BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993;7:1126-32. [PMID: 8319905 DOI: 10.1101/gad.7.7a.1126] [Cited by in Crossref: 1257] [Cited by in F6Publishing: 1366] [Article Influence: 41.9] [Reference Citation Analysis]
Number Citing Articles
1 Hu H, Zhao K, Fang D, Wang Z, Yu N, Yao B, Liu K, Wang F, Mei Y. The RNA binding protein RALY suppresses p53 activity and promotes lung tumorigenesis. Cell Rep 2023;42:112288. [PMID: 36952348 DOI: 10.1016/j.celrep.2023.112288] [Reference Citation Analysis]
2 Resnick-Silverman L, Zhou R, Campbell MJ, Leibling I, Parsons R, Manfredi JJ. In vivo RNA-seq and ChIP-seq analyses show an obligatory role for the C terminus of p53 in conferring tissue-specific radiation sensitivity. Cell Rep 2023;42:112216. [PMID: 36924496 DOI: 10.1016/j.celrep.2023.112216] [Reference Citation Analysis]
3 Luo J, Zhao H, Chen L, Liu M. Multifaceted functions of RPS27a: An unconventional ribosomal protein. J Cell Physiol 2023;238:485-97. [PMID: 36580426 DOI: 10.1002/jcp.30941] [Reference Citation Analysis]
4 Kaller M, Shi W, Hermeking H. c-MYC-Induced AP4 Attenuates DREAM-Mediated Repression by p53. Cancers (Basel) 2023;15. [PMID: 36831504 DOI: 10.3390/cancers15041162] [Reference Citation Analysis]
5 Li SY, Yoshida Y, Kubota M, Zhang BS, Matsutani T, Ito M, Yajima S, Yoshida K, Mine S, Machida T, Hayashi A, Takemoto M, Yokote K, Ohno M, Nishi E, Kitamura K, Kamitsukasa I, Takizawa H, Sata M, Yamagishi K, Iso H, Sawada N, Tsugane S, Iwase K, Shimada H, Iwadate Y, Hiwasa T. Utility of atherosclerosis-associated serum antibodies against colony-stimulating factor 2 in predicting the onset of acute ischemic stroke and prognosis of colorectal cancer. Front Cardiovasc Med 2023;10:1042272. [PMID: 36844744 DOI: 10.3389/fcvm.2023.1042272] [Reference Citation Analysis]
6 Pant V, Sun C, Lozano G. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ 2023. [PMID: 36755072 DOI: 10.1038/s41418-023-01123-2] [Reference Citation Analysis]
7 Wu HH, Leng S, Abuetabh Y, Sergi C, Eisenstat DD, Leng R. The SWIB/MDM2 motif of UBE4B activates the p53 pathway. Mol Ther Nucleic Acids 2023;31:466-81. [PMID: 36865087 DOI: 10.1016/j.omtn.2023.02.002] [Reference Citation Analysis]
8 Breault NM, Wu D, Dasgupta A, Chen KH, Archer SL. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. Front Cell Dev Biol 2023;11:1105565. [PMID: 36819102 DOI: 10.3389/fcell.2023.1105565] [Reference Citation Analysis]
9 R HC, Kumar S U, R G, Naayanan PJ, Sathiyarajeswaren P, Devi MSS, K SS, Doss C GP. An integrated investigation of structural and pathway alteration caused by PIK3CA and TP53 mutations identified in cfDNA of metastatic breast cancer. J Cell Biochem 2023;124:188-204. [PMID: 36563059 DOI: 10.1002/jcb.30354] [Reference Citation Analysis]
10 Murotomi K, Kagiwada H, Hirano K, Yamamoto S, Numata N, Matsumoto Y, Kaneko H, Namihira M. Cyclo-glycylproline attenuates hydrogen peroxide-induced cellular damage mediated by the MDM2-p53 pathway in human neural stem cells. J Cell Physiol 2023;238:434-46. [PMID: 36585955 DOI: 10.1002/jcp.30940] [Reference Citation Analysis]
11 Ivanenkov YA, Kukushkin ME, Beloglazkina AA, Shafikov RR, Barashkin AA, Ayginin AA, Serebryakova MS, Majouga AG, Skvortsov DA, Tafeenko VA, Beloglazkina EK. Synthesis and Biological Evaluation of Novel Dispiro-Indolinones with Anticancer Activity. Molecules 2023;28. [PMID: 36770991 DOI: 10.3390/molecules28031325] [Reference Citation Analysis]
12 Pérez-Rodríguez D, Penedo MA, Rivera-Baltanás T, Peña-Centeno T, Burkhardt S, Fischer A, Prieto-González JM, Olivares JM, López-Fernández H, Agís-Balboa RC. MiRNA Differences Related to Treatment-Resistant Schizophrenia. Int J Mol Sci 2023;24. [PMID: 36768211 DOI: 10.3390/ijms24031891] [Reference Citation Analysis]
13 Fuochi V, Spampinato M, Distefano A, Palmigiano A, Garozzo D, Zagni C, Rescifina A, Li Volti G, Furneri PM. Soluble peptidoglycan fragments produced by Limosilactobacillus fermentum with antiproliferative activity are suitable for potential therapeutic development: A preliminary report. Front Mol Biosci 2023;10:1082526. [PMID: 36876040 DOI: 10.3389/fmolb.2023.1082526] [Reference Citation Analysis]
14 Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022;16. [PMID: 36678521 DOI: 10.3390/ph16010024] [Reference Citation Analysis]
15 Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022;123:1891-937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Reference Citation Analysis]
16 Merchant N, Bandaru SS, Alam A, Bhaskar L. The correlation between MDM2 SNP309 T > G polymorphism and hepatocellular carcinoma risk – A meta-analysis. Human Gene 2022;34:201087. [DOI: 10.1016/j.humgen.2022.201087] [Reference Citation Analysis]
17 Hong F, Lin CY, Yan J, Dong Y, Ouyang Y, Kim D, Zhang X, Liu B, Sun S, Gu W, Li Z. Canopy Homolog 2 contributes to liver oncogenesis by promoting unfolded protein response-dependent destabilization of tumor protein P53. Hepatology 2022;76:1587-601. [PMID: 34986508 DOI: 10.1002/hep.32318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Rodriguez-Ramirez C, Zhang Z, Warner KA, Herzog AE, Mantesso A, Zhang Z, Yoon E, Wang S, Wicha MS, Nör JE. p53 Inhibits Bmi-1-driven Self-Renewal and Defines Salivary Gland Cancer Stemness. Clin Cancer Res 2022;28:4757-70. [PMID: 36048559 DOI: 10.1158/1078-0432.CCR-22-1357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Sun T, Zhao Z. Teaching dynamic mechanisms in signaling pathways using computational simulations. Education for Chemical Engineers 2022. [DOI: 10.1016/j.ece.2022.11.002] [Reference Citation Analysis]
20 Zhai F, Wang J, Yang W, Ye M, Jin X. The E3 Ligases in Cervical Cancer and Endometrial Cancer. Cancers 2022;14:5354. [DOI: 10.3390/cancers14215354] [Reference Citation Analysis]
21 Abuetabh Y, Wu HH, Chai C, Al Yousef H, Persad S, Sergi CM, Leng R. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med 2022;54:1658-69. [PMID: 36207426 DOI: 10.1038/s12276-022-00863-4] [Reference Citation Analysis]
22 Yao T, Xiao H, Wang H, Xu X. Recent Advances in PROTACs for Drug Targeted Protein Research. IJMS 2022;23:10328. [DOI: 10.3390/ijms231810328] [Reference Citation Analysis]
23 Wang M, Yang Z, Song Y, Wei P, Ishiwme N, Wang L, Zhang H, Jing M, Gao M, Wen L, Zhang Y. Proteasomal and autophagy-mediated degradation of mutp53 proteins through mitochondria-targeting aggregation-induced-emission materials. Acta Biomater 2022:S1742-7061(22)00458-5. [PMID: 35931280 DOI: 10.1016/j.actbio.2022.07.057] [Reference Citation Analysis]
24 Li L, Li P, Ma X, Zeng S, Peng Y, Zhang G. Therapeutic restoring p53 function with small molecule for oncogene-driven non-small cell lung cancer by targeting serine 392 phosphorylation. Biochem Pharmacol 2022;203:115188. [PMID: 35902040 DOI: 10.1016/j.bcp.2022.115188] [Reference Citation Analysis]
25 Oyedele AK, Adelusi TI, Ogunlana AT, Ayoola MA, Adeyemi RO, Babalola MO, Ayorinde JB, Isong JA, Ajasa TO, Boyenle ID. Promising disruptors of p53-MDM2 dimerization from some medicinal plant phytochemicals: a molecular modeling study. J Biomol Struct Dyn 2022;:1-10. [PMID: 35822492 DOI: 10.1080/07391102.2022.2097313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ananthapadmanabhan V, Frost TC, Soroko KM, Knott A, Magliozzi BJ, Gokhale PC, Tirunagaru VG, Doebele RC, DeCaprio JA. Milademetan is a highly potent MDM2 inhibitor in Merkel cell carcinoma. JCI Insight 2022;7:e160513. [PMID: 35801592 DOI: 10.1172/jci.insight.160513] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Corrigan AN, Lemkul JA. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. J Phys Chem B 2022;126:4814-27. [PMID: 35749260 DOI: 10.1021/acs.jpcb.2c02268] [Reference Citation Analysis]
28 Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Reference Citation Analysis]
29 Odell AF, Mannion AJ, Jones PF, Cook GP. Negative regulation of p53 by the poliovirus receptor PVR is a target of a human cytomegalovirus immune evasion molecule.. [DOI: 10.1101/2022.07.04.498680] [Reference Citation Analysis]
30 Sturmlechner I, Sine CC, Jeganathan KB, Zhang C, Fierro Velasco RO, Baker DJ, Li H, van Deursen JM. Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nat Commun 2022;13:3722. [PMID: 35764649 DOI: 10.1038/s41467-022-31239-x] [Reference Citation Analysis]
31 Han T, Tong J, Wang M, Gan Y, Gao B, Chen J, Liu Y, Hao Q, Zhou X. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol 2022;12:821366. [PMID: 35719981 DOI: 10.3389/fonc.2022.821366] [Reference Citation Analysis]
32 Wang S, Chen F. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. European Journal of Medicinal Chemistry 2022;236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
33 Bortot B, Romani A, Ricci G, Biffi S. Exploiting Extracellular Vesicles Strategies to Modulate Cell Death and Inflammation in COVID-19. Front Pharmacol 2022;13:877422. [DOI: 10.3389/fphar.2022.877422] [Reference Citation Analysis]
34 Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 2022;29:972-82. [PMID: 35444234 DOI: 10.1038/s41418-022-00999-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Clark JS, Kayed R, Abate G, Uberti D, Kinnon P, Piccirella S. Post-translational Modifications of the p53 Protein and the Impact in Alzheimer’s Disease: A Review of the Literature. Front Aging Neurosci 2022;14:835288. [DOI: 10.3389/fnagi.2022.835288] [Reference Citation Analysis]
36 Bianco G, Coto-Llerena M, Gallon J, Kancherla V, Taha-Mehlitz S, Marinucci M, Konantz M, Srivatsa S, Montazeri H, Panebianco F, Tirunagaru VG, De Menna M, Paradiso V, Ercan C, Dahmani A, Montaudon E, Beerenwinkel N, Kruithof-de Julio M, Terracciano LM, Lengerke C, Jeselsohn RM, Doebele RC, Bidard FC, Marangoni E, Ng CKY, Piscuoglio S. GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers. Commun Biol 2022;5:373. [PMID: 35440675 DOI: 10.1038/s42003-022-03296-x] [Reference Citation Analysis]
37 Pellegrino NE, Guven A, Gray K, Shah P, Kasture G, Nastke MD, Thakurta A, Gesta S, Vishnudas VK, Narain NR, Kiebish MA. The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022;23:3480. [PMID: 35408841 DOI: 10.3390/ijms23073480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Sidorova OA, Sayed S, Paszkowski-Rogacz M, Seifert M, Camgöz A, Roeder I, Bornhäuser M, Thiede C, Buchholz F. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells 2022;11:854. [PMID: 35269477 DOI: 10.3390/cells11050854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Luan Y, Tang N, Yang J, Liu S, Cheng C, Wang Y, Chen C, Guo YN, Wang H, Zhao W, Zhao Q, Li W, Xiang M, Ju R, Xie Z. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells. Nucleic Acids Res 2022:gkac053. [PMID: 35137207 DOI: 10.1093/nar/gkac053] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Li X, Niu Z, Sun C, Zhuo S, Yang H, Yang X, Liu Y, Yan C, Li Z, Cao Q, Ji G, Ding Y, Zhuang T, Zhu J. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death Dis 2022;13:149. [DOI: 10.1038/s41419-022-04604-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 He S, Dong G, Cheng J, Wu Y, Sheng C. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev 2022. [PMID: 35001407 DOI: 10.1002/med.21877] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
42 Jiang H, Luo J, Lei H. The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022;:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
43 Cheng CP, Liu ST, Chiu YL, Huang SM, Ho CL. The Inhibitory Effects of 6-Thioguanine and 6-Mercaptopurine on the USP2a Target Fatty Acid Synthase in Human Submaxillary Carcinoma Cells. Front Oncol 2021;11:749661. [PMID: 34956872 DOI: 10.3389/fonc.2021.749661] [Reference Citation Analysis]
44 Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021;23:48. [PMID: 35008473 DOI: 10.3390/ijms23010048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
45 Kukushkin M, Novotortsev V, Filatov V, Ivanenkov Y, Skvortsov D, Veselov M, Shafikov R, Moiseeva A, Zyk N, Majouga A, Beloglazkina E. Synthesis and Biological Evaluation of S-, O- and Se-Containing Dispirooxindoles. Molecules 2021;26:7645. [PMID: 34946727 DOI: 10.3390/molecules26247645] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
46 Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021;26:53. [PMID: 34911439 DOI: 10.1186/s11658-021-00293-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
47 Abbas R, Larisch S. Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021;10:3465. [PMID: 34943974 DOI: 10.3390/cells10123465] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
48 Kantarci-carsibasi N. Elucidation of Conformational Dynamics of MDM2 and Alterations Induced Upon Inhibitor Binding Using Elastic Network Simulations and Molecular Docking. J Comput Biophys Chem 2021;20:751-763. [DOI: 10.1142/s2737416521500460] [Reference Citation Analysis]
