BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Benz JP, Stengel A, Lintala M, Lee YH, Weber A, Philippar K, Gügel IL, Kaieda S, Ikegami T, Mulo P, Soll J, Bölter B. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell 2009;21:3965-83. [PMID: 20040542 DOI: 10.1105/tpc.109.069815] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Jarvis P, Kessler F. Mechanisms of Chloroplast Protein Import in Plants. In: Theg SM, Wollman F, editors. Plastid Biology. New York: Springer; 2014. pp. 241-70. [DOI: 10.1007/978-1-4939-1136-3_9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
2 Lintala M, Lehtimäki N, Benz JP, Jungfer A, Soll J, Aro EM, Bölter B, Mulo P. Depletion of leaf-type ferredoxin-NADP(+) oxidoreductase results in the permanent induction of photoprotective mechanisms in Arabidopsis chloroplasts. Plant J 2012;70:809-17. [PMID: 22300243 DOI: 10.1111/j.1365-313X.2012.04930.x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
3 Benz JP, Lintala M, Soll J, Mulo P, Bölter B. A new concept for ferredoxin–NADP(H) oxidoreductase binding to plant thylakoids. Trends in Plant Science 2010;15:608-13. [DOI: 10.1016/j.tplants.2010.08.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.4] [Reference Citation Analysis]
4 Grabsztunowicz M, Rantala M, Ivanauskaite A, Blomster T, Koskela MM, Vuorinen K, Tyystjärvi E, Burow M, Overmyer K, Mähönen AP, Mulo P. Root-type ferredoxin-NADP+ oxidoreductase isoforms in Arabidopsis thaliana: Expression patterns, location and stress responses. Plant Cell Environ 2021;44:548-58. [PMID: 33131061 DOI: 10.1111/pce.13932] [Reference Citation Analysis]
5 Patil M, Seifert S, Seiler F, Soll J, Schwenkert S. FZL is primarily localized to the inner chloroplast membrane however influences thylakoid maintenance. Plant Mol Biol 2018;97:421-33. [PMID: 29951988 DOI: 10.1007/s11103-018-0748-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lintala M, Schuck N, Thormählen I, Jungfer A, Weber KL, Weber AP, Geigenberger P, Soll J, Bölter B, Mulo P. Arabidopsis tic62 trol mutant lacking thylakoid-bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic phenotype. Mol Plant 2014;7:45-57. [PMID: 24043709 DOI: 10.1093/mp/sst129] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
7 Bölter B, Soll J, Schwenkert S. Redox meets protein trafficking. Biochim Biophys Acta 2015;1847:949-56. [PMID: 25626173 DOI: 10.1016/j.bbabio.2015.01.010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
8 Lehtimäki N, Koskela MM, Dahlström KM, Pakula E, Lintala M, Scholz M, Hippler M, Hanke GT, Rokka A, Battchikova N, Salminen TA, Mulo P. Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts. Plant Physiol 2014;166:1764-76. [PMID: 25301888 DOI: 10.1104/pp.114.249094] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
9 Ouyang M, Li X, Ma J, Chi W, Xiao J, Zou M, Chen F, Lu C, Zhang L. LTD is a protein required for sorting light-harvesting chlorophyll-binding proteins to the chloroplast SRP pathway. Nat Commun 2011;2. [DOI: 10.1038/ncomms1278] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
10 Sukhova E, Gromova E, Yudina L, Kior A, Vetrova Y, Ilin N, Mareev E, Vodeneev V, Sukhov V. Change in H+ Transport across Thylakoid Membrane as Potential Mechanism of 14.3 Hz Magnetic Field Impact on Photosynthetic Light Reactions in Seedlings of Wheat (Triticum aestivum L.). Plants (Basel) 2021;10:2207. [PMID: 34686016 DOI: 10.3390/plants10102207] [Reference Citation Analysis]
11 Sukhov V, Sukhova E, Sinitsyna Y, Gromova E, Mshenskaya N, Ryabkova A, Lin N, Vodeneev V, Маreev E, Price C. Influence of Magnetic Field with Schumann Resonance Frequencies on Photosynthetic Light Reactions in Wheat and Pea. Cells 2021;10:149. [PMID: 33451018 DOI: 10.3390/cells10010149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Grzyb J, Gieczewska K, Łabuz J, Sztatelman O. Detailed characterization of Synechocystis PCC 6803 ferredoxin:NADP+ oxidoreductase interaction with model membranes. Biochim Biophys Acta Biomembr 2018;1860:281-91. [PMID: 29038021 DOI: 10.1016/j.bbamem.2017.10.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
