BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber AP. Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 2005;137:460-74. [PMID: 15710685 DOI: 10.1104/pp.104.051169] [Cited by in Crossref: 142] [Cited by in F6Publishing: 107] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Sethe Burgie E, Bingman CA, Makino S, Wesenberg GE, Pan X, Fox BG, Phillips GN Jr. Structural architecture of Galdieria sulphuraria DCN1L. Proteins 2011;79:1329-36. [PMID: 21387409 DOI: 10.1002/prot.22937] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
2 Linka M, Weber APM. Evolutionary Integration of Chloroplast Metabolism with the Metabolic Networks of the Cells. In: Burnap R, Vermaas W, editors. Functional Genomics and Evolution of Photosynthetic Systems. Dordrecht: Springer Netherlands; 2012. pp. 199-224. [DOI: 10.1007/978-94-007-1533-2_8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
3 Ghoshroy S, Robertson DL. MOLECULAR EVOLUTION OF GLUTAMINE SYNTHETASE II AND III IN THE CHROMALVEOLATES(1). J Phycol 2012;48:768-83. [PMID: 27011094 DOI: 10.1111/j.1529-8817.2012.01169.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
4 Castenholz RW, Mcdermott TR. The Cyanidiales: Ecology, Biodiversity, and Biogeography. In: Seckbach J, Chapman DJ, editors. Red Algae in the Genomic Age. Dordrecht: Springer Netherlands; 2010. pp. 357-71. [DOI: 10.1007/978-90-481-3795-4_19] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
5 Yin Y, Mohnen D, Gelineo-albersheim I, Xu Y, Hahn MG. Glycosyltransferases of the GT8 Family. In: Roberts JA, editor. Annual Plant Reviews online. Chichester: John Wiley & Sons, Ltd; 2018. pp. 167-211. [DOI: 10.1002/9781119312994.apr0435] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
6 Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW. Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl Environ Microbiol 2008;74:2822-33. [PMID: 18344337 DOI: 10.1128/AEM.02741-07] [Cited by in Crossref: 81] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
7 Čížková M, Mezricky P, Mezricky D, Rucki M, Zachleder V, Vítová M. Bioaccumulation of Rare Earth Elements from Waste Luminophores in the Red Algae, Galdieria phlegrea. Waste Biomass Valor 2021;12:3137-46. [DOI: 10.1007/s12649-020-01182-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Walker TL, Collet C, Purton S. ALGAL TRANSGENICS IN THE GENOMIC ERA1: GENETIC ENGINEERING OF ALGAE. Journal of Phycology 2005;41:1077-93. [DOI: 10.1111/j.1529-8817.2005.00133.x] [Cited by in Crossref: 91] [Cited by in F6Publishing: 57] [Article Influence: 5.4] [Reference Citation Analysis]
9 Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. OMICS: A Journal of Integrative Biology 2016;20:387-99. [DOI: 10.1089/omi.2016.0065] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kim E, Archibald JM. Diversity and Evolution of Plastids and Their Genomes. Berlin: Springer Berlin Heidelberg; 2008. [DOI: 10.1007/7089_2008_17] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
11 Wilson WA, Pradhan P, Madhan N, Gist GC, Brittingham A. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family. Biochimie 2017;138:90-101. [PMID: 28465215 DOI: 10.1016/j.biochi.2017.04.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
12 Oesterhelt C, Klocke S, Holtgrefe S, Linke V, Weber APM, Scheibe R. Redox Regulation of Chloroplast Enzymes in Galdieria sulphuraria in View of Eukaryotic Evolution. Plant and Cell Physiology 2007;48:1359-73. [DOI: 10.1093/pcp/pcm108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 3.1] [Reference Citation Analysis]
13 Unterlander N, Champagne P, Plaxton WC. Lyophilization pretreatment facilitates extraction of soluble proteins and active enzymes from the oil-accumulating microalga Chlorella vulgaris. Algal Research 2017;25:439-44. [DOI: 10.1016/j.algal.2017.06.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
