang T, Li Y, Song S, Qiu M, Zhang L, Li C, Dong H, Li L, Wang J, Li L. EMBRYO SAC DEVELOPMENT 1 affects seed setting rate in rice by controlling embryo sac development. Plant Physiol 2021;186:1060-73. [PMID: 33734397 DOI: 10.1093/plphys/kiab106] [Reference Citation Analysis]
4 Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. J Integr Plant Biol 2021. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Reference Citation Analysis]
5 Zhang T, Xiao Z, Liu C, Yang C, Li J, Li H, Gao C, Shen W. Autophagy Mediates the Degradation of Plant ESCRT Component FREE1 in Response to Iron Deficiency. Int J Mol Sci 2021;22:8779. [PMID: 34445480 DOI: 10.3390/ijms22168779] [Reference Citation Analysis]
6 Ivanov R, Vert G. Endocytosis in plants: Peculiarities and roles in the regulated trafficking of plant metal transporters. Biol Cell 2021;113:1-13. [PMID: 33044749 DOI: 10.1111/boc.202000118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Sirko A, Wawrzyńska A, Brzywczy J, Sieńko M. Control of ABA Signaling and Crosstalk with Other Hormones by the Selective Degradation of Pathway Components. Int J Mol Sci 2021;22:4638. [PMID: 33924944 DOI: 10.3390/ijms22094638] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Li H, Wei J, Liao Y, Cheng X, Yang S, Zhuang X, Zhang Z, Shen W, Gao C. MLKs kinases phosphorylate the ESCRT component FREE1 to suppress abscisic acid sensitivity of seedling establishment. Plant Cell Environ 2022;45:2004-18. [PMID: 35445753 DOI: 10.1111/pce.14336] [Reference Citation Analysis]
9 Liu G, Liang J, Lou L, Tian M, Zhang X, Liu L, Zhao Q, Xia R, Wu Y, Xie Q, Yu F. The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. Sci Adv 2022;8:eabl5765. [PMID: 35385312 DOI: 10.1126/sciadv.abl5765] [Reference Citation Analysis]
10 Chang S, Huang G, Wang D, Zhu W, Shi J, Yang L, Liang W, Xie Q, Zhang D. Rice SIAH E3 Ligases Interact with RMD Formin and Affect Plant Morphology. Rice (N Y) 2022;15:6. [PMID: 35075530 DOI: 10.1186/s12284-022-00554-8] [Reference Citation Analysis]
11 Lee HY, Park HL, Park C, Chen YC, Yoon GM. Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress. Proc Natl Acad Sci U S A 2021;118:e2011900118. [PMID: 34404725 DOI: 10.1073/pnas.2011900118] [Reference Citation Analysis]
12 Hu J, Hu Y, Yang M, Hu X, Wang X. Light-Induced Dynamic Change of Phytochrome B and Cryptochrome 1 Stabilizes SINATs in Arabidopsis. Front Plant Sci 2021;12:722733. [PMID: 34490020 DOI: 10.3389/fpls.2021.722733] [Reference Citation Analysis]
13 Chen Q, Wang L, Liu D, Ma S, Dai Y, Zhang X, Wang Y, Hu T, Xiao M, Zhou Y, Qi H, Xiao S, Yu L. Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum. Plants (Basel) 2020;9:E1448. [PMID: 33120967 DOI: 10.3390/plants9111448] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Jia X, Jia X, Li T, Wang Y, Sun X, Huo L, Wang P, Che R, Gong X, Ma F. MdATG5a induces drought tolerance by improving the antioxidant defenses and promoting starch degradation in apple. Plant Sci 2021;312:111052. [PMID: 34620447 DOI: 10.1016/j.plantsci.2021.111052] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application. Plant J 2021. [PMID: 34469611 DOI: 10.1111/tpj.15481] [Reference Citation Analysis]
16 Doorly CM, Graciet E. Lessons from Comparison of Hypoxia Signaling in Plants and Mammals. Plants (Basel) 2021;10:993. [PMID: 34067566 DOI: 10.3390/plants10050993] [Reference Citation Analysis]
17 Xu K, Zhao Y, Zhao Y, Feng C, Zhang Y, Wang F, Li X, Gao H, Liu W, Jing Y, Saxena RK, Feng X, Zhou Y, Li H. Soybean F-Box-Like Protein GmFBL144 Interacts With Small Heat Shock Protein and Negatively Regulates Plant Drought Stress Tolerance. Front Plant Sci 2022;13:823529. [DOI: 10.3389/fpls.2022.823529] [Reference Citation Analysis]
18 Liao CY, Wang P, Yin Y, Bassham DC. Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Lett 2022. [PMID: 35460261 DOI: 10.1002/1873-3468.14355] [Reference Citation Analysis]