49 Sobhani N, Roviello G, D'Angelo A, Roudi R, Neeli PK, Generali D. p53 Antibodies as a Diagnostic Marker for Cancer: A Meta-Analysis. Molecules 2021;26:6215. [PMID: 34684792 DOI: 10.3390/molecules26206215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
50 Eliaš J, Macnamara CK. Mathematical Modelling of p53 Signalling during DNA Damage Response: A Survey. Int J Mol Sci 2021;22:10590. [PMID: 34638930 DOI: 10.3390/ijms221910590] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Chasov V, Zaripov M, Mirgayazova R, Khadiullina R, Zmievskaya E, Ganeeva I, Valiullina A, Rizvanov A, Bulatov E. Promising New Tools for Targeting p53 Mutant Cancers: Humoral and Cell-Based Immunotherapies. Front Immunol 2021;12:707734. [PMID: 34484205 DOI: 10.3389/fimmu.2021.707734] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
52 Das P, Mattaparthi VSK. Computational Investigation on the MDM2-Idasanutlin Interaction Using the Potential of Mean Force Method. CCB 2021;15:262-270. [DOI: 10.2174/2212796815666210716151211] [Reference Citation Analysis]
53 Willms A, Schupp H, Poelker M, Adawy A, Debus JF, Hartwig T, Krichel T, Fritsch J, Singh S, Walczak H, von Karstedt S, Schäfer H, Trauzold A. TRAIL-receptor 2-a novel negative regulator of p53. Cell Death Dis 2021;12:757. [PMID: 34333527 DOI: 10.1038/s41419-021-04048-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Chen Y, Hao Q, Wang S, Cao M, Huang Y, Weng X, Wang J, Zhang Z, He X, Lu H, Zhou X. Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP. Proc Natl Acad Sci U S A 2021;118:e2026813118. [PMID: 34266953 DOI: 10.1073/pnas.2026813118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
55 Huang J, Tian F, Song Y, Cao M, Yan S, Lan X, Cui Y, Cui Y, Cui Y, Jia D, Cai L, Xing Y, Wang X. A feedback circuit comprising EHD1 and 14-3-3ζ sustains β-catenin/c-Myc-mediated aerobic glycolysis and proliferation in non-small cell lung cancer. Cancer Lett 2021;520:12-25. [PMID: 34217785 DOI: 10.1016/j.canlet.2021.06.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Li Y, Cui K, Zhang Q, Li X, Lin X, Tang Y, Prochownik EV, Li Y. FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ 2021;28:2112-25. [PMID: 33568778 DOI: 10.1038/s41418-021-00739-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
57 Moreira J, Almeida J, Saraiva L, Cidade H, Pinto M. Chalcones as Promising Antitumor Agents by Targeting the p53 Pathway: An Overview and New Insights in Drug-Likeness. Molecules 2021;26:3737. [PMID: 34205272 DOI: 10.3390/molecules26123737] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A 2021;118:e2003193118. [PMID: 33468664 DOI: 10.1073/pnas.2003193118] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
59 Martins MB, de Assis Batista F, Marcello MA, Bufalo NE, Peres KC, Morari EC, Soares FA, Vassallo J, Ward LS. Clinical utility of the imunohistochemical co-expression of p53 and MDM2 in thyroid follicular lesions. Ann Diagn Pathol 2021;53:151766. [PMID: 34111705 DOI: 10.1016/j.anndiagpath.2021.151766] [Reference Citation Analysis]
60 Wang X, Yamamoto Y, Imanishi M, Zhang X, Sato M, Sugaya A, Hirose M, Endo S, Natori Y, Moriwaki T, Yamato K, Hyodo I. Enhanced G1 arrest and apoptosis via MDM4/MDM2 double knockdown and MEK inhibition in wild-type TP53 colon and gastric cancer cells with aberrant KRAS signaling. Oncol Lett 2021;22:558. [PMID: 34084225 DOI: 10.3892/ol.2021.12819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Tsabar M, Mock CS, Venkatachalam V, Reyes J, Karhohs KW, Oliver TG, Regev A, Jambhekar A, Lahav G. A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest. Cell Rep 2020;32:107995. [PMID: 32755587 DOI: 10.1016/j.celrep.2020.107995] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
62 Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, Lim TS. Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM215kDa. Mol Immunol 2021;135:191-203. [PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Lim Y, Dorstyn L, Kumar S. The p53-caspase-2 axis in the cell cycle and DNA damage response. Exp Mol Med 2021;53:517-27. [PMID: 33854186 DOI: 10.1038/s12276-021-00590-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
64 Jiang L, Cheng C, Ji W, Wang H, Du Q, Dong X, Shao J, Yu W. LINC01116 promotes the proliferation and invasion of glioma by regulating the microRNA‑744‑5p‑MDM2‑p53 axis. Mol Med Rep 2021;23:366. [PMID: 33760190 DOI: 10.3892/mmr.2021.12005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Fairlie WD, Lee EF. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Int J Mol Sci 2021;22:2841. [PMID: 33799592 DOI: 10.3390/ijms22062841] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
66 Gao C, Chen F. Oscillatory Behaviors of Delayed p53 Regulatory Network with microRNA 192 in DNA Damage Response. Int J Bifurcation Chaos 2021;31:2150020. [DOI: 10.1142/s0218127421500206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021;13:745. [PMID: 33670160 DOI: 10.3390/cancers13040745] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
68 Zhang R, Cui D, Xue T, Lang Y, Zhang Y, Li L, Sun H, Kuang Y, Li G, Tang J. HLA-B-associated transcript 3 (Bat3) stabilizes and activates p53 in a HAUSP-dependent manner. J Mol Cell Biol 2020;12:99-112. [PMID: 31647545 DOI: 10.1093/jmcb/mjz102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Molica M, Mazzone C, Niscola P, de Fabritiis P. TP53 Mutations in Acute Myeloid Leukemia: Still a Daunting Challenge? Front Oncol 2020;10:610820. [PMID: 33628731 DOI: 10.3389/fonc.2020.610820] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
70 Magnussen HM, Huang DT. Identification of a Catalytic Active but Non-Aggregating MDM2 RING Domain Variant. J Mol Biol 2021;433:166807. [PMID: 33450248 DOI: 10.1016/j.jmb.2021.166807] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Tanaka T, Nakano T, Hozumi Y, Martelli AM, Goto K. Regulation of p53 and NF-κB transactivation activities by DGKζ in catalytic activity-dependent and -independent manners. Biochim Biophys Acta Mol Cell Res 2021;1868:118953. [PMID: 33450306 DOI: 10.1016/j.bbamcr.2021.118953] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021;268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
73 Qian B, Qi X, Bai Y, Wu Y. The p53 signaling pathway of the large yellow croaker (Larimichthys crocea) responds to acute cold stress: evidence via spatiotemporal expression analysis of p53, p21, MDM2, IGF-1, Gadd45, Fas, and Akt. PeerJ 2020;8:e10532. [PMID: 33384900 DOI: 10.7717/peerj.10532] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Zhang X. MDM2 inhibitors: Targeting p53-MDM2 interaction to anti-cancer. E3S Web Conf 2021;308:02015. [DOI: 10.1051/e3sconf/202130802015] [Reference Citation Analysis]
75 Fukuzawa K, Tanaka S, Yagi Y, Kurita N, Kawashita N, Takaba K, Honma T. FMO Drug Design Consortium. Recent Advances of the Fragment Molecular Orbital Method 2021. [DOI: 10.1007/978-981-15-9235-5_8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Levine AJ. Spontaneous and inherited TP53 genetic alterations. Oncogene 2021;40:5975-83. [PMID: 34389799 DOI: 10.1038/s41388-021-01991-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
77 Chua CC, Wei AH. Future Developments: Novel Agents. Acute Myeloid Leukemia 2021. [DOI: 10.1007/978-3-030-72676-8_17] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Gao C, Chen F. Dynamics of p53 regulatory network in DNA damage response. Applied Mathematical Modelling 2020;88:701-14. [DOI: 10.1016/j.apm.2020.06.057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
79 Hu Y, Ren S, He Y, Wang L, Chen C, Tang J, Liu W, Yu F. Possible Oncogenic Viruses Associated with Lung Cancer. Onco Targets Ther 2020;13:10651-66. [PMID: 33116642 DOI: 10.2147/OTT.S263976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
80 Nientiedt M, Müller K, Nitschke K, Erben P, Steidler A, Porubsky S, Popovic ZV, Waldbillig F, Mühlbauer J, Kriegmair MC. B-MYB-p53-related relevant regulator for the progression of clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2021;147:129-38. [PMID: 32951068 DOI: 10.1007/s00432-020-03392-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
81 Chen S, Thorne RF, Zhang XD, Wu M, Liu L. Non-coding RNAs, guardians of the p53 galaxy. Semin Cancer Biol 2020:S1044-579X(20)30190-5. [PMID: 32927018 DOI: 10.1016/j.semcancer.2020.09.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
82 Yang N, Sun T, Shen P. Deciphering p53 dynamics and cell fate in DNA damage response using mathematical modeling. GENOME INSTAB DIS 2020;1:265-277. [DOI: 10.1007/s42764-020-00019-6] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
83 Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. Wiley Interdiscip Rev RNA 2021;12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020;10:1389. [PMID: 32850448 DOI: 10.3389/fonc.2020.01389] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
85 Beloglazkina A, Barashkin A, Polyakov V, Kotovsky G, Karpov N, Mefedova S, Zagribelny B, Ivanenkov Y, Kalinina M, Skvortsov D, Tafeenko V, Zyk N, Majouga A, Beloglazkina E. Synthesis and Biological Evaluation of Novel Dispiro Compounds based on 5-Arylidenehydantoins and Isatins as Inhibitors of p53–MDM2 Protein–Protein Interaction. Chem Heterocycl Comp 2020;56:747-55. [DOI: 10.1007/s10593-020-02726-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
86 Huang Q, Chen L, Schonbrunn E, Chen J. MDMX inhibits casein kinase 1α activity and stimulates Wnt signaling. EMBO J 2020;39:e104410. [PMID: 32511789 DOI: 10.15252/embj.2020104410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
87 Levine AJ. The many faces of p53: something for everyone. J Mol Cell Biol 2019;11:524-30. [PMID: 30925588 DOI: 10.1093/jmcb/mjz026] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 21.3] [Reference Citation Analysis]
88 Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020;11:5293-308. [PMID: 32742476 DOI: 10.7150/jca.42816] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
89 Zeng C, Xiong D, Zhang K, Yao J. Shank-associated RH domain interactor signaling in tumorigenesis. Oncol Lett 2020;20:2579-86. [PMID: 32782575 DOI: 10.3892/ol.2020.11850] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
90 Hao Q, Chen Y, Zhou X. The Janus Face of p53-Targeting Ubiquitin Ligases. Cells 2020;9:E1656. [PMID: 32660118 DOI: 10.3390/cells9071656] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
91 Wang D, Liu N, Yang H, Yang L. Theoretical analysis of the delay on the p53 micronetwork. Adv Differ Equ 2020;2020. [DOI: 10.1186/s13662-020-02799-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
92 Jasti N, Sebagh D, Riaz M, Wang X, Koripella B, Palanisamy V, Mohammad N, Chen Q, Friedrich M. Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute. Dev Genes Evol 2020;230:279-94. [PMID: 32623522 DOI: 10.1007/s00427-020-00663-8] [Reference Citation Analysis]
93 Gao C, Liu H, Liu Z, Zhang Y, Yan F. Oscillatory behavior of p53-Mdm2 system driven by transcriptional and translational time delays. Int J Biomath 2020;13:2050034. [DOI: 10.1142/s1793524520500345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
94 Fang Y, Liao G, Yu B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020;10:1253-78. [PMID: 32874827 DOI: 10.1016/j.apsb.2020.01.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 10.0] [Reference Citation Analysis]
95 Wolf ER, Mabry AR, Damania B, Mayo LD. Mdm2-mediated neddylation of pVHL blocks the induction of antiangiogenic factors. Oncogene 2020;39:5228-39. [PMID: 32555333 DOI: 10.1038/s41388-020-1359-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
96 Li Q, Karim RM, Cheng M, Das M, Chen L, Zhang C, Lawrence HR, Daughdrill GW, Schonbrunn E, Ji H, Chen J. Inhibition of p53 DNA binding by a small molecule protects mice from radiation toxicity. Oncogene 2020;39:5187-200. [PMID: 32555331 DOI: 10.1038/s41388-020-1344-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
97 Kang JH, Lee SH, Lee JS, Oh SJ, Ha JS, Choi HJ, Kim SY. Inhibition of Transglutaminase 2 but Not of MDM2 Has a Significant Therapeutic Effect on Renal Cell Carcinoma. Cells 2020;9:E1475. [PMID: 32560270 DOI: 10.3390/cells9061475] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
98 Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020;5:90. [PMID: 32532965 DOI: 10.1038/s41392-020-0196-9] [Cited by in Crossref: 80] [Cited by in F6Publishing: 87] [Article Influence: 26.7] [Reference Citation Analysis]
99 Sobhani N, D'Angelo A, Wang X, Young KH, Generali D, Li Y. Mutant p53 as an Antigen in Cancer Immunotherapy. Int J Mol Sci 2020;21:E4087. [PMID: 32521648 DOI: 10.3390/ijms21114087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