14 Gantt E, Berg GM, Bhattacharya D, Blouin NA, Brodie JA, Chan CX, Collén J, Cunningham FX, Gross J, Grossman AR, Karpowicz S, Kitade Y, Klein AS, Levine IA, Lin S, Lu S, Lynch M, Minocha SC, Müller K, Neefus CD, de Oliveira MC, Rymarquis L, Smith A, Stiller JW, Wu W, Yarish C, Zhuang Y, Brawley SH. Porphyra: Complex Life Histories in a Harsh Environment: P. umbilicalis, an Intertidal Red Alga for Genomic Analysis. In: Seckbach J, Chapman DJ, editors. Red Algae in the Genomic Age. Dordrecht: Springer Netherlands; 2010. pp. 129-48. [DOI: 10.1007/978-90-481-3795-4_7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
15 Qiu H, Price DC, Weber AP, Reeb V, Yang EC, Lee JM, Kim SY, Yoon HS, Bhattacharya D. Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Curr Biol 2013;23:R865-6. [PMID: 24112977 DOI: 10.1016/j.cub.2013.08.046] [Cited by in Crossref: 58] [Cited by in F6Publishing: 42] [Article Influence: 7.3] [Reference Citation Analysis]
16 Chan CX, Zäuner S, Wheeler G, Grossman AR, Prochnik SE, Blouin NA, Zhuang Y, Benning C, Berg GM, Yarish C, Eriksen RL, Klein AS, Lin S, Levine I, Brawley SH, Bhattacharya D. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol 2012;158:2001-12. [PMID: 22337920 DOI: 10.1104/pp.112.193896] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
17 Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour Technol 2019;278:424-34. [PMID: 30685131 DOI: 10.1016/j.biortech.2019.01.063] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 11.3] [Reference Citation Analysis]
18 Rider SD Jr, Zhu G. An apicomplexan ankyrin-repeat histone deacetylase with relatives in photosynthetic eukaryotes. Int J Parasitol 2009;39:747-54. [PMID: 19136004 DOI: 10.1016/j.ijpara.2008.11.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
19 Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 2008;25:2653-67. [PMID: 18799712 DOI: 10.1093/molbev/msn206] [Cited by in Crossref: 103] [Cited by in F6Publishing: 99] [Article Influence: 7.4] [Reference Citation Analysis]
20 Baharum H, Chu WC, Teo SS, Ng KY, Rahim RA, Ho CL. Molecular cloning, homology modeling and site-directed mutagenesis of vanadium-dependent bromoperoxidase (GcVBPO1) from Gracilaria changii (Rhodophyta). Phytochemistry 2013;92:49-59. [PMID: 23684235 DOI: 10.1016/j.phytochem.2013.04.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
21 Moriyama T, Mori N, Nagata N, Sato N. Selective loss of photosystem I and formation of tubular thylakoids in heterotrophically grown red alga Cyanidioschyzon merolae. Photosynth Res 2019;140:275-87. [PMID: 30415289 DOI: 10.1007/s11120-018-0603-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Waller RF, Patron NJ, Keeling PJ. Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Microbiol 2006;56:1439-47. [PMID: 16738125 DOI: 10.1099/ijs.0.64061-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.7] [Reference Citation Analysis]
23 Lapidot M, Shrestha RP, Weinstein Y, Arad S. Red Microalgae: From Basic Know-How to Biotechnology. In: Seckbach J, Chapman DJ, editors. Red Algae in the Genomic Age. Dordrecht: Springer Netherlands; 2010. pp. 205-25. [DOI: 10.1007/978-90-481-3795-4_11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
24 Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021;:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Reference Citation Analysis]
25 Kim J, Smith JJ, Tian L, Dellapenna D. The Evolution and Function of Carotenoid Hydroxylases in Arabidopsis. Plant and Cell Physiology 2009;50:463-79. [DOI: 10.1093/pcp/pcp005] [Cited by in Crossref: 122] [Cited by in F6Publishing: 112] [Article Influence: 9.4] [Reference Citation Analysis]
26 Seckbach J. Overview on Cyanidian Biology. In: Seckbach J, Chapman DJ, editors. Red Algae in the Genomic Age. Dordrecht: Springer Netherlands; 2010. pp. 345-56. [DOI: 10.1007/978-90-481-3795-4_18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
