BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF 3rd, Hanson AD, Shachar-Hill Y. Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell 2008;20:1818-32. [PMID: 18628352 DOI: 10.1105/tpc.108.058701] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Yue H, Liang Q, Zhang W, Cao Z, Tan G, Zhang C, Wang B. A Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for 5-Formyltetrahydrofolate Detection in Maize Kernels. Food Anal Methods 2016;9:3155-62. [DOI: 10.1007/s12161-016-0503-9] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
2 Abadie C, Carroll A, Tcherkez G. Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. In: Tcherkez G, Ghashghaie J, editors. Plant Respiration: Metabolic Fluxes and Carbon Balance. Cham: Springer International Publishing; 2017. pp. 1-18. [DOI: 10.1007/978-3-319-68703-2_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Weber APM, Bauwe H. Photorespiration - a driver for evolutionary innovations and key to better crops. Plant Biol J 2013;15:621-3. [DOI: 10.1111/plb.12036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
4 Carroll AJ, Zhang P, Whitehead L, Kaines S, Tcherkez G, Badger MR. PhenoMeter: A Metabolome Database Search Tool Using Statistical Similarity Matching of Metabolic Phenotypes for High-Confidence Detection of Functional Links. Front Bioeng Biotechnol 2015;3:106. [PMID: 26284240 DOI: 10.3389/fbioe.2015.00106] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
5 Obata T, Florian A, Timm S, Bauwe H, Fernie AR. On the metabolic interactions of (photo)respiration. J Exp Bot 2016;67:3003-14. [PMID: 27029352 DOI: 10.1093/jxb/erw128] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 7.3] [Reference Citation Analysis]
6 Schneider A, Aghamirzaie D, Elmarakeby H, Poudel AN, Koo AJ, Heath LS, Grene R, Collakova E. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos. Plant J 2016;85:305-19. [PMID: 26678037 DOI: 10.1111/tpj.13106] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
7 Bauwe H. Photorespiration - Damage Repair Pathway of the Calvin-Benson Cycle. In: Roberts JA, editor. Annual Plant Reviews online. Chichester: John Wiley & Sons, Ltd; 2018. pp. 293-342. [DOI: 10.1002/9781119312994.apr0552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
8 Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. Front Plant Sci 2021;12:643403. [PMID: 34025692 DOI: 10.3389/fpls.2021.643403] [Reference Citation Analysis]
9 Bauwe H. Chapter 6 Photorespiration: The Bridge to C4 Photosynthesis. In: Raghavendra AS, Sage RF, editors. C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Dordrecht: Springer Netherlands; 2011. pp. 81-108. [DOI: 10.1007/978-90-481-9407-0_6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
10 Waditee-Sirisattha R, Kageyama H, Tanaka Y, Fukaya M, Takabe T. Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance. Arch Microbiol 2017;199:29-35. [PMID: 27443667 DOI: 10.1007/s00203-016-1271-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
11 Watanabe M, Tohge T, Fernie AR, Hoefgen R. The Effect of Single and Multiple SERAT Mutants on Serine and Sulfur Metabolism. Front Plant Sci 2018;9:702. [PMID: 29892307 DOI: 10.3389/fpls.2018.00702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Collakova E, Aghamirzaie D, Fang Y, Klumas C, Tabataba F, Kakumanu A, Myers E, Heath LS, Grene R. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos. Metabolites 2013;3:347-72. [PMID: 24957996 DOI: 10.3390/metabo3020347] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
13 Jamai A, Salomé PA, Schilling SH, Weber AP, McClung CR. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 2009;21:595-606. [PMID: 19223513 DOI: 10.1105/tpc.108.063289] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
14 Groth M, Moissiard G, Wirtz M, Wang H, Garcia-Salinas C, Ramos-Parra PA, Bischof S, Feng S, Cokus SJ, John A, Smith DC, Zhai J, Hale CJ, Long JA, Hell R, Díaz de la Garza RI, Jacobsen SE. MTHFD1 controls DNA methylation in Arabidopsis. Nat Commun 2016;7:11640. [PMID: 27291711 DOI: 10.1038/ncomms11640] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
15 Nourbakhsh A, Collakova E, Gillaspy GE. Characterization of the inositol monophosphatase gene family in Arabidopsis. Front Plant Sci 2014;5:725. [PMID: 25620968 DOI: 10.3389/fpls.2014.00725] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
