BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ. Pipeline to Identify Hydroxyproline-Rich Glycoproteins. Plant Physiol 2017;174:886-903. [PMID: 28446635 DOI: 10.1104/pp.17.00294] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Pinski A, Betekhtin A, Sala K, Godel-Jedrychowska K, Kurczynska E, Hasterok R. Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Brachypodium distachyon. Int J Mol Sci 2019;20:E2571. [PMID: 31130622 DOI: 10.3390/ijms20102571] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ma Y, Zeng W, Bacic A, Johnson K. AGPs Through Time and Space. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 767-804. [DOI: 10.1002/9781119312994.apr0608] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
3 Tiong J, Sharma N, Sampath R, MacKenzie N, Watanabe S, Metot C, Lu Z, Skinner W, Lu Y, Kridl J, Baumann U, Heuer S, Kaiser B, Okamoto M. Improving Nitrogen Use Efficiency Through Overexpression of Alanine Aminotransferase in Rice, Wheat, and Barley. Front Plant Sci 2021;12:628521. [PMID: 33584777 DOI: 10.3389/fpls.2021.628521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lamport DTA, Tan L, Held M, Kieliszewski MJ. The Role of the Primary Cell Wall in Plant Morphogenesis. Int J Mol Sci 2018;19:E2674. [PMID: 30205598 DOI: 10.3390/ijms19092674] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
5 Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. Front Plant Sci 2021;12:640919. [PMID: 33679857 DOI: 10.3389/fpls.2021.640919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Lara-Mondragón CM, MacAlister CA. Partial purification and immunodetection of cell surface glycoproteins from plants. Methods Cell Biol 2020;160:215-34. [PMID: 32896318 DOI: 10.1016/bs.mcb.2020.05.003] [Reference Citation Analysis]
7 Palacio-López K, Tinaz B, Holzinger A, Domozych DS. Arabinogalactan Proteins and the Extracellular Matrix of Charophytes: A Sticky Business. Front Plant Sci 2019;10:447. [PMID: 31031785 DOI: 10.3389/fpls.2019.00447] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
8 Paunović DM, Ćuković KB, Bogdanović MD, Todorović SI, Trifunović-Momčilov MM, Subotić AR, Simonović AD, Dragićević MB. The Arabinogalactan Protein Family of Centaurium erythraea Rafn. Plants (Basel) 2021;10:1870. [PMID: 34579403 DOI: 10.3390/plants10091870] [Reference Citation Analysis]
9 Petersen BL, MacAlister CA, Ulvskov P. Plant Protein O-Arabinosylation. Front Plant Sci 2021;12:645219. [PMID: 33815452 DOI: 10.3389/fpls.2021.645219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Tatli M, Ishihara M, Heiss C, Browne DR, Dangott LJ, Vitha S, Azadi P, Devarenne TP. Polysaccharide associated protein (PSAP) from the green microalga Botryococcus braunii is a unique extracellular matrix hydroxyproline-rich glycoprotein. Algal Research 2018;29:92-103. [DOI: 10.1016/j.algal.2017.11.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
11 Narciso JO, Zeng W, Ford K, Lampugnani ER, Humphries J, Austarheim I, van de Meene A, Bacic A, Doblin MS. Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development. Front Plant Sci 2021;12:678564. [PMID: 34113372 DOI: 10.3389/fpls.2021.678564] [Reference Citation Analysis]
12 Molisso D, Coppola M, Buonanno M, Di Lelio I, Monti SM, Melchiorre C, Amoresano A, Corrado G, Delano-Frier JP, Becchimanzi A, Pennacchio F, Rao R. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. Biology (Basel) 2022;11:124. [PMID: 35053122 DOI: 10.3390/biology11010124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Pinski A, Betekhtin A, Kwasniewska J, Chajec L, Wolny E, Hasterok R. 3,4-Dehydro-L-proline Induces Programmed Cell Death in the Roots of Brachypodium distachyon. Int J Mol Sci 2021;22:7548. [PMID: 34299166 DOI: 10.3390/ijms22147548] [Reference Citation Analysis]
14 Ma T, Dong F, Luan D, Hu H, Zhao J. Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice. Protoplasma 2019;256:909-22. [PMID: 30675653 DOI: 10.1007/s00709-019-01349-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
15 Li H, Kim YJ, Yang L, Liu Z, Zhang J, Shi H, Huang G, Persson S, Zhang D, Liang W. Grass-Specific EPAD1 Is Essential for Pollen Exine Patterning in Rice. Plant Cell 2020;32:3961-77. [PMID: 33093144 DOI: 10.1105/tpc.20.00551] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Classen B, Baumann A, Utermoehlen J. Arabinogalactan-proteins in spore-producing land plants. Carbohydrate Polymers 2019;210:215-24. [DOI: 10.1016/j.carbpol.2019.01.077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
17 Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. Front Plant Sci 2018;9:1784. [PMID: 30581448 DOI: 10.3389/fpls.2018.01784] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
18 Beuder S, Dorchak A, Bhide A, Moeller SR, Petersen BL, MacAlister CA. Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O-arabinosyltransferase mutants. Plant J 2020;103:1399-419. [PMID: 32391581 DOI: 10.1111/tpj.14808] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