100 Dowarha D, Chou RH, Yu C. S100A1 blocks the interaction between p53 and mdm2 and decreases cell proliferation activity. PLoS One 2020;15:e0234152. [PMID: 32497081 DOI: 10.1371/journal.pone.0234152] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Hilliard SA, Li Y, Dixon A, El-Dahr SS. Mdm4 controls ureteric bud branching via regulation of p53 activity. Mech Dev 2020;163:103616. [PMID: 32464196 DOI: 10.1016/j.mod.2020.103616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
102 Bianco G, Coto-llerena M, Gallon J, Taha-mehlitz S, Kancherla V, Konantz M, Srivatsa S, Montazeri H, Panebianco F, De Menna M, Paradiso V, Ercan C, Dahmani A, Montaudon E, Beerenwinkel N, Kruithof-de Julio M, Terracciano LM, Lengerke C, Bidard F, Jeselsohn RM, Marangoni E, Ng CKY, Piscuoglio S. GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers.. [DOI: 10.1101/2020.05.18.101998] [Reference Citation Analysis]
103 Novotortsev VK, Kukushkin ME, Tafeenko VA, Zyk NV, Beloglazkina EK. New spiro-linked indolinone pyrrolidine selenoxoimidazolones. Mendeleev Communications 2020;30:320-1. [DOI: 10.1016/j.mencom.2020.05.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
104 Magnussen HM, Ahmed SF, Sibbet GJ, Hristova VA, Nomura K, Hock AK, Archibald LJ, Jamieson AG, Fushman D, Vousden KH, Weissman AM, Huang DT. Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain. Nat Commun 2020;11:2094. [PMID: 32350255 DOI: 10.1038/s41467-020-15783-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
105 Paluschinski M, Castoldi M, Schöler D, Bardeck N, Oenarto J, Görg B, Häussinger D. Tauroursodeoxycholate protects from glycochenodeoxycholate-induced gene expression changes in perfused rat liver. Biol Chem 2019;400:1551-65. [PMID: 31152635 DOI: 10.1515/hsz-2019-0204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Blaquiere N, Villemure E, Staben ST. Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. J Med Chem 2020;63:7957-85. [PMID: 32142281 DOI: 10.1021/acs.jmedchem.9b01451] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
107 de Oliveira Ribeiro H, Cortez AP, de Ávila RI, da Silva ACG, de Carvalho FS, Menegatti R, Lião LM, Valadares MC. Small-molecule MDM2 inhibitor LQFM030-induced apoptosis in p53-null K562 chronic myeloid leukemia cells. Fundam Clin Pharmacol 2020;34:444-57. [PMID: 32011031 DOI: 10.1111/fcp.12540] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
108 Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020;71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
109 Jia Y, Guo Y, Jin Q, Qu H, Qi D, Song P, Zhang X, Wang X, Xu W, Dong Y, Liang Y, Quan C. A SUMOylation-dependent HIF-1α/CLDN6 negative feedback mitigates hypoxia-induced breast cancer metastasis. J Exp Clin Cancer Res 2020;39:42. [PMID: 32093760 DOI: 10.1186/s13046-020-01547-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
110 Ford D. Ribosomal heterogeneity - A new inroad for pharmacological innovation. Biochem Pharmacol 2020;175:113874. [PMID: 32105657 DOI: 10.1016/j.bcp.2020.113874] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
111 Muhammad T, Sakhawat A, Khan AA, Huang H, Khan HR, Huang Y, Wang J. Aloperine in combination with therapeutic adenoviral vector synergistically suppressed the growth of non-small cell lung cancer. J Cancer Res Clin Oncol 2020;146:861-74. [DOI: 10.1007/s00432-020-03157-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
112 Flynt E, Bisht K, Sridharan V, Ortiz M, Towfic F, Thakurta A. Prognosis, Biology, and Targeting of TP53 Dysregulation in Multiple Myeloma. Cells 2020;9:E287. [PMID: 31991614 DOI: 10.3390/cells9020287] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
113 Dong G, He S, Qin X, Liu T, Jiang Y, Li X, Chen L, Han G, Sheng C, Li M. Discovery of Nonpeptide, Environmentally Sensitive Fluorescent Probes for Imaging p53-MDM2 Interactions in Living Cell Lines and Tissue Slice. Anal Chem 2020;92:2642-8. [PMID: 31918545 DOI: 10.1021/acs.analchem.9b04551] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
114 Levine AJ. P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future. Int J Mol Sci 2020;21:E541. [PMID: 31952115 DOI: 10.3390/ijms21020541] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
115 Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL, de Oliveira GAP. Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. iScience 2020;23:100820. [PMID: 31981923 DOI: 10.1016/j.isci.2020.100820] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
116 Argyle DJ, Khanna C, Giancristofaro N. Tumor Biology and Metastasis. Withrow and MacEwen's Small Animal Clinical Oncology 2020. [DOI: 10.1016/b978-0-323-59496-7.00002-5] [Reference Citation Analysis]
117 Zhu Q, Shen J, Han F, Lu W. Bifurcation Analysis and Probabilistic Energy Landscapes of Two-Component Genetic Network. IEEE Access 2020;8:150696-708. [DOI: 10.1109/access.2020.3013615] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
118 Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019;21:E261. [PMID: 31905981 DOI: 10.3390/ijms21010261] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
119 Deepthi A, V. Thomas N, Sathi V. Green Protocols for the Synthesis of 3,3’-spirooxindoles – 2016- mid 2019. CGC 2019;6:210-25. [DOI: 10.2174/2213346106666191019144116] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
120 Heltberg ML, Chen SH, Jiménez A, Jambhekar A, Jensen MH, Lahav G. Inferring Leading Interactions in the p53/Mdm2/Mdmx Circuit through Live-Cell Imaging and Modeling. Cell Syst 2019;9:548-558.e5. [PMID: 31812692 DOI: 10.1016/j.cels.2019.10.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
121 Sirous H, Chemi G, Campiani G, Brogi S. An integrated in silico screening strategy for identifying promising disruptors of p53-MDM2 interaction. Computational Biology and Chemistry 2019;83:107105. [DOI: 10.1016/j.compbiolchem.2019.107105] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
122 Das S. MDM2 Inhibition in a Subset of Sarcoma Cell Lines Increases Susceptibility to Radiation Therapy by Inducing Senescence in the Polyploid Cells. Adv Radiat Oncol 2020;5:250-9. [PMID: 32280825 DOI: 10.1016/j.adro.2019.11.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
123 Wang W, Qin JJ, Li X, Tao G, Wang Q, Wu X, Zhou J, Zi X, Zhang R. Prevention of prostate cancer by natural product MDM2 inhibitor GS25: in vitro and in vivo activities and molecular mechanisms. Carcinogenesis 2018;39:1026-36. [PMID: 29762656 DOI: 10.1093/carcin/bgy063] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
124 García-Cano J, Sánchez-Tena S, Sala-Gaston J, Figueras A, Viñals F, Bartrons R, Ventura F, Rosa JL. Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Mol Oncol 2020;14:69-86. [PMID: 31665549 DOI: 10.1002/1878-0261.12592] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
125 Abd-Elhakim YM, Abdo Nassan M, Salem GA, Sasi A, Aldhahrani A, Ben Issa K, Abdel-Rahman Mohamed A. Investigation of the In-Vivo Cytotoxicity and the In Silico-Prediction of MDM2-p53 Inhibitor Potential of Euphorbia peplus Methanolic Extract in Rats. Toxins (Basel) 2019;11:E642. [PMID: 31689934 DOI: 10.3390/toxins11110642] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
126 Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer 2019;19:611-24. [PMID: 31511663 DOI: 10.1038/s41568-019-0196-7] [Cited by in Crossref: 345] [Cited by in F6Publishing: 343] [Article Influence: 86.3] [Reference Citation Analysis]
127 Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019;20:E5208. [PMID: 31640129 DOI: 10.3390/ijms20205208] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
128 Gao C, Ji J, Yan F, Liu H. Oscillation induced by Hopf bifurcation in the p53-Mdm2 feedback module. IET Syst Biol 2019;13:251-9. [PMID: 31538959 DOI: 10.1049/iet-syb.2018.5092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
129 Nacif-Pimenta R, da Silva Orfanó A, Mosley IA, Karinshak SE, Ishida K, Mann VH, Coelho PMZ, da Costa JMC, Hsieh MH, Brindley PJ, Rinaldi G. Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci Rep 2019;9:10731. [PMID: 31341177 DOI: 10.1038/s41598-019-46917-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
130 Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel) 2019;11:E1014. [PMID: 31331108 DOI: 10.3390/cancers11071014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
131 Levine AJ. The Evolution of Tumor Formation in Humans and Mice with Inherited Mutations in the p53 Gene. Curr Top Microbiol Immunol 2017;407:205-21. [PMID: 28349284 DOI: 10.1007/82_2017_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
132 Wu J, Liu H, Huang H, Yuan L, Liu C, Wang Y, Cheng X, Zhuang D, Xu M, Chen X, Losiewicz MD, Zhang H. p53-Dependent pathway and the opening of mPTP mediate the apoptosis of co-cultured Sertoli-germ cells induced by microcystin-LR. Environ Toxicol 2019;34:1074-84. [PMID: 31157505 DOI: 10.1002/tox.22808] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
133 Celano SL, Yco LP, Kortus MG, Solitro AR, Gunaydin H, Scott M, Spooner E, O'Hagan RC, Fuller P, Martin KR, Shumway SD, MacKeigan JP. Identification of Kinases Responsible for p53-Dependent Autophagy. iScience 2019;15:109-18. [PMID: 31048145 DOI: 10.1016/j.isci.2019.04.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
134 Lemos A, Gomes AS, Loureiro JB, Brandão P, Palmeira A, Pinto MMM, Saraiva L, Sousa ME. Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. Molecules 2019;24:E1975. [PMID: 31121972 DOI: 10.3390/molecules24101975] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
135 Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019;38:e100278. [PMID: 31268599 DOI: 10.15252/embj.2018100278] [Cited by in Crossref: 89] [Cited by in F6Publishing: 94] [Article Influence: 22.3] [Reference Citation Analysis]
136 Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem 2019;176:92-104. [PMID: 31100649 DOI: 10.1016/j.ejmech.2019.05.018] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]
137 Khurana A, Shafer DA. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). Onco Targets Ther 2019;12:2903-10. [PMID: 31289443 DOI: 10.2147/OTT.S172315] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 9.3] [Reference Citation Analysis]
138 Hollerer I, Barker JC, Jorgensen V, Tresenrider A, Dugast-Darzacq C, Chan LY, Darzacq X, Tjian R, Ünal E, Brar GA. Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells. G3 (Bethesda) 2019;9:1045-53. [PMID: 30723103 DOI: 10.1534/g3.118.200802] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
139 Ma A, Dai X. Exploring the mechanism of the excitability of p53 pulse response. J Phys : Conf Ser 2019;1168:032122. [DOI: 10.1088/1742-6596/1168/3/032122] [Reference Citation Analysis]
140 Barakat A, Islam MS, Ghawas HM, Al-Majid AM, El-Senduny FF, Badria FA, Elshaier YAMM, Ghabbour HA. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2-p53 interaction. Bioorg Chem 2019;86:598-608. [PMID: 30802707 DOI: 10.1016/j.bioorg.2019.01.053] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
141 Ghosh S. Introduction. SIRT6 Activities in DNA Damage Repair and Premature Aging 2019. [DOI: 10.1007/978-981-32-9267-3_1] [Reference Citation Analysis]
142 Zhu Y, Wang H, Thuraisamy A. MDM2/P53 Inhibitors as Sensitizing Agents for Cancer Chemotherapy. Protein Kinase Inhibitors as Sensitizing Agents for Chemotherapy 2019. [DOI: 10.1016/b978-0-12-816435-8.00015-8] [Reference Citation Analysis]
143 Ghaleb A, Marchenko N. p53-Hsp90 Axis in Human Cancer. Heat Shock Proteins 2019. [DOI: 10.1007/978-3-030-23158-3_7] [Reference Citation Analysis]
144 Jang HH. Regulation of Protein Degradation by Proteasomes in Cancer. J Cancer Prev 2018;23:153-61. [PMID: 30671397 DOI: 10.15430/JCP.2018.23.4.153] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
145 Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rathinavelu A. Differential Mechanisms of Cell Death Induced by HDAC Inhibitor SAHA and MDM2 Inhibitor RG7388 in MCF-7 Cells. Cells 2018;8:E8. [PMID: 30583560 DOI: 10.3390/cells8010008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
146 Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, Liu L, Yang CY, Wang M, Han X, Wang S. Discovery of MD-224 as a First-in-Class, Highly Potent, and Efficacious Proteolysis Targeting Chimera Murine Double Minute 2 Degrader Capable of Achieving Complete and Durable Tumor Regression. J Med Chem 2019;62:448-66. [PMID: 30525597 DOI: 10.1021/acs.jmedchem.8b00909] [Cited by in Crossref: 138] [Cited by in F6Publishing: 146] [Article Influence: 27.6] [Reference Citation Analysis]
147 Ibrahim HS, Eldehna WM, Fallacara AL, Ahmed ER, Ghabbour HA, Elaasser MM, Botta M, Abou-Seri SM, Abdel-Aziz HA. One-pot synthesis of spiro(indoline-3,4'-pyrazolo[3,4-b]pyridine)-5'-carbonitriles as p53-MDM2 interaction inhibitors. Future Med Chem 2018;10:2771-89. [PMID: 30526032 DOI: 10.4155/fmc-2018-0288] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
