BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Johnson KL, Cassin AM, Lonsdale A, Wong GK, Soltis DE, Miles NW, Melkonian M, Melkonian B, Deyholos MK, Leebens-Mack J, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Carpenter EJ, Bacic A, Doblin MS, Schultz CJ. Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. Plant Physiol 2017;174:904-21. [PMID: 28446636 DOI: 10.1104/pp.17.00295] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma Y, Zeng W, Bacic A, Johnson K. AGPs Through Time and Space. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 767-804. [DOI: 10.1002/9781119312994.apr0608] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
2 Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep 2020;10:8232. [PMID: 32427862 DOI: 10.1038/s41598-020-65135-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
3 Shields MR, Bianchi TS, Kolker AS, Kenney WF, Mohrig D, Osborne TZ, Curtis JH. Factors Controlling Storage, Sources, and Diagenetic State of Organic Carbon in a Prograding Subaerial Delta: Wax Lake Delta, Louisiana. J Geophys Res Biogeosci 2019;124:1115-31. [DOI: 10.1029/2018jg004683] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Pfeifer L, Utermöhlen J, Happ K, Permann C, Holzinger A, von Schwartzenberg K, Classen B. Search for evolutionary roots of land plant arabinogalactan-proteins in charophytes: presence of a rhamnogalactan-protein in Spirogyra pratensis (Zygnematophyceae). Plant J 2021. [PMID: 34767672 DOI: 10.1111/tpj.15577] [Reference Citation Analysis]
5 Happ K, Classen B. Arabinogalactan-Proteins from the Liverwort Marchantia polymorpha L., a Member of a Basal Land Plant Lineage, Are Structurally Different to Those of Angiosperms. Plants (Basel) 2019;8:E460. [PMID: 31671872 DOI: 10.3390/plants8110460] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
6 Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. Front Plant Sci 2019;10:441. [PMID: 31057570 DOI: 10.3389/fpls.2019.00441] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
7 Ren W, Hou X, Wu Z, Kong L, Guo H, Hu N, Wan D, Zhang J. De novo transcriptomic profiling of the clonal Leymus chinensis response to long-term overgrazing-induced memory. Sci Rep 2018;8:17912. [PMID: 30559460 DOI: 10.1038/s41598-018-35605-y] [Reference Citation Analysis]
8 Livingston SJ, Bae EJ, Unda F, Hahn MG, Mansfield SD, Page JE, Samuels AL. Cannabis Glandular Trichome Cell Walls Undergo Remodeling to Store Specialized Metabolites. Plant Cell Physiol 2021:pcab127. [PMID: 34392368 DOI: 10.1093/pcp/pcab127] [Reference Citation Analysis]
9 Lara-Mondragón CM, MacAlister CA. Partial purification and immunodetection of cell surface glycoproteins from plants. Methods Cell Biol 2020;160:215-34. [PMID: 32896318 DOI: 10.1016/bs.mcb.2020.05.003] [Reference Citation Analysis]
10 Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ. Pipeline to Identify Hydroxyproline-Rich Glycoproteins. Plant Physiol 2017;174:886-903. [PMID: 28446635 DOI: 10.1104/pp.17.00294] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
11 Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. Front Plant Sci 2021;12:674010. [PMID: 34079573 DOI: 10.3389/fpls.2021.674010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Tatli M, Ishihara M, Heiss C, Browne DR, Dangott LJ, Vitha S, Azadi P, Devarenne TP. Polysaccharide associated protein (PSAP) from the green microalga Botryococcus braunii is a unique extracellular matrix hydroxyproline-rich glycoprotein. Algal Research 2018;29:92-103. [DOI: 10.1016/j.algal.2017.11.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
13 Palacio-López K, Tinaz B, Holzinger A, Domozych DS. Arabinogalactan Proteins and the Extracellular Matrix of Charophytes: A Sticky Business. Front Plant Sci 2019;10:447. [PMID: 31031785 DOI: 10.3389/fpls.2019.00447] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
14 He J, Zhao H, Cheng Z, Ke Y, Liu J, Ma H. Evolution Analysis of the Fasciclin-Like Arabinogalactan Proteins in Plants Shows Variable Fasciclin-AGP Domain Constitutions. Int J Mol Sci 2019;20:E1945. [PMID: 31010036 DOI: 10.3390/ijms20081945] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
15 Lin S, Miao Y, Huang H, Zhang Y, Huang L, Cao J. Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022;23:6578. [PMID: 35743022 DOI: 10.3390/ijms23126578] [Reference Citation Analysis]
16 Narciso JO, Zeng W, Ford K, Lampugnani ER, Humphries J, Austarheim I, van de Meene A, Bacic A, Doblin MS. Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development. Front Plant Sci 2021;12:678564. [PMID: 34113372 DOI: 10.3389/fpls.2021.678564] [Reference Citation Analysis]