13 Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018;8:17012. [PMID: 30451959 DOI: 10.1038/s41598-018-35389-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
14 Vojta L, Fulgosi H. Data supporting the absence of FNR dynamic photosynthetic membrane recruitment in trol mutants. Data Brief 2016;7:393-6. [PMID: 26977444 DOI: 10.1016/j.dib.2016.02.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
15 Cheng ZW, Chen ZY, Yan X, Bian YW, Deng X, Yan YM. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. J Proteomics 2018;170:1-13. [PMID: 28986270 DOI: 10.1016/j.jprot.2017.09.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
16 Lehtimäki N, Lintala M, Allahverdiyeva Y, Aro EM, Mulo P. Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. J Plant Physiol 2010;167:1018-22. [PMID: 20392519 DOI: 10.1016/j.jplph.2010.02.006] [Cited by in Crossref: 67] [Cited by in F6Publishing: 59] [Article Influence: 5.6] [Reference Citation Analysis]
17 Suorsa M, Rantala M, Mamedov F, Lespinasse M, Trotta A, Grieco M, Vuorio E, Tikkanen M, Järvi S, Aro EM. Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains. Plant J 2015;84:360-73. [PMID: 26332430 DOI: 10.1111/tpj.13004] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
18 Flannery SE, Hepworth C, Wood WHJ, Pastorelli F, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J 2021;105:223-44. [PMID: 33118270 DOI: 10.1111/tpj.15053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Dutta S, Teresinski HJ, Smith MD. A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 2014;9:e95026. [PMID: 24736607 DOI: 10.1371/journal.pone.0095026] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
20 Vojta L, Carić D, Cesar V, Antunović Dunić J, Lepeduš H, Kveder M, Fulgosi H. TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 2015;5:10085. [PMID: 26041075 DOI: 10.1038/srep10085] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
21 Grabsztunowicz M, Mulo P, Baymann F, Mutoh R, Kurisu G, Sétif P, Beyer P, Krieger-Liszkay A. Electron transport pathways in isolated chromoplasts from Narcissus pseudonarcissus L. Plant J 2019;99:245-56. [PMID: 30888718 DOI: 10.1111/tpj.14319] [Reference Citation Analysis]
22 Chen K, Piippo M, Holmström M, Nurmi M, Pakula E, Suorsa M, Aro E. A chloroplast-targeted DnaJ protein AtJ8 is negatively regulated by light and has rapid turnover in darkness. Journal of Plant Physiology 2011;168:1780-3. [DOI: 10.1016/j.jplph.2011.04.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
23 Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. Biochim Biophys Acta 2011;1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
24 Nemati M, Piro A, Norouzi M, Moghaddam Vahed M, Nisticò DM, Mazzuca S. Comparative physiological and leaf proteomic analyses revealed the tolerant and sensitive traits to drought stress in two wheat parental lines and their F6 progenies. Environmental and Experimental Botany 2019;158:223-37. [DOI: 10.1016/j.envexpbot.2018.10.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Kovács-Bogdán E, Benz JP, Soll J, Bölter B. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biol 2011;11:133. [PMID: 21961525 DOI: 10.1186/1471-2229-11-133] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 3.9] [Reference Citation Analysis]
26 Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. Plant J 2018;96:786-800. [PMID: 30118564 DOI: 10.1111/tpj.14068] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
27 Yudina L, Sherstneva O, Sukhova E, Grinberg M, Mysyagin S, Vodeneev V, Sukhov V. Inactivation of H+-ATPase Participates in the Influence of Variation Potential on Photosynthesis and Respiration in Peas. Plants (Basel) 2020;9:E1585. [PMID: 33207655 DOI: 10.3390/plants9111585] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