16 Harper J, De Vega J, Swain S, Heavens D, Gasior D, Thomas A, Evans C, Lovatt A, Lister S, Thorogood D, Skøt L, Hegarty M, Blackmore T, Kudrna D, Byrne S, Asp T, Powell W, Fernandez-Fuentes N, Armstead I. Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits. Ann Bot 2019;123:977-92. [PMID: 30715119 DOI: 10.1093/aob/mcy230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Timm S, Florian A, Jahnke K, Nunes-Nesi A, Fernie AR, Bauwe H. The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end. Plant Physiol 2011;155:694-705. [PMID: 21205613 DOI: 10.1104/pp.110.166538] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 4.8] [Reference Citation Analysis]
18 Florian A, Araújo WL, Fernie AR. New insights into photorespiration obtained from metabolomics. Plant Biol (Stuttg) 2013;15:656-66. [PMID: 23573870 DOI: 10.1111/j.1438-8677.2012.00704.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
19 Carvalho Jde F, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MA. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 2011;11:111. [PMID: 22104170 DOI: 10.1186/1472-6750-11-111] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
20 Engel N, Ewald R, Gupta KJ, Zrenner R, Hagemann M, Bauwe H. The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria. Plant Physiol 2011;157:1711-20. [PMID: 21976482 DOI: 10.1104/pp.111.184564] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 4.1] [Reference Citation Analysis]
21 Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. Front Plant Sci 2018;9:443. [PMID: 29681913 DOI: 10.3389/fpls.2018.00443] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
22 Leuendorf JE, Osorio S, Szewczyk A, Fernie AR, Hellmann H. Complex Assembly and Metabolic Profiling of Arabidopsis thaliana Plants Overexpressing Vitamin B6 Biosynthesis Proteins. Molecular Plant 2010;3:890-903. [DOI: 10.1093/mp/ssq041] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
23 Timm S. The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2020;48:2495-504. [PMID: 33300978 DOI: 10.1042/BST20200055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Abadie C, Tcherkez G. Plant sulphur metabolism is stimulated by photorespiration. Commun Biol 2019;2:379. [PMID: 31633070 DOI: 10.1038/s42003-019-0616-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
25 Zhou F, Zuo J, Gao L, Sui Y, Wang Q, Jiang A, Shi J. An untargeted metabolomic approach reveals significant postharvest alterations in vitamin metabolism in response to LED irradiation in pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Metabolomics 2019;15:155. [PMID: 31773368 DOI: 10.1007/s11306-019-1617-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
26 Valcu CM, Junqueira M, Shevchenko A, Schlink K. Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 2009;8:4077-91. [PMID: 19575529 DOI: 10.1021/pr900456c] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
27 Meng H, Jiang L, Xu B, Guo W, Li J, Zhu X, Qi X, Duan L, Meng X, Fan Y, Zhang C. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness. PLoS One 2014;9:e101905. [PMID: 25000295 DOI: 10.1371/journal.pone.0101905] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
28 Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F. Photorespiration. Arabidopsis Book 2010;8:e0130. [PMID: 22303256 DOI: 10.1199/tab.0130] [Cited by in Crossref: 123] [Cited by in F6Publishing: 102] [Article Influence: 10.3] [Reference Citation Analysis]
29 Wongpia A, Roytrakul S, Nomura M, Tajima S, Lomthaisong K, Mahatheeranont S, Niamsup H. Proteomic Analysis of Isogenic Rice Reveals Proteins Correlated with Aroma Compound Biosynthesis at Different Developmental Stages. Mol Biotechnol 2016;58:117-29. [DOI: 10.1007/s12033-015-9906-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
30 Timm S, Bauwe H. The variety of photorespiratory phenotypes - employing the current status for future research directions on photorespiration. Plant Biol (Stuttg) 2013;15:737-47. [PMID: 23171236 DOI: 10.1111/j.1438-8677.2012.00691.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 6.1] [Reference Citation Analysis]
31 Jiang L, Liu Y, Sun H, Han Y, Li J, Li C, Guo W, Meng H, Li S, Fan Y, Zhang C. The mitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during early seedling development in arabidopsis. Plant Physiol 2013;161:971-89. [PMID: 23129207 DOI: 10.1104/pp.112.203430] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
32 Krueger S, Benstein RM, Wulfert S, Anoman AD, Flores-Tornero M, Ros R. Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana. Methods Mol Biol 2017;1653:227-42. [PMID: 28822137 DOI: 10.1007/978-1-4939-7225-8_16] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
33 Keech O, Gardeström P, Kleczkowski LA, Rouhier N. The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. Plant, Cell & Environment 2016;40:553-69. [DOI: 10.1111/pce.12713] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