27 Chan CX, Reyes-Prieto A, Bhattacharya D. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution. PLoS One 2011;6:e29138. [PMID: 22195008 DOI: 10.1371/journal.pone.0029138] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
28 Pancha I, Takaya K, Tanaka K, Imamura S. The Unicellular Red Alga Cyanidioschyzon merolae, an Excellent Model Organism for Elucidating Fundamental Molecular Mechanisms and Their Applications in Biofuel Production. Plants (Basel) 2021;10:1218. [PMID: 34203949 DOI: 10.3390/plants10061218] [Reference Citation Analysis]
29 Bannerman BP, Kramer S, Dorrell RG, Carrington M. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One 2018;13:e0192633. [PMID: 29561870 DOI: 10.1371/journal.pone.0192633] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
30 Curien G, Lyska D, Guglielmino E, Westhoff P, Janetzko J, Tardif M, Hallopeau C, Brugière S, Dal Bo D, Decelle J, Gallet B, Falconet D, Carone M, Remacle C, Ferro M, Weber APM, Finazzi G. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism. New Phytol 2021;231:326-38. [PMID: 33764540 DOI: 10.1111/nph.17359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Hsieh CJ, Zhan SH, Lin Y, Tang SL, Liu SL. Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales). J Phycol 2015;51:682-94. [PMID: 26986790 DOI: 10.1111/jpy.12310] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
32 Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 2008;3:e1426. [PMID: 18183306 DOI: 10.1371/journal.pone.0001426] [Cited by in Crossref: 293] [Cited by in F6Publishing: 259] [Article Influence: 20.9] [Reference Citation Analysis]
33 Cui H, Yu X, Wang Y, Cui Y, Li X, Liu Z, Qin S. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genomics 2013;14:457. [PMID: 23834441 DOI: 10.1186/1471-2164-14-457] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
34 Jinkerson RE, Subramanian V, Posewitz MC. Improving biofuel production in phototrophic microorganisms with systems biology. Biofuels 2014;2:125-44. [DOI: 10.4155/bfs.11.7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
35 Morales-sánchez D, Martinez-rodriguez OA, Kyndt J, Martinez A. Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol 2015;31:1-9. [DOI: 10.1007/s11274-014-1773-2] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 7.9] [Reference Citation Analysis]
36 Ulvskov P, Paiva DS, Domozych D, Harholt J. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLoS One 2013;8:e76511. [PMID: 24146880 DOI: 10.1371/journal.pone.0076511] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
37 Weber AP, Horst RJ, Barbier GG, Oesterhelt C. Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol 2007;256:1-34. [PMID: 17241903 DOI: 10.1016/S0074-7696(07)56001-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
38 Wu M, Comeron JM, Yoon HS, Bhattacharya D. Unexpected dynamic gene family evolution in algal actins. Mol Biol Evol 2009;26:249-53. [PMID: 19008527 DOI: 10.1093/molbev/msn263] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
39 Lehr CR, Frank SD, Norris TB, D'imperio S, Kalinin AV, Toplin JA, Castenholz RW, Mcdermott TR. CYANIDIA (CYANIDIALES) POPULATION DIVERSITY AND DYNAMICS IN AN ACID-SULFATE-CHLORIDE SPRING IN YELLOWSTONE NATIONAL PARK. Journal of Phycology 2007;43:3-14. [DOI: 10.1111/j.1529-8817.2006.00293.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
40 Schilling S, Oesterhelt C. Structurally reduced monosaccharide transporters in an evolutionarily conserved red alga. Biochem J 2007;406:325-31. [PMID: 17497961 DOI: 10.1042/BJ20070448] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