28 Nakai M. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim Biophys Acta 2015;1847:957-67. [PMID: 25689609 DOI: 10.1016/j.bbabio.2015.02.011] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
29 Herbst J, Girke A, Hajirezaei MR, Hanke G, Grimm B. Potential roles of YCF 54 and ferredoxin‐ NADPH reductase for magnesium protoporphyrin monomethylester cyclase. Plant J 2018;94:485-96. [DOI: 10.1111/tpj.13869] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
30 Bölter B. En route into chloroplasts: preproteins’ way home. Photosynth Res 2018;138:263-75. [DOI: 10.1007/s11120-018-0542-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
31 Mulo P. Chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR): structure, function and location. Biochim Biophys Acta 2011;1807:927-34. [PMID: 20934402 DOI: 10.1016/j.bbabio.2010.10.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 4.1] [Reference Citation Analysis]
32 Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. Biochim Biophys Acta 2013;1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Cited by in Crossref: 100] [Cited by in F6Publishing: 105] [Article Influence: 10.0] [Reference Citation Analysis]
33 Guan L, Denkert N, Eisa A, Lehmann M, Sjuts I, Weiberg A, Soll J, Meinecke M, Schwenkert S. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proc Natl Acad Sci U S A 2019;116:10568-75. [PMID: 31068459 DOI: 10.1073/pnas.1900482116] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
34 Mosebach L, Heilmann C, Mutoh R, Gäbelein P, Steinbeck J, Happe T, Ikegami T, Hanke G, Kurisu G, Hippler M. Association of Ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynth Res 2017;134:291-306. [PMID: 28593495 DOI: 10.1007/s11120-017-0408-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
35 Zhang X, Wang X, Zhong J, Zhou Q, Wang X, Cai J, Dai T, Cao W, Jiang D. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany 2016;127:26-36. [DOI: 10.1016/j.envexpbot.2016.03.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
36 Andriotis VM, Pike MJ, Bunnewell S, Hills MJ, Smith AM. The plastidial glucose-6-phosphate/phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. Plant J 2010;64:128-39. [PMID: 20659277 DOI: 10.1111/j.1365-313X.2010.04313.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 0.2] [Reference Citation Analysis]
37 Dittmer S, Kleine T, Schwenkert S. The TPR- and J-domain-containing proteins DJC31 and DJC62 are involved in abiotic stress responses in Arabidopsis thaliana. J Cell Sci 2021;134:jcs259032. [PMID: 34515300 DOI: 10.1242/jcs.259032] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Goss T, Hanke G. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 2014;15:385-93. [PMID: 24678667 DOI: 10.2174/1389203715666140327113733] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
39 Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 2011;108:9396-401. [PMID: 21606330 DOI: 10.1073/pnas.1103659108] [Cited by in Crossref: 120] [Cited by in F6Publishing: 90] [Article Influence: 10.9] [Reference Citation Analysis]
40 Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism: Chloroplast ferredoxins. Plant Cell Environ 2013;36:1071-84. [DOI: 10.1111/pce.12046] [Cited by in Crossref: 148] [Cited by in F6Publishing: 137] [Article Influence: 16.4] [Reference Citation Analysis]
41 Kramer M, Rodriguez-Heredia M, Saccon F, Mosebach L, Twachtmann M, Krieger-Liszkay A, Duffy C, Knell RJ, Finazzi G, Hanke GT. Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions. Elife 2021;10:e56088. [PMID: 33685582 DOI: 10.7554/eLife.56088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Sukhov V, Surova L, Morozova E, Sherstneva O, Vodeneev V. Changes in H(+)-ATP Synthase Activity, Proton Electrochemical Gradient, and pH in Pea Chloroplast Can Be Connected with Variation Potential. Front Plant Sci 2016;7:1092. [PMID: 27499760 DOI: 10.3389/fpls.2016.01092] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