148 Liu B, Yi J, Yang X, Liu L, Lou X, Zhang Z, Qi H, Wang Z, Zou J, Zhu WG, Gu W, Luo J. MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene 2019;38:2501-15. [PMID: 30532073 DOI: 10.1038/s41388-018-0605-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
149 Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE, Perrin L, Hooper J, Salomon C. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018;25:R663-85. [PMID: 30400025 DOI: 10.1530/ERC-18-0019] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 8.8] [Reference Citation Analysis]
150 Talib WH, Al-Hadid SA, Ali MBW, Al-Yasari IH, Ali MRA. Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer (Dove Med Press) 2018;10:207-17. [PMID: 30568488 DOI: 10.2147/BCTT.S167812] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
151 Verhoork SJM, Jennings CE, Rozatian N, Reeks J, Meng J, Corlett EK, Bunglawala F, Noble MEM, Leach AG, Coxon CR. Tuning the Binding Affinity and Selectivity of Perfluoroaryl‐Stapled Peptides by Cysteine‐Editing. Chem Eur J 2018;25:177-82. [DOI: 10.1002/chem.201804163] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
152 Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2019;234:8327-41. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
153 Suarez OJ, Vega CJ, Sanchez EN, Gonzalez-santiago AE, Pardo-garcia A. Pinning control applied to gene regulatory networks. 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI) 2018. [DOI: 10.1109/la-cci.2018.8625206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
154 Liao G, Yang D, Ma L, Li W, Hu L, Zeng L, Wu P, Duan L, Liu Z. The development of piperidinones as potent MDM2-P53 protein-protein interaction inhibitors for cancer therapy. European Journal of Medicinal Chemistry 2018;159:1-9. [DOI: 10.1016/j.ejmech.2018.09.044] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
155 Guo Y, Li Y, Wang FF, Xiang B, Huang XO, Ma HB, Gong YP. The combination of Nutlin-3 and Tanshinone IIA promotes synergistic cytotoxicity in acute leukemic cells expressing wild-type p53 by co-regulating MDM2-P53 and the AKT/mTOR pathway. Int J Biochem Cell Biol 2019;106:8-20. [PMID: 30389549 DOI: 10.1016/j.biocel.2018.10.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
156 Mai H, Cachot J, Clérandeau C, Martin C, Mazzela N, Gonzalez P, Morin B. An environmentally realistic pesticide and copper mixture impacts embryonic development and DNA integrity of the Pacific oyster, Crassostrea gigas. Environ Sci Pollut Res 2020;27:3600-11. [DOI: 10.1007/s11356-018-3586-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
157 Skalniak L, Kocik J, Polak J, Skalniak A, Rak M, Wolnicka-Glubisz A, Holak TA. Prolonged Idasanutlin (RG7388) Treatment Leads to the Generation of p53-Mutated Cells. Cancers (Basel) 2018;10:E396. [PMID: 30352966 DOI: 10.3390/cancers10110396] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
158 Islam MS, Ghawas HM, El-Senduny FF, Al-Majid AM, Elshaier YAMM, Badria FA, Barakat A. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg Chem 2019;82:423-30. [PMID: 30508794 DOI: 10.1016/j.bioorg.2018.10.036] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
159 Hashemi M, Sanaei S, Hashemi SM, Eskandari E, Bahari G. Association of Single Nucleotide Polymorphisms of the MDM4 Gene With the Susceptibility to Breast Cancer in a Southeast Iranian Population Sample. Clinical Breast Cancer 2018;18:e883-91. [DOI: 10.1016/j.clbc.2018.01.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
160 Chen H, Xue L, Huang H, Wang H, Zhang X, Zhu W, Wang Z, Wang Z, Wu H. Synergistic effect of Nutlin-3 combined with MG-132 on schwannoma cells through restoration of merlin and p53 tumour suppressors. EBioMedicine 2018;36:252-65. [PMID: 30274821 DOI: 10.1016/j.ebiom.2018.09.042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
161 Ntwasa M, Njende U. Glucose Metabolism and Carcinogenesis: The Impact of the Tumor Suppressor p53. Neoplasm 2018. [DOI: 10.5772/intechopen.75976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
162 Fedorova O, Daks A, Petrova V, Petukhov A, Lezina L, Shuvalov O, Davidovich P, Kriger D, Lomert E, Tentler D, Kartsev V, Uyanik B, Tribulovich V, Demidov O, Melino G, Barlev NA. Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis. Cell Cycle 2018;17:1917-30. [PMID: 30109812 DOI: 10.1080/15384101.2018.1506664] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
163 He S, Dong G, Wu S, Fang K, Miao Z, Wang W, Sheng C. Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents. J Med Chem 2018;61:7245-60. [PMID: 30045621 DOI: 10.1021/acs.jmedchem.8b00664] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
164 Chatterjee A, Gupta S. The multifaceted role of glutathione S-transferases in cancer. Cancer Lett 2018;433:33-42. [PMID: 29959055 DOI: 10.1016/j.canlet.2018.06.028] [Cited by in Crossref: 93] [Cited by in F6Publishing: 99] [Article Influence: 18.6] [Reference Citation Analysis]
165 Blanchini F, Cuba Samaniego C, Franco E, Giordano G. Homogeneous Time Constants Promote Oscillations in Negative Feedback Loops. ACS Synth Biol 2018;7:1481-7. [PMID: 29676894 DOI: 10.1021/acssynbio.7b00442] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
166 Chong KH, Zhang X, Zheng J. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape. PLoS One 2018;13:e0197838. [PMID: 29856751 DOI: 10.1371/journal.pone.0197838] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
167 Ferrucci V, Pennino FP, Siciliano R, Asadzadeh F, Zollo M. A competitive cell-permeable peptide impairs Nme-1 (NDPK-A) and Prune-1 interaction: therapeutic applications in cancer. Lab Invest 2018;98:571-81. [PMID: 29449633 DOI: 10.1038/s41374-017-0011-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
168 Du Z, Yu J, Li F, Deng L, Wu F, Huang X, Bergstrand J, Widengren J, Dong C, Ren J. In Situ Monitoring of p53 Protein and MDM2 Protein Interaction in Single Living Cells Using Single-Molecule Fluorescence Spectroscopy. Anal Chem 2018;90:6144-51. [DOI: 10.1021/acs.analchem.8b00473] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
169 Wolf ER, McAtarsney CP, Bredhold KE, Kline AM, Mayo LD. Mutant and wild-type p53 form complexes with p73 upon phosphorylation by the kinase JNK. Sci Signal 2018;11:eaao4170. [PMID: 29615516 DOI: 10.1126/scisignal.aao4170] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
170 Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019;133:276-94. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
171 Smiles WJ, Camera DM. The guardian of the genome p53 regulates exercise-induced mitochondrial plasticity beyond organelle biogenesis. Acta Physiol (Oxf) 2018;222. [PMID: 29178461 DOI: 10.1111/apha.13004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
172 Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin Cancer Res 2018;37:30. [PMID: 29448954 DOI: 10.1186/s13046-018-0705-7] [Cited by in Crossref: 116] [Cited by in F6Publishing: 131] [Article Influence: 23.2] [Reference Citation Analysis]
173 Hollerer I, Barker JC, Jorgensen V, Tresenrider A, Dugast-darzacq C, Chan LY, Darzacq X, Tjian R, Ünal E, Brar GA. Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells.. [DOI: 10.1101/264721] [Reference Citation Analysis]
174 Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein–drug interactions using ion mobility–mass spectrometry. Current Opinion in Chemical Biology 2018;42:167-76. [DOI: 10.1016/j.cbpa.2017.12.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
175 Yan M, Qian YM, Yue CF, Wang ZF, Wang BC, Zhang W, Zheng FM, Liu Q. Inhibition of histone deacetylases induces formation of multipolar spindles and subsequent p53-dependent apoptosis in nasopharyngeal carcinoma cells. Oncotarget 2016;7:44171-84. [PMID: 27283770 DOI: 10.18632/oncotarget.9922] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
176 Ma A, Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response. Cell Cycle 2018;17:73-9. [PMID: 29157089 DOI: 10.1080/15384101.2017.1403681] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
177 Yu B, Liu H. The Development of New Spirooxindoles Targeting the p53–MDM2 Protein-Protein Interactions for Cancer Therapy. Targeting Protein-Protein Interactions by Small Molecules 2018. [DOI: 10.1007/978-981-13-0773-7_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
178 Guo Y, Li Y, Xiang B, Huang XO, Ma HB, Wang FF, Gong YP. Nutlin-3 plus tanshinone IIA exhibits synergetic anti-leukemia effect with imatinib by reactivating p53 and inhibiting the AKT/mTOR pathway in Ph+ ALL. Biochem J 2017;474:4153-70. [PMID: 29046392 DOI: 10.1042/BCJ20170386] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
179 Swetzig WM, Wang J, Das GM. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget 2016;7:16049-69. [PMID: 26909605 DOI: 10.18632/oncotarget.7533] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
180 Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017;3:17071. [PMID: 29152378 DOI: 10.1038/cddiscovery.2017.71] [Cited by in Crossref: 306] [Cited by in F6Publishing: 327] [Article Influence: 51.0] [Reference Citation Analysis]
181 Liu S, Yan S. Mechanism of Competition between Nutlin3 and p53 for Binding with Mdm2. Chinese Phys Lett 2017;34:118701. [DOI: 10.1088/0256-307x/34/11/118701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
182 Saadatzadeh MR, Elmi AN, Pandya PH, Bijangi-Vishehsaraei K, Ding J, Stamatkin CW, Cohen-Gadol AA, Pollok KE. The Role of MDM2 in Promoting Genome Stability versus Instability. Int J Mol Sci 2017;18:E2216. [PMID: 29065514 DOI: 10.3390/ijms18102216] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
183 Lamberto I, Liu X, Seo HS, Schauer NJ, Iacob RE, Hu W, Das D, Mikhailova T, Weisberg EL, Engen JR, Anderson KC, Chauhan D, Dhe-Paganon S, Buhrlage SJ. Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chem Biol 2017;24:1490-1500.e11. [PMID: 29056421 DOI: 10.1016/j.chembiol.2017.09.003] [Cited by in Crossref: 109] [Cited by in F6Publishing: 94] [Article Influence: 18.2] [Reference Citation Analysis]
184 Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, Tonkin LM, Townsend EC, Buker SM, Lancia DR, Caravella JA, Toms AV, Charlton TM, Lahdenranta J, Wilker E, Follows BC, Evans NJ, Stead L, Alli C, Zarayskiy VV, Talbot AC, Buckmelter AJ, Wang M, McKinnon CL, Saab F, McGouran JF, Century H, Gersch M, Pittman MS, Marshall CG, Raynham TM, Simcox M, Stewart LMD, McLoughlin SB, Escobedo JA, Bair KW, Dinsmore CJ, Hammonds TR, Kim S, Urbé S, Clague MJ, Kessler BM, Komander D. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 2017;550:481-6. [PMID: 29045389 DOI: 10.1038/nature24451] [Cited by in Crossref: 236] [Cited by in F6Publishing: 244] [Article Influence: 39.3] [Reference Citation Analysis]
185 Cao B, Fang Z, Liao P, Zhou X, Xiong J, Zeng S, Lu H. Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit. Oncotarget 2017;8:90651-61. [PMID: 29207594 DOI: 10.18632/oncotarget.21544] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
186 Giustiniano M, Daniele S, Pelliccia S, La Pietra V, Pietrobono D, Brancaccio D, Cosconati S, Messere A, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Taliani S, La Regina G, Da Settimo F, Silvestri R, Martini C, Novellino E, Marinelli L. Computer-Aided Identification and Lead Optimization of Dual Murine Double Minute 2 and 4 Binders: Structure-Activity Relationship Studies and Pharmacological Activity. J Med Chem 2017;60:8115-30. [PMID: 28921985 DOI: 10.1021/acs.jmedchem.7b00912] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
187 Zhou X, Cao B, Lu H. Negative auto-regulators trap p53 in their web. J Mol Cell Biol 2017;9:62-8. [PMID: 28069666 DOI: 10.1093/jmcb/mjx001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
188 Feng Y, Zhou L, Sun X, Li Q. Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget 2017;8:20452-61. [PMID: 28107201 DOI: 10.18632/oncotarget.14723] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 5.2] [Reference Citation Analysis]
189 Singh AK, Chauhan SS, Singh SK, Verma VV, Singh A, Arya RK, Maheshwari S, Akhtar MS, Sarkar J, Rangnekar VM, Chauhan PMS, Datta D. Dual targeting of MDM2 with a novel small-molecule inhibitor overcomes TRAIL resistance in cancer. Carcinogenesis 2016;37:1027-40. [PMID: 27543608 DOI: 10.1093/carcin/bgw088] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
190 Kuo WT, Tu DG, Chiu LY, Sheu GT, Wu MF. High pemetrexed sensitivity of docetaxel-resistant A549 cells is mediated by TP53 status and downregulated thymidylate synthase. Oncol Rep 2017;38:2787-95. [PMID: 28901493 DOI: 10.3892/or.2017.5951] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
191 Huun J, Gansmo LB, Mannsåker B, Iversen GT, Sommerfelt-Pettersen J, Øvrebø JI, Lønning PE, Knappskog S. The Functional Roles of the MDM2 Splice Variants P2-MDM2-10 and MDM2-∆5 in Breast Cancer Cells. Transl Oncol 2017;10:806-17. [PMID: 28844019 DOI: 10.1016/j.tranon.2017.07.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