34 Srivastava AC, Ramos-Parra PA, Bedair M, Robledo-Hernández AL, Tang Y, Sumner LW, Díaz de la Garza RI, Blancaflor EB. The folylpolyglutamate synthetase plastidial isoform is required for postembryonic root development in Arabidopsis. Plant Physiol 2011;155:1237-51. [PMID: 21233333 DOI: 10.1104/pp.110.168278] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
35 Ros R, Muñoz-bertomeu J, Krueger S. Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science 2014;19:564-9. [DOI: 10.1016/j.tplants.2014.06.003] [Cited by in Crossref: 108] [Cited by in F6Publishing: 100] [Article Influence: 13.5] [Reference Citation Analysis]
36 Ye J, Chen W, Feng L, Liu G, Wang Y, Li H, Ye Z, Zhang Y. The chaperonin 60 protein SlCpn60α1 modulates photosynthesis and photorespiration in tomato. J Exp Bot 2020;71:7224-40. [PMID: 32915204 DOI: 10.1093/jxb/eraa418] [Reference Citation Analysis]
37 Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant J 2020;102:666-77. [PMID: 31904886 DOI: 10.1111/tpj.14669] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
38 Xiong E, Dong G, Chen F, Zhang C, Li S, Zhang Y, Shohag JI, Yang X, Zhou Y, Qian Q, Wu L, Yu Y. Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Sci China Life Sci 2021;64:720-38. [DOI: 10.1007/s11427-020-1773-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Xiong E, Zhang C, Ye C, Jiang Y, Zhang Y, Chen F, Dong G, Zeng D, Yu Y, Wu L. iTRAQ-based proteomic analysis provides insights into the molecular mechanisms of rice formyl tetrahydrofolate deformylase in salt response. Planta 2021;254:76. [PMID: 34533642 DOI: 10.1007/s00425-021-03723-z] [Reference Citation Analysis]
40 Fernie AR, Bauwe H, Eisenhut M, Florian A, Hanson DT, Hagemann M, Keech O, Mielewczik M, Nikoloski Z, Peterhänsel C, Roje S, Sage R, Timm S, von Cammerer S, Weber AP, Westhoff P. Perspectives on plant photorespiratory metabolism. Plant Biol (Stuttg) 2013;15:748-53. [PMID: 23231538 DOI: 10.1111/j.1438-8677.2012.00693.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
41 Bauwe H. Recent developments in photorespiration research. Biochemical Society Transactions 2010;38:677-82. [DOI: 10.1042/bst0380677] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
42 Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci Rep 2019;9:5731. [PMID: 30952916 DOI: 10.1038/s41598-019-42146-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
43 Eisenhut M, Roell MS, Weber APM. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol 2019;223:1762-9. [PMID: 31032928 DOI: 10.1111/nph.15872] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
44 Foflonker F, Ananyev G, Qiu H, Morrison A, Palenik B, Dismukes GC, Bhattacharya D. The unexpected extremophile: Tolerance to fluctuating salinity in the green alga Picochlorum. Algal Research 2016;16:465-72. [DOI: 10.1016/j.algal.2016.04.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
45 Collakova E, Yen JY, Senger RS. Are we ready for genome-scale modeling in plants? Plant Sci 2012;191-192:53-70. [PMID: 22682565 DOI: 10.1016/j.plantsci.2012.04.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
46 Eisenhut M, Planchais S, Cabassa C, Guivarc'h A, Justin AM, Taconnat L, Renou JP, Linka M, Gagneul D, Timm S, Bauwe H, Carol P, Weber AP. Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO₂ levels. Plant J 2013;73:836-49. [PMID: 23181524 DOI: 10.1111/tpj.12082] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 5.0] [Reference Citation Analysis]
47 Wei Z, Sun K, Sandoval FJ, Cross JM, Gordon C, Kang C, Roje S. Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana. Archives of Biochemistry and Biophysics 2013;536:87-96. [DOI: 10.1016/j.abb.2013.06.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
48 Timm S, Nunes-Nesi A, Florian A, Eisenhut M, Morgenthal K, Wirtz M, Hell R, Weckwerth W, Hagemann M, Fernie AR, Bauwe H. Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021;11:391. [PMID: 34203750 DOI: 10.3390/metabo11060391] [Reference Citation Analysis]
49 Song S, Timm S, Lindner SN, Reimann V, Hess WR, Hagemann M, Brouwer EM. Expression of Formate-Tetrahydrofolate Ligase Did Not Improve Growth but Interferes With Nitrogen and Carbon Metabolism of Synechocystis sp. PCC 6803. Front Microbiol 2020;11:1650. [PMID: 32760387 DOI: 10.3389/fmicb.2020.01650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Peixoto B, Moraes TA, Mengin V, Margalha L, Vicente R, Feil R, Höhne M, Sousa AGG, Lilue J, Stitt M, Lunn JE, Baena-González E. Impact of the SnRK1 protein kinase on sucrose homeostasis and the transcriptome during the diel cycle. Plant Physiol 2021;187:1357-73. [PMID: 34618060 DOI: 10.1093/plphys/kiab350] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Muñoz-Bertomeu J, Anoman A, Flores-Tornero M, Toujani W, Rosa-Téllez S, Fernie AR, Roje S, Segura J, Ros R. The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis. Plant Signal Behav 2013;8:e27104. [PMID: 24299976 DOI: 10.4161/psb.27104] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