43 Zhang X, Zhang X, Zhang Q, Pan X, Yan L, Ma X, Zhao W, Qi X, Yin L. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots. Plant J 2017;90:147-63. [DOI: 10.1111/tpj.13482] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
44 Marco P, Elman T, Yacoby I. Binding of ferredoxin NADP+ oxidoreductase (FNR) to plant photosystem I. Biochim Biophys Acta Bioenerg 2019;1860:689-98. [PMID: 31336103 DOI: 10.1016/j.bbabio.2019.07.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
45 Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT. Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance. Plant Physiol 2016;172:1480-93. [PMID: 27634426 DOI: 10.1104/pp.16.01084] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
46 Mckenzie SD, Ibrahim IM, Aryal UK, Puthiyaveetil S. Stoichiometry of protein complexes in plant photosynthetic membranes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020;1861:148141. [DOI: 10.1016/j.bbabio.2019.148141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
47 Chou ML, Liao WY, Wei WC, Li AY, Chu CY, Wu CL, Liu CL, Fu TH, Lin LF. The Direct Involvement of Dark-Induced Tic55 Protein in Chlorophyll Catabolism and Its Indirect Role in the MYB108-NAC Signaling Pathway during Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2018;19:E1854. [PMID: 29937503 DOI: 10.3390/ijms19071854] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
48 Alte F, Stengel A, Benz JP, Petersen E, Soll J, Groll M, Bölter B. Ferredoxin:NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner. Proc Natl Acad Sci U S A 2010;107:19260-5. [PMID: 20974920 DOI: 10.1073/pnas.1009124107] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
49 Yang J, Gao M, Hu H, Ding X, Lin H, Wang L, Xu J, Mao C, Zhao F, Wu Z. OsCLT1, a CRT‐like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 2016;211:658-70. [DOI: 10.1111/nph.13908] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
50 Buchert F, Hamon M, Gäbelein P, Scholz M, Hippler M, Wollman FA. The labile interactions of cyclic electron flow effector proteins. J Biol Chem 2018;293:17559-73. [PMID: 30228184 DOI: 10.1074/jbc.RA118.004475] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
51 Diakonova AN, Khrushchev SS, Kovalenko IB, Riznichenko GY, Rubin AB. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction. Phys Biol 2016;13:056004. [PMID: 27716644 DOI: 10.1088/1478-3975/13/5/056004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
52 Higuchi-Takeuchi M, Ichikawa T, Kondou Y, Matsui K, Hasegawa Y, Kawashima M, Sonoike K, Mori M, Hirochika H, Matsui M. Functional analysis of two isoforms of leaf-type ferredoxin-NADP(+)-oxidoreductase in rice using the heterologous expression system of Arabidopsis. Plant Physiol 2011;157:96-108. [PMID: 21734114 DOI: 10.1104/pp.111.181248] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
53 Yudina L, Sukhova E, Sherstneva O, Grinberg M, Ladeynova M, Vodeneev V, Sukhov V. Exogenous Abscisic Acid Can Influence Photosynthetic Processes in Peas through a Decrease in Activity of H+-ATP-ase in the Plasma Membrane. Biology (Basel) 2020;9:E324. [PMID: 33020382 DOI: 10.3390/biology9100324] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
54 Twachtmann M, Altmann B, Muraki N, Voss I, Okutani S, Kurisu G, Hase T, Hanke GT. N-terminal structure of maize ferredoxin:NADP+ reductase determines recruitment into different thylakoid membrane complexes. Plant Cell 2012;24:2979-91. [PMID: 22805436 DOI: 10.1105/tpc.111.094532] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
55 García-Cerdán JG, Furst AL, McDonald KL, Schünemann D, Francis MB, Niyogi KK. A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proc Natl Acad Sci U S A 2019;116:16631-40. [PMID: 31358635 DOI: 10.1073/pnas.1903314116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