41 Liu SL, Chiang YR, Yoon HS, Fu HY. Comparative Genome Analysis Reveals Cyanidiococcus gen. nov., A New Extremophilic Red Algal Genus Sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta). J Phycol 2020;56:1428-42. [PMID: 33460076 DOI: 10.1111/jpy.13056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LG, Rensing SA, Kersten B, Mueller-Roeber B. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 2010;38:D822-7. [PMID: 19858103 DOI: 10.1093/nar/gkp805] [Cited by in Crossref: 437] [Cited by in F6Publishing: 398] [Article Influence: 33.6] [Reference Citation Analysis]
43 Wang Z, Lu C, Chen J, Luo Q, Yang R, Gu D, Wang T, Zhang P, Chen H. Physiological and multi-omics responses of Neoporphyra haitanensis to dehydration-rehydration cycles. BMC Plant Biol 2022;22:168. [PMID: 35369869 DOI: 10.1186/s12870-022-03547-3] [Reference Citation Analysis]
44 Fujiwara T, Hirooka S, Mukai M, Ohbayashi R, Kanesaki Y, Watanabe S, Miyagishima SY. Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae. Plant Direct 2019;3:e00134. [PMID: 31245772 DOI: 10.1002/pld3.134] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
45 Müller KM, Lynch MDJ, Sheath RG. Bangiophytes: From one Class to Six; Where Do We Go from Here? In: Seckbach J, Chapman DJ, editors. Red Algae in the Genomic Age. Dordrecht: Springer Netherlands; 2010. pp. 241-59. [DOI: 10.1007/978-90-481-3795-4_13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
46 Maumus F, Rabinowicz P, Bowler C, Rivarola M. Stemming epigenetics in marine stramenopiles. Curr Genomics 2011;12:357-70. [PMID: 22294878 DOI: 10.2174/138920211796429727] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
47 Sun M, Zhu Z, Chen J, Yang R, Luo Q, Wu W, Yan X, Chen H. Putative trehalose biosynthesis proteins function as differential floridoside-6-phosphate synthases to participate in the abiotic stress response in the red alga Pyropia haitanensis. BMC Plant Biol 2019;19:325. [PMID: 31324146 DOI: 10.1186/s12870-019-1928-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
48 Banihashemi F, Ibrahim AFM, Deng S, Lin JYS. Pyrolysis and Gasification Characteristics of Galdieria sulphuraria Microalgae. Bioenerg Res . [DOI: 10.1007/s12155-022-10449-7] [Reference Citation Analysis]
49 Kapraun DF, Freshwater DW. Estimates of nuclear DNA content in red algal lineages. AoB Plants 2012;2012:pls005. [PMID: 22479676 DOI: 10.1093/aobpla/pls005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
50 Yoon HS, Ciniglia C, Wu M, Comeron JM, Pinto G, Pollio A, Bhattacharya D. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol Biol 2006;6:78. [PMID: 17022817 DOI: 10.1186/1471-2148-6-78] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
51 Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 2006;16:2320-5. [PMID: 17141613 DOI: 10.1016/j.cub.2006.09.063] [Cited by in Crossref: 82] [Cited by in F6Publishing: 71] [Article Influence: 5.5] [Reference Citation Analysis]
52 Ghoshroy S, Binder M, Tartar A, Robertson DL. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution. BMC Evol Biol 2010;10:198. [PMID: 20579371 DOI: 10.1186/1471-2148-10-198] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
53 Ho CL. Comparative genomics reveals differences in algal galactan biosynthesis and related pathways in early and late diverging red algae. Genomics 2020;112:1536-44. [PMID: 31494197 DOI: 10.1016/j.ygeno.2019.09.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Pade N, Linka N, Ruth W, Weber APM, Hagemann M. Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytol 2015;205:1227-38. [PMID: 25323590 DOI: 10.1111/nph.13108] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
55 Foflonker F, Ananyev G, Qiu H, Morrison A, Palenik B, Dismukes GC, Bhattacharya D. The unexpected extremophile: Tolerance to fluctuating salinity in the green alga Picochlorum. Algal Research 2016;16:465-72. [DOI: 10.1016/j.algal.2016.04.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