52 Kuhnert F, Stefanski A, Overbeck N, Drews L, Reichert AS, Stühler K, Weber APM. Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria. Plant Physiol 2020;182:692-706. [PMID: 31818904 DOI: 10.1104/pp.19.00732] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
53 Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu X, Allen DK, Weber AP. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. EXBOTJ 2016;67:3015-26. [DOI: 10.1093/jxb/erw145] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 8.8] [Reference Citation Analysis]
54 Timm S, Mielewczik M, Florian A, Frankenbach S, Dreissen A, Hocken N, Fernie AR, Walter A, Bauwe H. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 2012;7:e42809. [PMID: 22912743 DOI: 10.1371/journal.pone.0042809] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 5.7] [Reference Citation Analysis]
55 Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 2016;35:109-16. [PMID: 27693890 DOI: 10.1016/j.cbpa.2016.09.014] [Cited by in Crossref: 63] [Cited by in F6Publishing: 41] [Article Influence: 10.5] [Reference Citation Analysis]
56 Kerchev P, Mühlenbock P, Denecker J, Morreel K, Hoeberichts FA, Van Der Kelen K, Vandorpe M, Nguyen L, Audenaert D, Van Breusegem F. Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant Cell Environ 2015;38:253-65. [PMID: 26317137 DOI: 10.1111/pce.12250] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
57 Kuhn A, Engqvist MKM, Jansen EEW, Weber APM, Jakobs C, Maurino VG, Rennenberg H. D-2-hydroxyglutarate metabolism is linked to photorespiration in the shm1-1 mutant. Plant Biol J 2013;15:776-84. [DOI: 10.1111/plb.12020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
58 Xie H, Engle NL, Venketachalam S, Yoo CG, Barros J, Lecoultre M, Howard N, Li G, Sun L, Srivastava AC, Pattathil S, Pu Y, Hahn MG, Ragauskas AJ, Nelson RS, Dixon RA, Tschaplinski TJ, Blancaflor EB, Tang Y. Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnol Biofuels 2019;12:108. [PMID: 31073332 DOI: 10.1186/s13068-019-1446-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
59 Bauwe H, Hagemann M, Kern R, Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol 2012;15:269-75. [PMID: 22284850 DOI: 10.1016/j.pbi.2012.01.008] [Cited by in Crossref: 121] [Cited by in F6Publishing: 107] [Article Influence: 12.1] [Reference Citation Analysis]
60 Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014;21:1389-421. [PMID: 24960279 DOI: 10.1089/ars.2014.6018] [Cited by in Crossref: 89] [Cited by in F6Publishing: 75] [Article Influence: 11.1] [Reference Citation Analysis]
61 Maurino VG. Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochem Soc Trans 2019;47:1805-13. [PMID: 31754693 DOI: 10.1042/BST20190322] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
62 Sew YS, Ströher E, Fenske R, Millar AH. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis. Plant Physiol 2016;171:849-63. [PMID: 27208265 DOI: 10.1104/pp.16.01654] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
63 Ma F, Jazmin LJ, Young JD, Allen DK. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci U S A 2014;111:16967-72. [PMID: 25368168 DOI: 10.1073/pnas.1319485111] [Cited by in Crossref: 110] [Cited by in F6Publishing: 105] [Article Influence: 13.8] [Reference Citation Analysis]
64 Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP. Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants. Plant Cell 2016;28:466-84. [PMID: 26813621 DOI: 10.1105/tpc.15.00497] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
65 Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2021;22:bbaa305. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Singh D, Collakova E, Isleib TG, Welbaum GE, Tallury SP, Balota M. Differential Physiological and Metabolic Responses to Drought Stress of Peanut Cultivars and Breeding Lines. Crop Science 2014;54:2262-74. [DOI: 10.2135/cropsci2013.09.0606] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
67 Timm S, Florian A, Wittmiß M, Jahnke K, Hagemann M, Fernie AR, Bauwe H. Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiol 2013;162:379-89. [PMID: 23471132 DOI: 10.1104/pp.113.215970] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 7.8] [Reference Citation Analysis]
68 Igamberdiev AU, Kleczkowski LA. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism. Front Plant Sci 2018;9:318. [PMID: 29593770 DOI: 10.3389/fpls.2018.00318] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]