BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaltenegger E, Eich E, Ober D. Evolution of homospermidine synthase in the convolvulaceae: a story of gene duplication, gene loss, and periods of various selection pressures. Plant Cell 2013;25:1213-27. [PMID: 23572540 DOI: 10.1105/tpc.113.109744] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Bunsupa S, Hanada K, Maruyama A, Aoyagi K, Komatsu K, Ueno H, Yamashita M, Sasaki R, Oikawa A, Saito K, Yamazaki M. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis. Plant Physiol 2016;171:2432-44. [PMID: 27303024 DOI: 10.1104/pp.16.00639] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
2 Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 2014;26:3745-62. [PMID: 25228340 DOI: 10.1105/tpc.114.130534] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
3 Shoji T, Hashimoto T. Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. In: Kusano T, Suzuki H, editors. Polyamines. Tokyo: Springer Japan; 2015. pp. 189-200. [DOI: 10.1007/978-4-431-55212-3_16] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
4 Moghe GD, Leong BJ, Hurney SM, Daniel Jones A, Last RL. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. Elife 2017;6:e28468. [PMID: 28853706 DOI: 10.7554/eLife.28468] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 7.8] [Reference Citation Analysis]
5 Geilfus CM, Ober D, Eichacker LA, Mühling KH, Zörb C. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L. J Biol Chem 2015;290:11235-45. [PMID: 25750129 DOI: 10.1074/jbc.M114.619718] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
6 Chen H, Li G, Köllner TG, Jia Q, Gershenzon J, Chen F. Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza. BMC Plant Biol 2014;14:239. [PMID: 25224158 DOI: 10.1186/s12870-014-0239-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kaltenegger E, Prakashrao AS, Çiçek SS, Ober D. Development of an activity assay for characterizing deoxyhypusine synthase and its diverse reaction products. FEBS Open Bio 2021;11:10-25. [PMID: 33247548 DOI: 10.1002/2211-5463.13046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Kruse LH, Stegemann T, Sievert C, Ober D. Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage. Plant Physiol 2017;174:47-55. [PMID: 28275146 DOI: 10.1104/pp.17.00265] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
9 Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2021;38:103-29. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
10 Shimizu Y, Rai A, Okawa Y, Tomatsu H, Sato M, Kera K, Suzuki H, Saito K, Yamazaki M. Metabolic diversification of nitrogen-containing metabolites by the expression of a heterologous lysine decarboxylase gene in Arabidopsis. Plant J 2019;100:505-21. [PMID: 31364191 DOI: 10.1111/tpj.14454] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Sievert C, Beuerle T, Hollmann J, Ober D. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis. Phytochemistry 2015;117:17-24. [PMID: 26057225 DOI: 10.1016/j.phytochem.2015.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
12 Moghe GD, Last RL. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism. Plant Physiol 2015;169:1512-23. [PMID: 26276843 DOI: 10.1104/pp.15.00994] [Cited by in Crossref: 30] [Cited by in F6Publishing: 50] [Article Influence: 4.3] [Reference Citation Analysis]
13 Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020;18:482-500. [PMID: 32180906 DOI: 10.1016/j.csbj.2020.02.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
14 Lou YR, Pichersky E, Last RL. Deep roots and many branches: Origins of plant-specialized metabolic enzymes in general metabolism. Curr Opin Plant Biol 2022;66:102192. [PMID: 35217473 DOI: 10.1016/j.pbi.2022.102192] [Reference Citation Analysis]
15 Burzynski EA, Minbiole KP, Livshultz T. New sources of lycopsamine-type pyrrolizidine alkaloids and their distribution in Apocynaceae. Biochemical Systematics and Ecology 2015;59:331-9. [DOI: 10.1016/j.bse.2015.02.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
16 Irmer S, Podzun N, Langel D, Heidemann F, Kaltenegger E, Schemmerling B, Geilfus CM, Zörb C, Ober D. New aspect of plant-rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation. Proc Natl Acad Sci U S A 2015;112:4164-9. [PMID: 25775562 DOI: 10.1073/pnas.1423457112] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.1] [Reference Citation Analysis]
17 Gill GP, Bryant CJ, Fokin M, Huege J, Fraser K, Jones C, Cao M, Faville MJ. Low pyrrolizidine alkaloid levels in perennial ryegrass is associated with the absence of a homospermidine synthase gene. BMC Plant Biol 2018;18:56. [PMID: 29625552 DOI: 10.1186/s12870-018-1269-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Li YP, Zeng HY, Jiang YY, Sun BL, Yang RG. Does HIV evolve towards a more adaptive state similar to that of simian immunodeficiency virus? AIDS 2013;27:2965-7. [PMID: 24963705 DOI: 10.1097/QAD.0000000000000017] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
19 Kaltenegger E, Ober D. Paralogue Interference Affects the Dynamics after Gene Duplication. Trends in Plant Science 2015;20:814-21. [DOI: 10.1016/j.tplants.2015.10.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
20 Bartlett ME, Whipple CJ. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity. Front Plant Sci 2013;4:382. [PMID: 24124420 DOI: 10.3389/fpls.2013.00382] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
21 Stegemann T, Kruse LH, Brütt M, Ober D. Specific Distribution of Pyrrolizidine Alkaloids in Floral Parts of Comfrey (Symphytum officinale) and its Implications for Flower Ecology. J Chem Ecol 2019;45:128-35. [PMID: 30054770 DOI: 10.1007/s10886-018-0990-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
22 Livshultz T, Kaltenegger E, Straub SCK, Weitemier K, Hirsch E, Koval K, Mema L, Liston A. Evolution of pyrrolizidine alkaloid biosynthesis in Apocynaceae: revisiting the defence de-escalation hypothesis. New Phytol 2018;218:762-73. [PMID: 29479722 DOI: 10.1111/nph.15061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
23 Zhang T, Liu C, Huang X, Zhang H, Yuan Z. Land-plant Phylogenomic and Pomegranate Transcriptomic Analyses Reveal an Evolutionary Scenario of CYP75 Genes Subsequent to Whole Genome Duplications. J Plant Biol 2019;62:48-60. [DOI: 10.1007/s12374-018-0319-9] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Barny LA, Tasca JA, Sanchez HA, Smith CR, Koptur S, Livshultz T, Minbiole KPC. Chemotaxonomic investigation of Apocynaceae for retronecine-type pyrrolizidine alkaloids using HPLC-MS/MS. Phytochemistry 2021;185:112662. [PMID: 33774572 DOI: 10.1016/j.phytochem.2021.112662] [Reference Citation Analysis]
25 Zakaria MM, Schemmerling B, Ober D. CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids. Molecules 2021;26:1498. [PMID: 33801907 DOI: 10.3390/molecules26061498] [Cited by in F6Publishing: 2] [Reference Citation Analysis]