19 Dragićević MB, Paunović DM, Bogdanović MD, Todorović SI, Simonović AD. ragp: Pipeline for mining of plant hydroxyproline-rich glycoproteins with implementation in R. Glycobiology 2019:cwz072. [PMID: 31508799 DOI: 10.1093/glycob/cwz072] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
20 Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. Front Plant Sci 2019;10:441. [PMID: 31057570 DOI: 10.3389/fpls.2019.00441] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
21 Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. Front Plant Sci 2020;11:563735. [PMID: 33013983 DOI: 10.3389/fpls.2020.563735] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
22 Silva J, Ferraz R, Dupree P, Showalter AM, Coimbra S. Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. Front Plant Sci 2020;11:610377. [PMID: 33384708 DOI: 10.3389/fpls.2020.610377] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
23 Johnson KL, Cassin AM, Lonsdale A, Wong GK, Soltis DE, Miles NW, Melkonian M, Melkonian B, Deyholos MK, Leebens-Mack J, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Carpenter EJ, Bacic A, Doblin MS, Schultz CJ. Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. Plant Physiol 2017;174:904-21. [PMID: 28446636 DOI: 10.1104/pp.17.00295] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
24 Mendez-Yañez A, Ramos P, Morales-Quintana L. Role of Glycoproteins during Fruit Ripening and Seed Development. Cells 2021;10:2095. [PMID: 34440864 DOI: 10.3390/cells10082095] [Reference Citation Analysis]
25 Su S, Higashiyama T. Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reprod 2018;31:67-75. [PMID: 29470639 DOI: 10.1007/s00497-018-0329-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
26 Hsiao AS, Wang K, Ho TD. An Intrinsically Disordered Protein Interacts with the Cytoskeleton for Adaptive Root Growth under Stress. Plant Physiol 2020;183:570-87. [PMID: 32238442 DOI: 10.1104/pp.19.01372] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Ye Z, Sangireddy SR, Yu CL, Hui D, Howe K, Fish T, Thannhauser TW, Zhou S. Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass. Proteomes 2020;8:3. [PMID: 32092968 DOI: 10.3390/proteomes8010003] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Pinski A, Betekhtin A, Hupert-Kocurek K, Mur LAJ, Hasterok R. Defining the Genetic Basis of Plant⁻Endophytic Bacteria Interactions. Int J Mol Sci 2019;20:E1947. [PMID: 31010043 DOI: 10.3390/ijms20081947] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 12.3] [Reference Citation Analysis]
29 Pacheco JM, Mansilla N, Moison M, Lucero L, Gabarain VB, Ariel F, Estevez JM. The lncRNA APOLO and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signal Behav 2021;16:1920191. [PMID: 33944666 DOI: 10.1080/15592324.2021.1920191] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly MK, Kotnala S, Mohanty A, Rangarajan G, Salgia R, Uversky V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem Rev 2022. [PMID: 35170314 DOI: 10.1021/acs.chemrev.1c00848] [Reference Citation Analysis]
31 Luo S, Hu W, Wang Y, Liu B, Yan H, Xiang Y. Genome-wide identification, classification, and expression of phytocyanins in Populus trichocarpa. Planta 2018;247:1133-48. [PMID: 29383450 DOI: 10.1007/s00425-018-2849-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Shafee T, Bacic A, Johnson K, Wilke C. Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Molecular Biology and Evolution 2020;37:2155-72. [DOI: 10.1093/molbev/msaa096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Juranić M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, Spriggs A, Johnson SD, Bulone V, Koltunow AM. Asexual Female Gametogenesis Involves Contact with a Sexually-Fated Megaspore in Apomictic Hieracium. Plant Physiol 2018;177:1027-49. [PMID: 29844228 DOI: 10.1104/pp.18.00342] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
34 Schultz CJ, Wu Y, Baumann U. A targeted bioinformatics approach identifies highly variable cell surface proteins that are unique to Glomeromycotina. Mycorrhiza 2022. [PMID: 35031894 DOI: 10.1007/s00572-021-01066-x] [Reference Citation Analysis]
35 Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep 2020;10:8232. [PMID: 32427862 DOI: 10.1038/s41598-020-65135-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
36 Lara-Mondragón CM, MacAlister CA. Arabinogalactan glycoprotein dynamics during the progamic phase in the tomato pistil. Plant Reprod 2021;34:131-48. [PMID: 33860833 DOI: 10.1007/s00497-021-00408-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM. Filling the Gaps to Solve the Extensin Puzzle. Mol Plant 2018;11:645-58. [PMID: 29530817 DOI: 10.1016/j.molp.2018.03.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]