56 Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant Cell Environ 2014;37:2532-41. [PMID: 24635649 DOI: 10.1111/pce.12321] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 6.1] [Reference Citation Analysis]
57 Vojta L, Fulgosi H. Topology of TROL protein in thylakoid membranes of Arabidopsis thaliana. Physiol Plant 2019;166:300-8. [PMID: 30663054 DOI: 10.1111/ppl.12927] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
58 Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. Front Plant Sci 2019;10:593. [PMID: 31156665 DOI: 10.3389/fpls.2019.00593] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021;121:2020-108. [PMID: 33464892 DOI: 10.1021/acs.chemrev.0c00712] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
60 Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014;21:1389-421. [PMID: 24960279 DOI: 10.1089/ars.2014.6018] [Cited by in Crossref: 89] [Cited by in F6Publishing: 75] [Article Influence: 11.1] [Reference Citation Analysis]
61 Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V. Variation potential influence on photosynthetic cyclic electron flow in pea. Front Plant Sci 2014;5:766. [PMID: 25610447 DOI: 10.3389/fpls.2014.00766] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
62 Völkner C, Holzner LJ, Day PM, Ashok AD, Vries J, Bölter B, Kunz HH. Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+ release. Plant Physiol 2021:kiab424. [PMID: 34618095 DOI: 10.1093/plphys/kiab424] [Reference Citation Analysis]
63 Moolna A, Bowsher CG. The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat. J Exp Bot 2010;61:2669-81. [PMID: 20410318 DOI: 10.1093/jxb/erq101] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
64 Klasek L, Inoue K. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast. Int Rev Cell Mol Biol 2016;323:231-63. [PMID: 26944623 DOI: 10.1016/bs.ircmb.2015.12.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
65 Mulo P, Medina M. Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications. Photosynth Res 2017;134:265-80. [PMID: 28361449 DOI: 10.1007/s11120-017-0372-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
66 Yang XF, Wang YT, Chen ST, Li JK, Shen HT, Guo FQ. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis. Cell Discov 2016;2:16003. [PMID: 27462450 DOI: 10.1038/celldisc.2016.3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
67 Sommer MS, Schleiff E. Evolution of the Protein Translocons of the Chloroplast Envelope. In: Löffelhardt W, editor. Endosymbiosis. Vienna: Springer; 2014. pp. 81-110. [DOI: 10.1007/978-3-7091-1303-5_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
68 Yang C, Hu H, Ren H, Kong Y, Lin H, Guo J, Wang L, He Y, Ding X, Grabsztunowicz M, Mulo P, Chen T, Liu Y, Wu Z, Wu Y, Mao C, Wu P, Mo X. LIGHT-INDUCED RICE1 Regulates Light-Dependent Attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the Thylakoid Membrane in Rice and Arabidopsis. Plant Cell 2016;28:712-28. [PMID: 26941088 DOI: 10.1105/tpc.15.01027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
69 Li Z, Umar Khan M, Yan X, Mu D, Xie Y, Waqas M, Wu X, Letuma P, Fang C, Lin W. Deciphering the Molecular Mechanisms of Chilling Tolerance in Lsi1-Overexpressing Rice. IJMS 2022;23:4667. [DOI: 10.3390/ijms23094667] [Reference Citation Analysis]
70 Torres-Romero D, Gómez-Zambrano Á, Jesús Serrato A, Sahrawy M, Mérida Á. Arabidopsis fibrillin 1-2 subfamily exerts their functions via specific protein-protein interactions. J Exp Bot 2021:erab452. [PMID: 34651644 DOI: 10.1093/jxb/erab452] [Reference Citation Analysis]
71 Pierella Karlusich JJ, Carrillo N. Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP+ oxidoreductase. Photosynth Res 2017;134:235-50. [DOI: 10.1007/s11120-017-0338-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]