56 Sturm S, Engelken J, Gruber A, Vugrinec S, Kroth PG, Adamska I, Lavaud J. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 2013;13:159. [PMID: 23899289 DOI: 10.1186/1471-2148-13-159] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
57 Pancha I, Shima H, Higashitani N, Igarashi K, Higashitani A, Tanaka K, Imamura S. Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae. Plant J 2019;97:485-99. [DOI: 10.1111/tpj.14136] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
58 Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2019;37:193-222. [PMID: 30500354 DOI: 10.1016/j.biotechadv.2018.11.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
59 Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. Front Plant Sci 2012;3:22. [PMID: 22639641 DOI: 10.3389/fpls.2012.00022] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 7.4] [Reference Citation Analysis]
60 Thangaraj B, Jolley CC, Sarrou I, Bultema JB, Greyslak J, Whitelegge JP, Lin S, Kouřil R, Subramanyam R, Boekema EJ, Fromme P. Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys J 2011;100:135-43. [PMID: 21190665 DOI: 10.1016/j.bpj.2010.09.069] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
61 Deng Y, Wang Q, Cao T, Zheng H, Ge Z, Yang L, Lu S. Cloning and functional characterization of the bona fide geranylgeranyl diphosphate synthase from the red algal seaweed Bangia fuscopurpurea. Algal Research 2020;48:101935. [DOI: 10.1016/j.algal.2020.101935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances 2011;29:483-501. [DOI: 10.1016/j.biotechadv.2011.05.016] [Cited by in Crossref: 303] [Cited by in F6Publishing: 213] [Article Influence: 27.5] [Reference Citation Analysis]
63 Vanselow C, Weber AP, Krause K, Fromme P. Genetic analysis of the Photosystem I subunits from the red alga, Galdieria sulphuraria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2009;1787:46-59. [DOI: 10.1016/j.bbabio.2008.10.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.0] [Reference Citation Analysis]
64 Crichton PG, Lee Y, Ruprecht JJ, Cerson E, Thangaratnarajah C, King MS, Kunji ER. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J Biol Chem 2015;290:8206-17. [PMID: 25653283 DOI: 10.1074/jbc.M114.616607] [Cited by in Crossref: 45] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
65 Oesterhelt C, Schmälzlin E, Schmitt JM, Lokstein H. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J 2007;51:500-11. [PMID: 17587234 DOI: 10.1111/j.1365-313X.2007.03159.x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
66 Hu J, Nagarajan D, Zhang Q, Chang J, Lee D. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances 2018;36:54-67. [DOI: 10.1016/j.biotechadv.2017.09.009] [Cited by in Crossref: 132] [Cited by in F6Publishing: 80] [Article Influence: 33.0] [Reference Citation Analysis]
67 Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS. Genome of the red alga Porphyridium purpureum. Nat Commun 2013;4:1941. [PMID: 23770768 DOI: 10.1038/ncomms2931] [Cited by in Crossref: 152] [Cited by in F6Publishing: 117] [Article Influence: 16.9] [Reference Citation Analysis]
68 Pleissner D, Lindner AV, Händel N. Heterotrophic cultivation of Galdieria sulphuraria under non-sterile conditions in digestate and hydrolyzed straw. Bioresour Technol 2021;337:125477. [PMID: 34320757 DOI: 10.1016/j.biortech.2021.125477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
69 Novis PM, Harding JS. Extreme Acidophiles. In: Seckbach J, editor. Algae and Cyanobacteria in Extreme Environments. Dordrecht: Springer Netherlands; 2007. pp. 443-63. [DOI: 10.1007/978-1-4020-6112-7_24] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