192 Lessel D, Wu D, Trujillo C, Ramezani T, Lessel I, Alwasiyah MK, Saha B, Hisama FM, Rading K, Goebel I, Schütz P, Speit G, Högel J, Thiele H, Nürnberg G, Nürnberg P, Hammerschmidt M, Zhu Y, Tong DR, Katz C, Martin GM, Oshima J, Prives C, Kubisch C. Dysfunction of the MDM2/p53 axis is linked to premature aging. J Clin Invest 2017;127:3598-608. [PMID: 28846075 DOI: 10.1172/JCI92171] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
193 Kong Q, Shu N, Li J, Xu N. miR-641 Functions as a Tumor Suppressor by Targeting MDM2 in Human Lung Cancer. Oncol Res 2018;26:735-41. [PMID: 28800790 DOI: 10.3727/096504017X15021536183490] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
194 Hata AN, Rowley S, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Ji F, Jung J, Light M, Lee JS, Debussche L, Sidhu S, Sadreyev RI, Watters J, Engelman JA. Synergistic activity and heterogeneous acquired resistance of combined MDM2 and MEK inhibition in KRAS mutant cancers. Oncogene 2017;36:6581-91. [PMID: 28783173 DOI: 10.1038/onc.2017.258] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
195 He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017;8:73282-95. [PMID: 29069869 DOI: 10.18632/oncotarget.19931] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 11.3] [Reference Citation Analysis]
196 Chen Y, Wang YG, Li Y, Sun XX, Dai MS. Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria. Oncotarget 2017;8:11053-62. [PMID: 28035068 DOI: 10.18632/oncotarget.14278] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
197 Davoodi P, Srinivasan MP, Wang CH. Effective co-delivery of nutlin-3a and p53 genes via core-shell microparticles for disruption of MDM2-p53 interaction and reactivation of p53 in hepatocellular carcinoma. J Mater Chem B 2017;5:5816-34. [PMID: 32264215 DOI: 10.1039/c7tb00481h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
198 Liu T, Jiang Y, Liu Z, Li J, Fang K, Zhuang C, Du L, Fang H, Sheng C, Li M. Environment-sensitive turn-on fluorescent probes for p53-MDM2 protein-protein interaction. Medchemcomm 2017;8:1668-72. [PMID: 30108877 DOI: 10.1039/c7md00287d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
199 Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol 2017;10:133. [PMID: 28673313 DOI: 10.1186/s13045-017-0500-5] [Cited by in Crossref: 162] [Cited by in F6Publishing: 167] [Article Influence: 27.0] [Reference Citation Analysis]
200 Madapura HS, Salamon D, Wiman KG, Lain S, Klein E, Nagy N. cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response. Cell Cycle 2016;15:1267-75. [PMID: 26985633 DOI: 10.1080/15384101.2016.1160975] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
201 Jiménez AP, Traum A, Boettger T, Hackstein H, Richter AM, Dammann RH. The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth. Oncotarget 2017;8:88437-52. [PMID: 29179447 DOI: 10.18632/oncotarget.18177] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
202 Salimi S, Mohammadpour-Gharehbagh A, Rezaei M, Sajadian M, Teimoori B, Yazdi A, Mokhtari M, Yaghmaei M. The MDM2 promoter T309G polymorphism was associated with preeclampsia susceptibility. J Assist Reprod Genet 2017;34:951-6. [PMID: 28508227 DOI: 10.1007/s10815-017-0941-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
203 Wang S, Zhao Y, Aguilar A, Bernard D, Yang CY. Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges. Cold Spring Harb Perspect Med 2017;7:a026245. [PMID: 28270530 DOI: 10.1101/cshperspect.a026245] [Cited by in Crossref: 151] [Cited by in F6Publishing: 164] [Article Influence: 25.2] [Reference Citation Analysis]
204 Stewart-Ornstein J, Lahav G. p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM. Sci Signal 2017;10:eaah6671. [PMID: 28442631 DOI: 10.1126/scisignal.aah6671] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 10.0] [Reference Citation Analysis]
205 Huun J, Gansmo LB, Mannsåker B, Iversen GT, Øvrebø JI, Lønning PE, Knappskog S. Impact of the MDM2 splice-variants MDM2-A, MDM2-B and MDM2-C on cytotoxic stress response in breast cancer cells. BMC Cell Biol 2017;18:17. [PMID: 28415963 DOI: 10.1186/s12860-017-0134-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
206 Xi S, Zhao M, Wang S, Ma L, Wang S, Cong X, Gjerset RA, Fitzgerald RC, Huang Y. IRES-Mediated Protein Translation Overcomes Suppression by the p14ARF Tumor Suppressor Protein. J Cancer 2017;8:1082-8. [PMID: 28529622 DOI: 10.7150/jca.17457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
207 Eliaš J. Positive effect of Mdm2 on p53 expression explains excitability of p53 in response to DNA damage. Journal of Theoretical Biology 2017;418:94-104. [DOI: 10.1016/j.jtbi.2017.01.038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
208 Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017;178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
209 Aguilar A, Lu J, Liu L, Du D, Bernard D, McEachern D, Przybranowski S, Li X, Luo R, Wen B, Sun D, Wang H, Wen J, Wang G, Zhai Y, Guo M, Yang D, Wang S. Discovery of 4-((3'R,4'S,5'R)-6″-Chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2″-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3″-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development. J Med Chem 2017;60:2819-39. [PMID: 28339198 DOI: 10.1021/acs.jmedchem.6b01665] [Cited by in Crossref: 100] [Cited by in F6Publishing: 103] [Article Influence: 16.7] [Reference Citation Analysis]
210 de Jonge M, de Weger VA, Dickson MA, Langenberg M, Le Cesne A, Wagner AJ, Hsu K, Zheng W, Macé S, Tuffal G, Thomas K, Schellens JH. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur J Cancer 2017;76:144-51. [PMID: 28324749 DOI: 10.1016/j.ejca.2017.02.005] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 11.7] [Reference Citation Analysis]
211 Fischer M. Census and evaluation of p53 target genes. Oncogene 2017;36:3943-56. [PMID: 28288132 DOI: 10.1038/onc.2016.502] [Cited by in Crossref: 493] [Cited by in F6Publishing: 515] [Article Influence: 82.2] [Reference Citation Analysis]
212 Sun T, Li X, Shen P. Modeling amplified p53 responses under DNA-PK inhibition in DNA damage response. Oncotarget 2017;8:17105-14. [PMID: 28177883 DOI: 10.18632/oncotarget.15062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
213 Sun H, Nguyen M, Mueller W, Cheng Z, Zeng H, Zhu C, Wu J, Roy K, Jakob P, Aiyar R, Wei W, Steinmetz LM. CDKN1A-RAB44 transcript fusion and activation in cancers.. [DOI: 10.1101/111856] [Reference Citation Analysis]
214 Loboda A, Stachurska A, Podkalicka P, Sobczak M, Mucha O, Witalisz-siepracka A, Jozkowicz A, Dulak J. Effect of heme oxygenase-1 on ochratoxin A-induced nephrotoxicity in mice. The International Journal of Biochemistry & Cell Biology 2017;84:46-57. [DOI: 10.1016/j.biocel.2017.01.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
215 Jeon YJ, Park JH, Chung CH. Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress. Mol Cells 2017;40:83-9. [PMID: 28241406 DOI: 10.14348/molcells.2017.0027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
216 Merkel O, Taylor N, Prutsch N, Staber PB, Moriggl R, Turner SD, Kenner L. When the guardian sleeps: Reactivation of the p53 pathway in cancer. Mutat Res Rev Mutat Res 2017;773:1-13. [PMID: 28927521 DOI: 10.1016/j.mrrev.2017.02.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 6.3] [Reference Citation Analysis]
217 Sane S, Rezvani K. Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017;18:E442. [PMID: 28218667 DOI: 10.3390/ijms18020442] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 7.5] [Reference Citation Analysis]
218 Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiat Res 2017;187:424-32. [PMID: 28140789 DOI: 10.1667/RR003CC.1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
219 Moyer SM, Larsson CA, Lozano G. Mdm proteins: critical regulators of embry ogenesis and homeostasis. J Mol Cell Biol 2017:mjx004. [PMID: 28093454 DOI: 10.1093/jmcb/mjx004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
220 Peterson LF, Lo MC, Liu Y, Giannola D, Mitrikeska E, Donato NJ, Johnson CN, Wang S, Mercer J, Talpaz M. Induction of p53 suppresses chronic myeloid leukemia. Leuk Lymphoma 2017;58:1-14. [PMID: 28084835 DOI: 10.1080/10428194.2016.1272682] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
221 Zhang C, Liu J, Tan C, Yue X, Zhao Y, Peng J, Wang X, Laddha SV, Chan CS, Zheng S, Hu W, Feng Z. microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis. Oncotarget 2016;7:8783-96. [PMID: 26840028 DOI: 10.18632/oncotarget.7088] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 4.5] [Reference Citation Analysis]
222 Sivakumar H, Hespanha JP, Roh K, Proulx SR. The evolution of p53 network behavior.. [DOI: 10.1101/098376] [Reference Citation Analysis]
223 Zhang L, Ren W, Wang X, Zhang J, Liu J, Zhao L, Zhang X. Discovery of novel polycyclic spiro-fused carbocyclicoxindole-based anticancer agents. European Journal of Medicinal Chemistry 2017;126:1071-82. [DOI: 10.1016/j.ejmech.2016.12.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
224 Chao T, Zhou X, Cao B, Liao P, Liu H, Chen Y, Park HW, Zeng SX, Lu H. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53. Nat Commun 2016;7:13755. [PMID: 28008906 DOI: 10.1038/ncomms13755] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 3.7] [Reference Citation Analysis]
225 Zhang L, McGraw KL, Sallman DA, List AF. The role of p53 in myelodysplastic syndromes and acute myeloid leukemia: molecular aspects and clinical implications. Leuk Lymphoma 2017;58:1777-90. [PMID: 27967292 DOI: 10.1080/10428194.2016.1266625] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
226 Kang M, Park M. Conversion of Normal To Malignant Phenotype: Telomere Shortening, Telomerase Activation, and Genomic Instability During Immortalization of Human Oral Keratinocytes. Critical Reviews in Oral Biology & Medicine 2001;12:38-54. [DOI: 10.1177/10454411010120010301] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
227 Carr MI, Jones SN. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 2016;5:707-24. [PMID: 28690977 DOI: 10.21037/tcr.2016.11.75] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
228 Chen J. Intra molecular interactions in the regulation of p53 pathway. Transl Cancer Res 2016;5:639-49. [PMID: 30613472 DOI: 10.21037/tcr.2016.09.23] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
229 Lucchesi C, Zhang J, Chen X. Modulation of the p53 family network by RNA-binding proteins. Transl Cancer Res 2016;5:676-84. [PMID: 28794999 DOI: 10.21037/tcr.2016.08.30] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
230 Olivos DJ, Mayo LD. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness. Int J Mol Sci 2016;17:E1982. [PMID: 27898034 DOI: 10.3390/ijms17121982] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
231 Fierabracci A, Pellegrino M. The Double Role of p53 in Cancer and Autoimmunity and Its Potential as Therapeutic Target. Int J Mol Sci 2016;17:E1975. [PMID: 27897991 DOI: 10.3390/ijms17121975] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
232 Kucab JE, Hollstein M, Arlt VM, Phillips DH. Nutlin-3a selects for cells harbouring TP53 mutations. Int J Cancer 2017;140:877-87. [PMID: 27813088 DOI: 10.1002/ijc.30504] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
233 Liu Y, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of long noncoding RNAs in atherosclerosis. Int J Cardiol 2017;228:570-82. [PMID: 27875736 DOI: 10.1016/j.ijcard.2016.11.182] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
234 Song Z, Chen C, Liu J, Wen X, Sun H, Yuan H. Design, synthesis, and biological evaluation of (2E)-(2-oxo-1, 2-dihydro-3 H -indol-3-ylidene)acetate derivatives as anti-proliferative agents through ROS-induced cell apoptosis. European Journal of Medicinal Chemistry 2016;124:809-19. [DOI: 10.1016/j.ejmech.2016.09.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
235 Smith AJ, Smith LA. Viral Carcinogenesis. Prog Mol Biol Transl Sci 2016;144:121-68. [PMID: 27865457 DOI: 10.1016/bs.pmbts.2016.09.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
236 Matsui Y, Shindo K, Nagata K, Yoshinaga N, Shirakawa K, Kobayashi M, Takaori-Kondo A. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation. J Biol Chem 2016;291:24892-9. [PMID: 27758855 DOI: 10.1074/jbc.M116.734673] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
237 Chen JY, Yang H, Wen J, Luo KJ, Liu QW, Lei JY, Zhen YZ, Fu JH. Association between positive murine double minute 2 expression and clinicopathological characteristics of esophageal squamous cell carcinoma: a meta-analysis. Dis Esophagus 2016;29:856-63. [PMID: 25873358 DOI: 10.1111/dote.12361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