17 Classen B, Baumann A, Utermoehlen J. Arabinogalactan-proteins in spore-producing land plants. Carbohydrate Polymers 2019;210:215-24. [DOI: 10.1016/j.carbpol.2019.01.077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
18 Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. Front Plant Sci 2018;9:1784. [PMID: 30581448 DOI: 10.3389/fpls.2018.01784] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
19 Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Reference Citation Analysis]
20 Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. J Integr Plant Biol 2018;60:649-69. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
21 Guo X, Hansen BØ, Moeller SR, Harholt J, Mravec J, Willats W, Petersen BL, Ulvskov P. Extensin arabinoside chain length is modulated in elongating cotton fibre. Cell Surf 2019;5:100033. [PMID: 32743148 DOI: 10.1016/j.tcsw.2019.100033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
22 Schultz CJ, Wu Y, Baumann U. A targeted bioinformatics approach identifies highly variable cell surface proteins that are unique to Glomeromycotina. Mycorrhiza 2022. [PMID: 35031894 DOI: 10.1007/s00572-021-01066-x] [Reference Citation Analysis]
23 Přerovská T, Henke S, Bleha R, Spiwok V, Gillarová S, Yvin JC, Ferrières V, Nguema-Ona E, Lipovová P. Arabinogalactan-like Glycoproteins from Ulva lactuca (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. J Phycol 2021;57:619-35. [PMID: 33338254 DOI: 10.1111/jpy.13121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Ning P, Lane D, Soong R, Schmidig D, Frei T, De Castro P, Kovacevic I, Graf S, Wegner S, Busse F, Struppe J, Fey M, Stronks H, Monette M, Simpson MJ, Simpson AJ. Comprehensive Multiphase NMR—A Powerful Tool to Understand and Monitor Molecular Processes during Biofuel Production. ACS Sustainable Chem Eng 2020;8:17551-64. [DOI: 10.1021/acssuschemeng.0c07205] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Pinski A, Betekhtin A, Kwasniewska J, Chajec L, Wolny E, Hasterok R. 3,4-Dehydro-L-proline Induces Programmed Cell Death in the Roots of Brachypodium distachyon. Int J Mol Sci 2021;22:7548. [PMID: 34299166 DOI: 10.3390/ijms22147548] [Reference Citation Analysis]
26 Paunović DM, Ćuković KB, Bogdanović MD, Todorović SI, Trifunović-Momčilov MM, Subotić AR, Simonović AD, Dragićević MB. The Arabinogalactan Protein Family of Centaurium erythraea Rafn. Plants (Basel) 2021;10:1870. [PMID: 34579403 DOI: 10.3390/plants10091870] [Reference Citation Analysis]
27 Silva J, Ferraz R, Dupree P, Showalter AM, Coimbra S. Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. Front Plant Sci 2020;11:610377. [PMID: 33384708 DOI: 10.3389/fpls.2020.610377] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
28 Zhang T. Peripheral? Not Really! The Extracellular Arabinogalactan Proteins Function in Calcium Signaling. Plant Cell 2020;32:3057-8. [PMID: 32769134 DOI: 10.1105/tpc.20.00605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Yoshimi Y, Yaguchi K, Kaneko S, Tsumuraya Y, Kotake T. Properties of two fungal endo-β-1,3-galactanases and their synergistic action with an exo-β-1,3-galactanase in degrading arabinogalactan-proteins. Carbohydrate Research 2017;453-454:26-35. [DOI: 10.1016/j.carres.2017.10.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
30 Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021;12:730543. [PMID: 34512607 DOI: 10.3389/fmicb.2021.730543] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Su S, Higashiyama T. Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reprod 2018;31:67-75. [PMID: 29470639 DOI: 10.1007/s00497-018-0329-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
32 Přerovská T, Pavlů A, Hancharyk D, Rodionova A, Vavříková A, Spiwok V. Structural Basis of the Function of Yariv Reagent-An Important Tool to Study Arabinogalactan Proteins. Front Mol Biosci 2021;8:682858. [PMID: 34179088 DOI: 10.3389/fmolb.2021.682858] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Juranić M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, Spriggs A, Johnson SD, Bulone V, Koltunow AM. Asexual Female Gametogenesis Involves Contact with a Sexually-Fated Megaspore in Apomictic Hieracium. Plant Physiol 2018;177:1027-49. [PMID: 29844228 DOI: 10.1104/pp.18.00342] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
34 Shafee T, Bacic A, Johnson K, Wilke C. Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Molecular Biology and Evolution 2020;37:2155-72. [DOI: 10.1093/molbev/msaa096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]