70 Macrae E, Lunn JE. Photosynthetic Sucrose Biosynthesis: An Evolutionary Perspective. In: Eaton-rye JJ, Tripathy BC, Sharkey TD, editors. Photosynthesis. Dordrecht: Springer Netherlands; 2012. pp. 675-702. [DOI: 10.1007/978-94-007-1579-0_27] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
71 Tirichine L, Bowler C. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J 2011;66:45-57. [PMID: 21443622 DOI: 10.1111/j.1365-313X.2011.04540.x] [Cited by in Crossref: 99] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
72 A.d. Neilson J, Rangsrikitphoti P, Durnford DG. Evolution and regulation of Bigelowiella natans light-harvesting antenna system. Journal of Plant Physiology 2017;217:68-76. [DOI: 10.1016/j.jplph.2017.05.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
73 Fanous A, Hecker M, Görg A, Parlar H, Jacob F. Corynebacterium glutamicum as an indicator for environmental cobalt and silver stress–A proteome analysis. Journal of Environmental Science and Health, Part B 2010;45:666-75. [DOI: 10.1080/03601234.2010.502442] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
74 Jain K, Krause K, Grewe F, Nelson GF, Weber AP, Christensen AC, Mower JP. Extreme features of the Galdieria sulphuraria organellar genomes: a consequence of polyextremophily? Genome Biol Evol 2014;7:367-80. [PMID: 25552531 DOI: 10.1093/gbe/evu290] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
75 Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 2012;36:761-85. [DOI: 10.1111/j.1574-6976.2011.00304.x] [Cited by in Crossref: 95] [Cited by in F6Publishing: 79] [Article Influence: 9.5] [Reference Citation Analysis]
76 Li WY, Wang X, Li R, Li WQ, Chen KM. Genome-wide analysis of the NADK gene family in plants. PLoS One 2014;9:e101051. [PMID: 24968225 DOI: 10.1371/journal.pone.0101051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
77 Lang I, Bashir S, Lorenz M, Rader S, Weber G. Exploiting the potential of Cyanidiales as a valuable resource for biotechnological applications. Applied Phycology. [DOI: 10.1080/26388081.2020.1765702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Cadoret J, Garnier M, Saint-jean B. Microalgae, Functional Genomics and Biotechnology. Genomic Insights into the Biology of Algae. Elsevier; 2012. pp. 285-341. [DOI: 10.1016/b978-0-12-391499-6.00008-6] [Cited by in Crossref: 44] [Article Influence: 4.4] [Reference Citation Analysis]
79 Facchinelli F, Weber AP. The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2011;2:50. [PMID: 22645538 DOI: 10.3389/fpls.2011.00050] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 4.5] [Reference Citation Analysis]
80 Deschamps P, Moreau H, Worden AZ, Dauvillée D, Ball SG. Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 2008;178:2373-87. [PMID: 18245855 DOI: 10.1534/genetics.108.087205] [Cited by in F6Publishing: 52] [Reference Citation Analysis]
81 Chan CX, Blouin NA, Zhuang Y, Zäuner S, Prochnik SE, Lindquist E, Lin S, Benning C, Lohr M, Yarish C, Gantt E, Grossman AR, Lu S, Müller K, W. Stiller J, Brawley SH, Bhattacharya D. Porphyra (Bangiophyceae) Transcriptomes Provide Insights Into Red Algal Development And Metabolism. J Phycol 2012;48:1328-42. [DOI: 10.1111/j.1529-8817.2012.01229.x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
82 Lee J, Ghosh S, Saier MH Jr. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae11. J Phycol 2017;53:503-21. [PMID: 28328149 DOI: 10.1111/jpy.12534] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
83 De Clerck O, Bogaert KA, Leliaert F. Diversity and Evolution of Algae. Genomic Insights into the Biology of Algae. Elsevier; 2012. pp. 55-86. [DOI: 10.1016/b978-0-12-391499-6.00002-5] [Cited by in Crossref: 43] [Article Influence: 4.3] [Reference Citation Analysis]
84 Gruber A, Weber T, Bártulos CR, Vugrinec S, Kroth PG. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms. J Basic Microbiol 2009;49:58-72. [PMID: 19206144 DOI: 10.1002/jobm.200800339] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