238 Jung J, Lee JS, Dickson MA, Schwartz GK, Le Cesne A, Varga A, Bahleda R, Wagner AJ, Choy E, de Jonge MJ, Light M, Rowley S, Macé S, Watters J. TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat Commun 2016;7:12609. [PMID: 27576846 DOI: 10.1038/ncomms12609] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 8.3] [Reference Citation Analysis]
239 Goumenou A, Panayiotides I, Mahutte NG, Matalliotakis I, Fragouli Y, Arici A. Immunohistochemical Expression of p53, MDM2, and p21Wafi Oncoproteins in Endometriomas But Not Adenomyosis. Journal of the Society for Gynecologic Investigation 2016;12:263-6. [DOI: 10.1016/j.jsgi.2005.01.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
240 Nör F, Warner KA, Zhang Z, Acasigua GA, Pearson AT, Kerk SA, Helman JI, Sant'Ana Filho M, Wang S, Nör JE. Therapeutic Inhibition of the MDM2-p53 Interaction Prevents Recurrence of Adenoid Cystic Carcinomas. Clin Cancer Res 2017;23:1036-48. [PMID: 27550999 DOI: 10.1158/1078-0432.CCR-16-1235] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
241 Park JH, Yang SW, Park JM, Ka SH, Kim JH, Kong YY, Jeon YJ, Seol JH, Chung CH. Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nat Commun. 2016;7:12513. [PMID: 27545325 DOI: 10.1038/ncomms12513] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 9.1] [Reference Citation Analysis]
242 Shalini S, Nikolic A, Wilson CH, Puccini J, Sladojevic N, Finnie J, Dorstyn L, Kumar S. Caspase-2 deficiency accelerates chemically induced liver cancer in mice. Cell Death Differ 2016;23:1727-36. [PMID: 27518436 DOI: 10.1038/cdd.2016.81] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
243 Sammons MA, Zhu J, Berger SL. A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription. G3 (Bethesda) 2016;6:2671-8. [PMID: 27334938 DOI: 10.1534/g3.116.031534] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
244 Moussa RS, Kovacevic Z, Richardson DR. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget 2015;6:29694-711. [PMID: 26335183 DOI: 10.18632/oncotarget.5088] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
245 Wasylishen AR, Lozano G. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med 2016;6:a026211. [PMID: 27329033 DOI: 10.1101/cshperspect.a026211] [Cited by in Crossref: 84] [Cited by in F6Publishing: 91] [Article Influence: 12.0] [Reference Citation Analysis]
246 Wan Z, Lu Y, Rui L, Yu X, Li Z. PRDM1 overexpression induce G0/G1 arrest in DF-1 cell line. Gene 2016;592:119-27. [PMID: 27474451 DOI: 10.1016/j.gene.2016.07.063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
247 Li J, Tang Y, Huang L, Yu Q, Hu G, Yuan X. Genetic Variants in the p14ARF/MDM2/TP53 Pathway Are Associated with the Prognosis of Esophageal Squamous Cell Carcinoma Patients Treated with Radical Resection. PLoS One 2016;11:e0158613. [PMID: 27414035 DOI: 10.1371/journal.pone.0158613] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
248 Meng X, Tackmann NR, Liu S, Yang J, Dong J, Wu C, Cox AD, Zhang Y. RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression. Cancer Res 2016;76:5030-9. [PMID: 27402081 DOI: 10.1158/0008-5472.CAN-15-3420] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
249 Retout M, Valkenier H, Triffaux E, Doneux T, Bartik K, Bruylants G. Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. ACS Sens 2016;1:929-33. [DOI: 10.1021/acssensors.6b00229] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
250 Tseng CY, Wang JS, Chang YJ, Chang JF, Chao MW. Exposure to High-Dose Diesel Exhaust Particles Induces Intracellular Oxidative Stress and Causes Endothelial Apoptosis in Cultured In Vitro Capillary Tube Cells. Cardiovasc Toxicol 2015;15:345-54. [PMID: 25488805 DOI: 10.1007/s12012-014-9302-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
251 Musso L, Cincinelli R, Zuco V, De cesare M, Zunino F, Fallacara AL, Botta M, Dallavalle S. 3-Arylidene- N -hydroxyoxindoles: A New Class of Compounds Endowed with Antitumor Activity. ChemMedChem 2016;11:1700-4. [DOI: 10.1002/cmdc.201600225] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
252 Kim SH, Shahani N, Bae BI, Sbodio JI, Chung Y, Nakaso K, Paul BD, Sawa A. Allele-specific regulation of mutant Huntingtin by Wig1, a downstream target of p53. Hum Mol Genet 2016;25:2514-24. [PMID: 27206983 DOI: 10.1093/hmg/ddw115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
253 Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. Sci China Life Sci 2016;59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Cited by in Crossref: 74] [Cited by in F6Publishing: 79] [Article Influence: 10.6] [Reference Citation Analysis]
254 Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G, Liu H, Zhang Y, Cao B, Baddoo M, Flemington EK, Zeng SX, Lu H. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. Elife 2016;5:e15099. [PMID: 27282385 DOI: 10.7554/eLife.15099] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 7.1] [Reference Citation Analysis]
255 Kwak SY, Yoo JO, An HJ, Bae IH, Park MJ, Kim J, Han YH. miR-5003-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization and direct targeting of E-cadherin. J Mol Cell Biol. 2016; Jun 9. [Epub ahead of print]. [PMID: 27282406 DOI: 10.1093/jmcb/mjw026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
256 Avtanski DB, Nagalingam A, Tomaszewski JE, Risbood P, Difillippantonio MJ, Saxena NK, Malhotra SV, Sharma D. Indolo-pyrido-isoquinolin based alkaloid inhibits growth, invasion and migration of breast cancer cells via activation of p53-miR34a axis. Mol Oncol. 2016;10:1118-1132. [PMID: 27259808 DOI: 10.1016/j.molonc.2016.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
257 Ribeiro CJ, Rodrigues CM, Moreira R, Santos MM. Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals (Basel) 2016;9:E25. [PMID: 27187415 DOI: 10.3390/ph9020025] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
258 Pant V, Xiong S, Chau G, Tsai K, Shetty G, Lozano G. Distinct downstream targets manifest p53-dependent pathologies in mice. Oncogene 2016;35:5713-21. [PMID: 27065327 DOI: 10.1038/onc.2016.111] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
259 Leslie PL, Zhang Y. MDM2 oligomers: antagonizers of the guardian of the genome. Oncogene 2016;35:6157-65. [PMID: 27041565 DOI: 10.1038/onc.2016.88] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
260 Kearns S, Lurz R, Orlova EV, Okorokov AL. Two p53 tetramers bind one consensus DNA response element. Nucleic Acids Res 2016;44:6185-99. [PMID: 27034469 DOI: 10.1093/nar/gkw215] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
261 Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. Annu Rev Pathol 2016;11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Cited by in Crossref: 153] [Cited by in F6Publishing: 161] [Article Influence: 21.9] [Reference Citation Analysis]
262 Stoehr CG, Stoehr R, Wenners A, Hartmann A, Bertz S, Spath V, Walter B, Junker K, Moch H, Hinze R, Denzinger S, Bond EE, Bond GL, Bluemke K, Weigelt K, Lieb V, Nolte E, Fornara P, Wullich B, Taubert H, Wach S. Homozygous G/G variant of SNP309 in the human MDM2 gene is associated with earlier tumor onset in Caucasian female renal cell carcinoma patients. Oncogenesis 2016;5:e205. [PMID: 26926790 DOI: 10.1038/oncsis.2016.15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
263 Wu W, Sun W, Sun T. Modeling the heterogeneity of p53 dynamics in DNA damage response. J Bioinform Comput Biol 2016;14:1650001. [DOI: 10.1142/s0219720016500013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
264 Karan G, Wang H, Chakrabarti A, Karan S, Liu Z, Xia Z, Gundluru M, Moreton S, Saunthararajah Y, Jackson MW, Agarwal MK, Wald DN. Identification of a Small Molecule That Overcomes HdmX-Mediated Suppression of p53. Mol Cancer Ther 2016;15:574-82. [PMID: 26883273 DOI: 10.1158/1535-7163.MCT-15-0467] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
265 Bagrodia A, Cha EK, Sfakianos JP, Zabor EC, Bochner BH, Al-Ahmadie HA, Solit DB, Coleman JA, Iyer G, Scott SN, Shah R, Ostrovnaya I, Lee B, Desai NB, Ren Q, Rosenberg JE, Dalbagni G, Bajorin DF, Reuter VE, Berger MF; Collaborators. Genomic Biomarkers for the Prediction of Stage and Prognosis of Upper Tract Urothelial Carcinoma. J Urol 2016;195:1684-9. [PMID: 26778714 DOI: 10.1016/j.juro.2016.01.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
266 Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K. Modulation of Protein-Protein Interactions for the Development of Novel Therapeutics. Mol Ther 2016;24:707-18. [PMID: 26675501 DOI: 10.1038/mt.2015.214] [Cited by in Crossref: 104] [Cited by in F6Publishing: 105] [Article Influence: 13.0] [Reference Citation Analysis]
267 Petrache Voicu SN, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E, Stan MS, Zărnescu O, Dinischiotu A. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line. Int J Mol Sci 2015;16:29398-416. [PMID: 26690408 DOI: 10.3390/ijms161226171] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 8.6] [Reference Citation Analysis]
268 Larkin K, Blum W. Novel therapies in AML: reason for hope or just hype? Am Soc Clin Oncol Educ Book 2014;:e341-51. [PMID: 24857123 DOI: 10.14694/EdBook_AM.2014.34.e341] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
269 Cohn SM, Vidrich A, Bickston SJ. Radiation Injury in the Gastrointestinal Tract. Yamada' s Textbook of Gastroenterology 2015. [DOI: 10.1002/9781118512074.ch129] [Reference Citation Analysis]
270 Lopez MB, Garcia MN, Grasso D, Bintz J, Molejon MI, Velez G, Lomberk G, Neira JL, Urrutia R, Iovanna J. Functional Characterization of Nupr1L, A Novel p53-Regulated Isoform of the High-Mobility Group (HMG)-Related Protumoral Protein Nupr1. J Cell Physiol 2015;230:2936-50. [PMID: 25899918 DOI: 10.1002/jcp.25022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
271 Meek DW. Regulation of the p53 response and its relationship to cancer. Biochem J 2015;469:325-46. [PMID: 26205489 DOI: 10.1042/BJ20150517] [Cited by in Crossref: 196] [Cited by in F6Publishing: 211] [Article Influence: 24.5] [Reference Citation Analysis]
272 Sun T, Cui J. Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective. Progress in Biophysics and Molecular Biology 2015;119:175-82. [DOI: 10.1016/j.pbiomolbio.2015.08.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
273 Rosso M, Polotskaia A, Bargonetti J. Homozygous mdm2 SNP309 cancer cells with compromised transcriptional elongation at p53 target genes are sensitive to induction of p53-independent cell death. Oncotarget 2015;6:34573-91. [PMID: 26416444 DOI: 10.18632/oncotarget.5312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
274 Ozaki T, Nakamura M, Shimozato O. Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules. 2015;5:2854-2876. [PMID: 26512706 DOI: 10.3390/biom5042854] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
275 Gansmo LB, Romundstad P, Birkeland E, Hveem K, Vatten L, Knappskog S, Lønning PE. MDM4 SNP34091 (rs4245739) and its effect on breast-, colon-, lung-, and prostate cancer risk. Cancer Med 2015;4:1901-7. [PMID: 26471763 DOI: 10.1002/cam4.555] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
276 Bill KL, Garnett J, Meaux I, Ma X, Creighton CJ, Bolshakov S, Barriere C, Debussche L, Lazar AJ, Prudner BC, Casadei L, Braggio D, Lopez G, Zewdu A, Bid H, Lev D, Pollock RE. SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma. Clin Cancer Res 2016;22:1150-60. [PMID: 26475335 DOI: 10.1158/1078-0432.CCR-15-1522] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 8.5] [Reference Citation Analysis]
277 Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2016;60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
278 Ishimura A, Terashima M, Tange S, Suzuki T. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis. Cell Tissue Res 2016;363:723-33. [DOI: 10.1007/s00441-015-2276-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
279 Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, Cescon M, Chieco P, Bolondi L, Gramantieri L. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget 2014;5:10607-20. [PMID: 25431954 DOI: 10.18632/oncotarget.2523] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
280 Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014;13:3037-58. [PMID: 25486564 DOI: 10.4161/15384101.2014.949083] [Cited by in Crossref: 99] [Cited by in F6Publishing: 101] [Article Influence: 12.4] [Reference Citation Analysis]
281 Duncan AD, Tsai W, Barton MC. p53. Signaling Pathways in Liver Diseases 2015. [DOI: 10.1002/9781118663387.ch26] [Reference Citation Analysis]
282 Okamoto K, Tsunematsu R, Tahira T, Sonoda K, Asanoma K, Yagi H, Yoneda T, Hayashi K, Wake N, Kato K. SNP55, a new functional polymorphism of MDM2-P2 promoter, contributes to allele-specific expression of MDM2 in endometrial cancers. BMC Med Genet 2015;16:67. [PMID: 26293665 DOI: 10.1186/s12881-015-0216-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
283 Li H, Liu Q, Wang Z, Fang R, Shen Y, Cai X, Gao Y, Li Y, Zhang X, Ye L. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer. J Biol Chem 2015;290:22649-61. [PMID: 26229107 DOI: 10.1074/jbc.M115.658468] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
284 Mendoza M, Mandani G, Momand J. The MDM2 gene family. Biomol Concepts 2014;5:9-19. [PMID: 25372739 DOI: 10.1515/bmc-2013-0027] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
285 Dickinson ER, Jurneczko E, Nicholson J, Hupp TR, Zawacka-Pankau J, Selivanova G, Barran PE. The use of ion mobility mass spectrometry to probe modulation of the structure of p53 and of MDM2 by small molecule inhibitors. Front Mol Biosci 2015;2:39. [PMID: 26217671 DOI: 10.3389/fmolb.2015.00039] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
286 Datta D, Anbarasu K, Rajabather S, Priya RS, Desai P, Mahalingam S. Nucleolar GTP-binding Protein-1 (NGP-1) Promotes G1 to S Phase Transition by Activating Cyclin-dependent Kinase Inhibitor p21 Cip1/Waf1. J Biol Chem 2015;290:21536-52. [PMID: 26203195 DOI: 10.1074/jbc.M115.637280] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
287 Shi Y, Joyner AS, Shadrick W, Palacios G, Lagisetti C, Potter PM, Sambucetti LC, Stamm S, Webb TR. Pharmacodynamic assays to facilitate preclinical and clinical development of pre-mRNA splicing modulatory drug candidates. Pharmacol Res Perspect 2015;3:e00158. [PMID: 26171237 DOI: 10.1002/prp2.158] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
288 Upadhyay M, Gupta S, Bhadauriya P, Ganesh S. Lafora disease proteins laforin and malin negatively regulate the HIPK2-p53 cell death pathway. Biochem Biophys Res Commun 2015;464:106-11. [PMID: 26102034 DOI: 10.1016/j.bbrc.2015.06.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
289 Hoffman-Luca CG, Yang CY, Lu J, Ziazadeh D, McEachern D, Debussche L, Wang S. Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment. PLoS One 2015;10:e0128807. [PMID: 26070072 DOI: 10.1371/journal.pone.0128807] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
290 Yu B, Yu D, Liu H. Spirooxindoles: Promising scaffolds for anticancer agents. European Journal of Medicinal Chemistry 2015;97:673-98. [DOI: 10.1016/j.ejmech.2014.06.056] [Cited by in Crossref: 514] [Cited by in F6Publishing: 469] [Article Influence: 64.3] [Reference Citation Analysis]
291 Stamper BD, Garcia ML, Nguyen DQ, Beyer RP, Bammler TK, Farin FM, Kavanagh TJ, Nelson SD. p53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo. Gene Regul Syst Bio 2015;9:1-14. [PMID: 26056430 DOI: 10.4137/GRSB.S25388] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
292 Heyne K, Heil TC, Bette B, Reichrath J, Roemer K. MDM2 binds and inhibits vitamin D receptor. Cell Cycle 2015;14:2003-10. [PMID: 25969952 DOI: 10.1080/15384101.2015.1044176] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
293 Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, Murakami M, Ruetz S, Guthy DA, Rynn C, Jensen MR, Wiesmann M, Kallen J, Furet P, Gessier F, Holzer P, Masuya K, Würthner J, Halilovic E, Hofmann F, Sellers WR, Graus Porta D. A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. Elife 2015;4:e06498. [PMID: 25965177 DOI: 10.7554/eLife.06498] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 6.8] [Reference Citation Analysis]
294 Timani KA, Liu Y, Fan Y, Mohammad KS, He JJ. Tip110 Regulates the Cross Talk between p53 and Hypoxia-Inducible Factor 1α under Hypoxia and Promotes Survival of Cancer Cells. Mol Cell Biol 2015;35:2254-64. [PMID: 25939381 DOI: 10.1128/MCB.00001-15] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
295 Raúl B, Antonio FL, Arturo BL, Miguel C, Rebeca G, Alejandro Á, Alejandra C, Margarita D, Clara O. Hyperglycemia promotes p53-Mdm2 interaction but reduces p53 ubiquitination in RINm5F cells. Mol Cell Biochem 2015;405:257-64. [DOI: 10.1007/s11010-015-2416-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
296 Hoffman Y, Pilpel Y, Oren M. microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol 2014;6:192-7. [PMID: 24868102 DOI: 10.1093/jmcb/mju020] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 5.6] [Reference Citation Analysis]
297 Meng X, Carlson NR, Dong J, Zhang Y. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways. Oncogene 2015;34:5709-17. [PMID: 25823025 DOI: 10.1038/onc.2015.39] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
298 Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 2015;54:2001-10. [PMID: 25753752 DOI: 10.1021/acs.biochem.5b00044] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
299 Hoffman-Luca CG, Ziazadeh D, McEachern D, Zhao Y, Sun W, Debussche L, Wang S. Elucidation of Acquired Resistance to Bcl-2 and MDM2 Inhibitors in Acute Leukemia In Vitro and In Vivo. Clin Cancer Res 2015;21:2558-68. [PMID: 25754349 DOI: 10.1158/1078-0432.CCR-14-2506] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
300 Al-Hussaini M, DiPersio JF. Small molecule inhibitors in acute myeloid leukemia: from the bench to the clinic. Expert Rev Hematol 2014;7:439-64. [PMID: 25025370 DOI: 10.1586/17474086.2014.932687] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
301 Devi GR, Alam MJ, Singh RK. Synchronization in stress p53 network. Math Med Biol 2015;32:437-56. [PMID: 25713051 DOI: 10.1093/imammb/dqv002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
302 Kok K, Arnosti DN. Dynamic reprogramming of chromatin: paradigmatic palimpsests and HES factors. Front Genet 2015;6:29. [PMID: 25713582 DOI: 10.3389/fgene.2015.00029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
303 Ye P, Liu Y, Chen C, Tang F, Wu Q, Wang X, Liu CG, Liu X, Liu R, Liu Y, Zheng P. An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. Mol Cell 2015;57:708-20. [PMID: 25639470 DOI: 10.1016/j.molcel.2014.12.034] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
304 Pant V, Lozano G. Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity. Oncotarget 2014;5:1149-56. [PMID: 24658419 DOI: 10.18632/oncotarget.1797] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
305 Zhang XW, Wang XF, Ni SJ, Qin W, Zhao LQ, Hua RX, Lu YW, Li J, Dimri GP, Guo WJ. UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop. J Pathol 2015;235:656-67. [PMID: 25382750 DOI: 10.1002/path.4478] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
306 Liu L, Bernard D, Wang S. Case Study: discovery of inhibitors of the MDM2-p53 protein-protein interaction. Methods Mol Biol 2015;1278:567-85. [PMID: 25859977 DOI: 10.1007/978-1-4939-2425-7_38] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
307 Chong KH, Samarasinghe S, Kulasiri D. Mathematical modelling of p53 basal dynamics and DNA damage response. Mathematical Biosciences 2015;259:27-42. [DOI: 10.1016/j.mbs.2014.10.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
308 Mondal C, Halder AK, Adhikari N, Saha A, Saha KD, Gayen S, Jha T. Comparative validated molecular modeling of p53-HDM2 inhibitors as antiproliferative agents. European Journal of Medicinal Chemistry 2015;90:860-75. [DOI: 10.1016/j.ejmech.2014.12.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
309 Qiu H, Qian W, Yu S, Yao Z. Stereodivergent total synthesis of chlorofusin and its all seven chromophore diastereomers. Tetrahedron 2015;71:370-80. [DOI: 10.1016/j.tet.2014.10.062] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
310 Gupta S, Hansel DE. Molecular Biology of Urothelial Cancer. Urological Oncology 2015. [DOI: 10.1007/978-0-85729-482-1_33] [Reference Citation Analysis]
311 Kumar A, Gupta G, Bishnoi AK, Saxena R, Saini KS, Konwar R, Kumar S, Dwivedi A. Design and synthesis of new bioisosteres of spirooxindoles (MI-63/219) as anti-breast cancer agents. Bioorg Med Chem 2015;23:839-48. [PMID: 25618595 DOI: 10.1016/j.bmc.2014.12.037] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
312 Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014;7:30-69. [PMID: 25545885 DOI: 10.3390/cancers7010030] [Cited by in Crossref: 208] [Cited by in F6Publishing: 216] [Article Influence: 23.1] [Reference Citation Analysis]
313 Kumari R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol 2014;1:e969653. [PMID: 27308356 DOI: 10.4161/23723548.2014.969653] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
314 Jain AK, Allton K, Duncan AD, Barton MC. TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Mol Cell Biol 2014;34:2695-709. [PMID: 24820418 DOI: 10.1128/MCB.01705-12] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
315 Aguilar A, Sun W, Liu L, Lu J, McEachern D, Bernard D, Deschamps JR, Wang S. Design of chemically stable, potent, and efficacious MDM2 inhibitors that exploit the retro-mannich ring-opening-cyclization reaction mechanism in spiro-oxindoles. J Med Chem 2014;57:10486-98. [PMID: 25496041 DOI: 10.1021/jm501541j] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 5.2] [Reference Citation Analysis]
316 Zhao Y, Aguilar A, Bernard D, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J Med Chem 2015;58:1038-52. [PMID: 25396320 DOI: 10.1021/jm501092z] [Cited by in Crossref: 326] [Cited by in F6Publishing: 336] [Article Influence: 36.2] [Reference Citation Analysis]
317 Woods SJ, Hannan KM, Pearson RB, Hannan RD. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim Biophys Acta 2015;1849:821-9. [PMID: 25464032 DOI: 10.1016/j.bbagrm.2014.10.007] [Cited by in Crossref: 91] [Cited by in F6Publishing: 98] [Article Influence: 10.1] [Reference Citation Analysis]
318 Borcherds W, Theillet FX, Katzer A, Finzel A, Mishall KM, Powell AT, Wu H, Manieri W, Dieterich C, Selenko P, Loewer A, Daughdrill GW. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat Chem Biol 2014;10:1000-2. [PMID: 25362358 DOI: 10.1038/nchembio.1668] [Cited by in Crossref: 138] [Cited by in F6Publishing: 138] [Article Influence: 15.3] [Reference Citation Analysis]
319 Lee MG, Han J, Jeong SI, Her NG, Lee JH, Ha TK, Kang MJ, Ryu BK, Chi SG. XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313. Proc Natl Acad Sci U S A 2014;111:15532-7. [PMID: 25313037 DOI: 10.1073/pnas.1411746111] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 5.0] [Reference Citation Analysis]
320 Liu Z, Miao Z, Li J, Fang K, Zhuang C, Du L, Sheng C, Li M. A fluorescent probe for imaging p53-MDM2 protein-protein interaction. Chem Biol Drug Des 2015;85:411-7. [PMID: 25226874 DOI: 10.1111/cbdd.12434] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
321 Zhou X, Hao Q, Zhang Q, Liao JM, Ke JW, Liao P, Cao B, Lu H. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ 2015;22:755-66. [PMID: 25301064 DOI: 10.1038/cdd.2014.167] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
322 Pant V, Lozano G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev 2014;28:1739-51. [PMID: 25128494 DOI: 10.1101/gad.247452.114] [Cited by in Crossref: 112] [Cited by in F6Publishing: 118] [Article Influence: 12.4] [Reference Citation Analysis]
323 Polański R, Noon AP, Blaydes J, Phillips A, Rubbi CP, Parsons K, Vlatković N, Boyd MT. Senescence induction in renal carcinoma cells by Nutlin-3: a potential therapeutic strategy based on MDM2 antagonism. Cancer Letters 2014;353:211-9. [DOI: 10.1016/j.canlet.2014.07.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
324 Sajeevan TP, Saraswathi TR, Ranganathan K, Joshua E, Rao UD. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst. J Pharm Bioallied Sci. 2014;6:S52-S57. [PMID: 25210385 DOI: 10.4103/0975-7406.137388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
325 Tecleab A, Zhang X, Sebti SM. Ral GTPase down-regulation stabilizes and reactivates p53 to inhibit malignant transformation. J Biol Chem 2014;289:31296-309. [PMID: 25210032 DOI: 10.1074/jbc.M114.565796] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
326 Yu Z, Zhuang C, Wu Y, Guo Z, Li J, Dong G, Yao J, Sheng C, Miao Z, Zhang W. Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors. Int J Mol Sci 2014;15:15741-53. [PMID: 25198897 DOI: 10.3390/ijms150915741] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
327 Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev. 2015;35:225-285. [PMID: 25164622 DOI: 10.1002/med.21327] [Cited by in Crossref: 128] [Cited by in F6Publishing: 133] [Article Influence: 14.2] [Reference Citation Analysis]
328 Xiong X, Zhao Y, Tang F, Wei D, Thomas D, Wang X, Liu Y, Zheng P, Sun Y. Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. Elife 2014;3:e02236. [PMID: 25144937 DOI: 10.7554/eLife.02236] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
329 Wang S, Sun W, Zhao Y, McEachern D, Meaux I, Barrière C, Stuckey JA, Meagher JL, Bai L, Liu L, Hoffman-Luca CG, Lu J, Shangary S, Yu S, Bernard D, Aguilar A, Dos-Santos O, Besret L, Guerif S, Pannier P, Gorge-Bernat D, Debussche L. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res 2014;74:5855-65. [PMID: 25145672 DOI: 10.1158/0008-5472.CAN-14-0799] [Cited by in Crossref: 211] [Cited by in F6Publishing: 217] [Article Influence: 23.4] [Reference Citation Analysis]