85 Thangaraj B, Ryan CM, Souda P, Krause K, Faull KF, Weber AP, Fromme P, Whitelegge JP. Data-directed top-down Fourier-transform mass spectrometry of a large integral membrane protein complex: photosystem II from Galdieria sulphuraria. Proteomics 2010;10:3644-56. [PMID: 20845333 DOI: 10.1002/pmic.201000190] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
86 Maréchal E. Grand Challenges in Microalgae Domestication. Front Plant Sci 2021;12:764573. [PMID: 34630500 DOI: 10.3389/fpls.2021.764573] [Reference Citation Analysis]
87 Weber AP, Fischer K. Making the connections--the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 2007;581:2215-22. [PMID: 17316618 DOI: 10.1016/j.febslet.2007.02.010] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 3.2] [Reference Citation Analysis]
88 Blank CE, Lin S. Phylogenetic distribution of compatible solute synthesis genes support a freshwater origin for cyanobacteria. J Phycol 2013;49:880-95. [DOI: 10.1111/jpy.12098] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
89 Kim E, Archibald JM. Diversity and Evolution of Plastids and Their Genomes. In: Sandelius AS, Aronsson H, editors. The Chloroplast. Berlin: Springer Berlin Heidelberg; 2009. pp. 1-39. [DOI: 10.1007/978-3-540-68696-5_1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
90 Lohr M, Schwender J, Polle JE. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Science 2012;185-186:9-22. [DOI: 10.1016/j.plantsci.2011.07.018] [Cited by in Crossref: 126] [Cited by in F6Publishing: 109] [Article Influence: 12.6] [Reference Citation Analysis]
91 Lykidis A, Ivanova N. Genomic Prospecting for Microbial Biodiesel Production. In: Wall JD, Harwood CS, Demain A, editors. Bioenergy. Washington: ASM Press; 2008. pp. 405-18. [DOI: 10.1128/9781555815547.ch31] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Qiu H, Rossoni AW, Weber APM, Yoon HS, Bhattacharya D. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria. BMC Evol Biol 2018;18:41. [PMID: 29606099 DOI: 10.1186/s12862-018-1161-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
93 Chang L, Sui Z, Fu F, Zhou W, Wang J, Kang KH, Zhang S, Ma J. Relationship between gene expression of UDP-glucose pyrophosphorylase and agar yield in Gracilariopsis lemaneiformis (Rhodophyta). J Appl Phycol 2014;26:2435-41. [DOI: 10.1007/s10811-014-0277-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
94 Sutherland DL, Burke J, Ralph PJ. High-throughput screening for heterotrophic growth in microalgae using the Biolog Plate assay. N Biotechnol 2021:S1871-6784(21)00075-3. [PMID: 34384916 DOI: 10.1016/j.nbt.2021.08.001] [Reference Citation Analysis]
95 Jong LW, Fujiwara T, Hirooka S, Miyagishima SY. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. Protoplasma 2021. [PMID: 33675395 DOI: 10.1007/s00709-021-01628-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 2007;144:32-42. [PMID: 17351049 DOI: 10.1104/pp.107.096677] [Cited by in Crossref: 241] [Cited by in F6Publishing: 228] [Article Influence: 16.1] [Reference Citation Analysis]
97 Tegeder M, Ward JM. Molecular Evolution of Plant AAP and LHT Amino Acid Transporters. Front Plant Sci 2012;3:21. [PMID: 22645574 DOI: 10.3389/fpls.2012.00021] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 5.9] [Reference Citation Analysis]
98 Moriyama T, Sakurai K, Sekine K, Sato N. Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta 2014;240:585-98. [PMID: 25009310 DOI: 10.1007/s00425-014-2108-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
99 Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman FA, Li H, Merchant SS. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynth Res 2010;106:3-17. [PMID: 20490922 DOI: 10.1007/s11120-010-9555-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 2.8] [Reference Citation Analysis]
100 Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T. A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 2007;5:28. [PMID: 17623057 DOI: 10.1186/1741-7007-5-28] [Cited by in Crossref: 209] [Cited by in F6Publishing: 150] [Article Influence: 13.9] [Reference Citation Analysis]
101 Cunningham FX Jr, Lee H, Gantt E. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell 2007;6:533-45. [PMID: 17085635 DOI: 10.1128/EC.00265-06] [Cited by in Crossref: 59] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
102 Ball SG. Eukaryotic microalgae genomics. The essence of being a plant. Plant Physiol 2005;137:397-8. [PMID: 15710680 DOI: 10.1104/pp.104.900136] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
103 Gachon CM, Day JG, Campbell CN, Pröschold T, Saxon RJ, Küpper FC. The Culture Collection of Algae and Protozoa (CCAP): a biological resource for protistan genomics. Gene 2007;406:51-7. [PMID: 17614217 DOI: 10.1016/j.gene.2007.05.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
104 Yoon HS, Muller KM, Sheath RG, Ott FD, Bhattacharya D. DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA)1. J Phycol 2006;42:482-92. [DOI: 10.1111/j.1529-8817.2006.00210.x] [Cited by in Crossref: 192] [Cited by in F6Publishing: 107] [Article Influence: 12.0] [Reference Citation Analysis]
105 Wang H, Zhang Z, Wan M, Wang R, Huang J, Zhang K, Guo J, Bai W, Li Y. Comparative study on light attenuation models of Galdieria sulphuraria for efficient production of phycocyanin. J Appl Phycol 2020;32:165-74. [DOI: 10.1007/s10811-019-01982-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
106 Shimonaga T, Fujiwara S, Kaneko M, Izumo A, Nihei S, Francisco PB Jr, Satoh A, Fujita N, Nakamura Y, Tsuzuki M. Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol (NY) 2007;9:192-202. [PMID: 17160635 DOI: 10.1007/s10126-006-6104-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
107 Hackett JD, Su Yoon H, Butterfield NJ, Sanderson MJ, Bhattacharya D. Plastid Endosymbiosis: Sources and Timing of the Major Events. Evolution of Primary Producers in the Sea. Elsevier; 2007. pp. 109-32. [DOI: 10.1016/b978-012370518-1/50008-4] [Cited by in Crossref: 19] [Article Influence: 1.3] [Reference Citation Analysis]
108 Oesterhelt C, Vogelbein S, Shrestha RP, Stanke M, Weber AP. The genome of the thermoacidophilic red microalga Galdieria sulphuraria encodes a small family of secreted class III peroxidases that might be involved in cell wall modification. Planta 2008;227:353-62. [PMID: 17899175 DOI: 10.1007/s00425-007-0622-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
109 Linka M, Jamai A, Weber AP. Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol 2008;148:1487-96. [PMID: 18799657 DOI: 10.1104/pp.108.129478] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
110 Reeb V, Bhattacharya D. The Thermo-Acidophilic Cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman DJ, editors. Red Algae in the Genomic Age. Dordrecht: Springer Netherlands; 2010. pp. 409-26. [DOI: 10.1007/978-90-481-3795-4_22] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
111 Lee WK, Ho CL. Ecological and evolutionary diversification of sulphated polysaccharides in diverse photosynthetic lineages: A review. Carbohydr Polym 2022;277:118764. [PMID: 34893214 DOI: 10.1016/j.carbpol.2021.118764] [Reference Citation Analysis]
112 Gulick P, Neilson JA, Durnford DG. Evolutionary distribution of light-harvesting complex-like proteins in photosynthetic eukaryotes. Genome 2010;53:68-78. [DOI: 10.1139/g09-081] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
113 Moriyama T, Mori N, Sato N. Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. Springerplus 2015;4:559. [PMID: 26435905 DOI: 10.1186/s40064-015-1365-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]