330 Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond) 2014;11:23. [PMID: 25152696 DOI: 10.1186/1476-9255-11-23] [Cited by in Crossref: 78] [Cited by in F6Publishing: 87] [Article Influence: 8.7] [Reference Citation Analysis]
331 Sieren JC, Meyerholz DK, Wang XJ, Davis BT, Newell JD, Hammond E, Rohret JA, Rohret FA, Struzynski JT, Goeken JA. Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest. 2014;124:4052-4066. [PMID: 25105366 DOI: 10.1172/jci75447] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 8.1] [Reference Citation Analysis]
332 Cao L, Kawai H, Sasatani M, Iizuka D, Masuda Y, Inaba T, Suzuki K, Ootsuyama A, Umata T, Kamiya K, Suzuki F. A novel ATM/TP53/p21-mediated checkpoint only activated by chronic γ-irradiation. PLoS One 2014;9:e104279. [PMID: 25093836 DOI: 10.1371/journal.pone.0104279] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
333 Tong L, Wu S. ROS and p53 in regulation of UVB-induced HDM2 alternative splicing. Photochem Photobiol 2015;91:221-4. [PMID: 24986024 DOI: 10.1111/php.12306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
334 Brock SE, Rendon BE, Xin D, Yaddanapudi K, Mitchell RA. MIF family members cooperatively inhibit p53 expression and activity. PLoS One 2014;9:e99795. [PMID: 24932684 DOI: 10.1371/journal.pone.0099795] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
335 Zhang Z, Ding Q, Liu JJ, Zhang J, Jiang N, Chu XJ, Bartkovitz D, Luk KC, Janson C, Tovar C, Filipovic ZM, Higgins B, Glenn K, Packman K, Vassilev LT, Graves B. Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy. Bioorg Med Chem 2014;22:4001-9. [PMID: 24997575 DOI: 10.1016/j.bmc.2014.05.072] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
336 Sun XX, Dai MS. Deubiquitinating enzyme regulation of the p53 pathway: A lesson from Otub1. World J Biol Chem 2014; 5(2): 75-84 [PMID: 24920999 DOI: 10.4331/wjbc.v5.i2.75] [Cited by in F6Publishing: 21] [Reference Citation Analysis]
337 Dreier J, Dummer R, Felderer L, Nägeli M, Gobbi S, Kunstfeld R. Emerging drugs and combination strategies for basal cell carcinoma. Expert Opin Emerg Drugs 2014;19:353-65. [PMID: 24773312 DOI: 10.1517/14728214.2014.914171] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
338 Zhang L, Cheng Y, Liew K. Mathematical modeling of p53 pulses in G2 phase with DNA damage. Applied Mathematics and Computation 2014;232:1000-10. [DOI: 10.1016/j.amc.2014.01.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
339 Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P. Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies. Chem Rev 2014;114:4640-94. [DOI: 10.1021/cr4004049] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 6.9] [Reference Citation Analysis]
340 Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai) 2014;46:180-9. [PMID: 24389645 DOI: 10.1093/abbs/gmt147] [Cited by in Crossref: 92] [Cited by in F6Publishing: 101] [Article Influence: 10.2] [Reference Citation Analysis]
341 Reed SM, Hagen J, Tompkins VS, Thies K, Quelle FW, Quelle DE. Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53. Cell Cycle 2014;13:1288-98. [PMID: 24621507 DOI: 10.4161/cc.28202] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
342 Wan ZX, Yuan DM, Zhuo YM, Yi X, Zhou J, Xu ZX, Zhou JL. The proteasome activator PA28γ, a negative regulator of p53, is transcriptionally up-regulated by p53. Int J Mol Sci 2014;15:2573-84. [PMID: 24531141 DOI: 10.3390/ijms15022573] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
343 Ma Y, Lahue BR, Shipps GW, Brookes J, Wang Y. Substituted piperidines as HDM2 inhibitors. Bioorganic & Medicinal Chemistry Letters 2014;24:1026-30. [DOI: 10.1016/j.bmcl.2014.01.026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
344 Sun T, Cui J. A plausible model for bimodal p53 switch in DNA damage response. FEBS Lett 2014;588:815-21. [PMID: 24486906 DOI: 10.1016/j.febslet.2014.01.044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
345 Bharatham N, Bharatham K, Shelat AA, Bashford D. Ligand binding mode prediction by docking: mdm2/mdmx inhibitors as a case study. J Chem Inf Model 2014;54:648-59. [PMID: 24358984 DOI: 10.1021/ci4004656] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
346 Lou Z, Wang S. E3 ubiquitin ligases and human papillomavirus-induced carcinogenesis. J Int Med Res 2014;42:247-60. [PMID: 24445694 DOI: 10.1177/0300060513506655] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
347 Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene. 2015;34:1-14. [PMID: 24441040 DOI: 10.1038/onc.2013.570] [Cited by in Crossref: 185] [Cited by in F6Publishing: 194] [Article Influence: 20.6] [Reference Citation Analysis]
348 Todd R, Lunec J. Molecular pathology and potential therapeutic targets in soft-tissue sarcoma. Expert Review of Anticancer Therapy 2014;8:939-48. [DOI: 10.1586/14737140.8.6.939] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
349 Jiang Z. Prognostic biomarkers in renal cell carcinoma. Expert Review of Molecular Diagnostics 2014;7:293-307. [DOI: 10.1586/14737159.7.3.293] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
350 Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory Angiogenesis and the Tumor Microenvironment as Targets for Cancer Therapy and Prevention. Advances in Nutrition and Cancer 2014. [DOI: 10.1007/978-3-642-38007-5_23] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
351 Roh J, Koch WM. p53 in Head and Neck Cancer. Molecular Determinants of Head and Neck Cancer 2014. [DOI: 10.1007/978-1-4614-8815-6_12] [Reference Citation Analysis]
352 Zhang Q, Zeng SX, Lu H. Targeting p53-MDM2-MDMX loop for cancer therapy. Subcell Biochem 2014;85:281-319. [PMID: 25201201 DOI: 10.1007/978-94-017-9211-0_16] [Cited by in Crossref: 54] [Cited by in F6Publishing: 61] [Article Influence: 6.0] [Reference Citation Analysis]
353 Robertson ED, Semenchenko K, Wasylyk B. Crosstalk Between Mdm2, p53 and HIF1-α: Distinct Responses to Oxygen Stress and Implications for Tumour Hypoxia. Subcellular Biochemistry 2014. [DOI: 10.1007/978-94-017-9211-0_11] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
354 Goto K, Tanaka T, Nakano T, Okada M, Hozumi Y, Topham MK, Martelli AM. DGKζ under stress conditions: “To be nuclear or cytoplasmic, that is the question”. Advances in Biological Regulation 2014;54:242-53. [DOI: 10.1016/j.jbior.2013.08.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
355 Baran K, Rodriguez D, Green D. The DNA Damage Response Mediates Apoptosis and Tumor Suppression. Cell Death 2014. [DOI: 10.1007/978-1-4614-9302-0_7] [Reference Citation Analysis]
356 von Stechow L, van de Water B, Danen EH. Unraveling the DNA Damage Response Signaling Network Through RNA Interference Screening. Toxicogenomics-Based Cellular Models 2014. [DOI: 10.1016/b978-0-12-397862-2.00003-6] [Reference Citation Analysis]
357 Sheng W, Dong M, Zhou J, Li X, Liu Q, Dong Q, Li F. The clinicopathological significance and relationship of Gli1, MDM2 and p53 expression in resectable pancreatic cancer. Histopathology. 2014;64:523-535. [PMID: 24289472 DOI: 10.1111/his.12273] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
358 Ling H, Samarasinghe S, Kulasiri D. Novel recurrent neural network for modelling biological networks: Oscillatory p53 interaction dynamics. Biosystems 2013;114:191-205. [DOI: 10.1016/j.biosystems.2013.08.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
359 Zhang Y, Zhang Q, Zeng SX, Hao Q, Lu H. Inauhzin sensitizes p53-dependent cytotoxicity and tumor suppression of chemotherapeutic agents. Neoplasia 2013;15:523-34. [PMID: 23633924 DOI: 10.1593/neo.13142] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
360 Loewer A, Karanam K, Mock C, Lahav G. The p53 response in single cells is linearly correlated to the number of DNA breaks without a distinct threshold. BMC Biol 2013;11:114. [PMID: 24252182 DOI: 10.1186/1741-7007-11-114] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 5.6] [Reference Citation Analysis]
361 Li H, Zhang XP, Liu F. Coordination between p21 and DDB2 in the cellular response to UV radiation. PLoS One 2013;8:e80111. [PMID: 24260342 DOI: 10.1371/journal.pone.0080111] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
362 Baresova P, Musilova J, Pitha PM, Lubyova B. p53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3. Mol Cell Biol 2014;34:386-99. [PMID: 24248600 DOI: 10.1128/MCB.01011-13] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
363 Yan S, Qiu L, Ma K, Zhang X, Zhao Y, Zhang J, Li X, Hao X, Li Z. FATS is an E2-independent ubiquitin ligase that stabilizes p53 and promotes its activation in response to DNA damage. Oncogene 2014;33:5424-33. [PMID: 24240685 DOI: 10.1038/onc.2013.494] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
364 Bai D, Zhang J, Xiao W, Zheng X. Regulation of the HDM2-p53 pathway by ribosomal protein L6 in response to ribosomal stress. Nucleic Acids Res. 2014;42:1799-1811. [PMID: 24174547 DOI: 10.1093/nar/gkt971] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 3.9] [Reference Citation Analysis]
365 Devine T, Dai MS. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des. 2013;19:3248-3262. [PMID: 23151129 DOI: 10.2174/1381612811319180009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
366 Hoffman Y, Bublik DR, Pilpel Y, Oren M. miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ 2014;21:302-9. [PMID: 24141721 DOI: 10.1038/cdd.2013.146] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 6.5] [Reference Citation Analysis]
367 Okoro DR, Arva N, Gao C, Polotskaia A, Puente C, Rosso M, Bargonetti J. Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator. PLoS One 2013;8:e77643. [PMID: 24147044 DOI: 10.1371/journal.pone.0077643] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
368 Lee T, Ahn J. Stereoselective Cycloaddition Reactions. Stereoselective Synthesis of Drugs and Natural Products 2013. [DOI: 10.1002/9781118596784.ssd016] [Reference Citation Analysis]
369 Ozaki T, Nakagawara A, Nagase H. RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013;2013:271347. [PMID: 24078903 DOI: 10.1155/2013/271347] [Cited by in Crossref: 25] [Cited by in F6Publishing: 34] [Article Influence: 2.5] [Reference Citation Analysis]
370 Pant V, Xiong S, Jackson JG, Post SM, Abbas HA, Quintás-Cardama A, Hamir AN, Lozano G. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev 2013;27:1857-67. [PMID: 23973961 DOI: 10.1101/gad.227249.113] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 5.1] [Reference Citation Analysis]
371 Yamada T, Das Gupta TK, Beattie CW. p28, an Anionic Cell-Penetrating Peptide, Increases the Activity of Wild Type and Mutated p53 without Altering Its Conformation. Mol Pharmaceutics 2013;10:3375-83. [DOI: 10.1021/mp400221r] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
372 Obacz J, Pastorekova S, Vojtesek B, Hrstka R. Cross-talk between HIF and p53 as mediators of molecular responses to physiological and genotoxic stresses. Mol Cancer 2013;12:93. [PMID: 23945296 DOI: 10.1186/1476-4598-12-93] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 5.0] [Reference Citation Analysis]
373 Calapre L, Gray ES, Ziman M. Heat stress: A risk factor for skin carcinogenesis. Cancer Letters 2013;337:35-40. [DOI: 10.1016/j.canlet.2013.05.039] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
374 Lefort K, Brooks Y, Ostano P, Cario-André M, Calpini V, Guinea-Viniegra J, Albinger-Hegyi A, Hoetzenecker W, Kolfschoten I, Wagner EF, Werner S, Dotto GP. A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 2013;32:2248-63. [PMID: 23860128 DOI: 10.1038/emboj.2013.156] [Cited by in Crossref: 100] [Cited by in F6Publishing: 106] [Article Influence: 10.0] [Reference Citation Analysis]
375 Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, Chu XJ, Bartkovitz D, Podlaski F, Janson C, Tovar C, Filipovic ZM, Higgins B, Glenn K, Packman K, Vassilev LT, Graves B. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 2013;56:5979-83. [PMID: 23808545 DOI: 10.1021/jm400487c] [Cited by in Crossref: 362] [Cited by in F6Publishing: 380] [Article Influence: 36.2] [Reference Citation Analysis]
376 Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 2013;4:87-98. [PMID: 23831031 DOI: 10.1016/j.celrep.2013.05.045] [Cited by in Crossref: 171] [Cited by in F6Publishing: 158] [Article Influence: 17.1] [Reference Citation Analysis]
377 Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 2013;56:5553-61. [PMID: 23786219 DOI: 10.1021/jm4005708] [Cited by in Crossref: 199] [Cited by in F6Publishing: 203] [Article Influence: 19.9] [Reference Citation Analysis]
378 Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res. 2013;27:254-271. [PMID: 23885265 DOI: 10.7555/jbr.27.20130030] [Cited by in Crossref: 104] [Cited by in F6Publishing: 174] [Article Influence: 10.4] [Reference Citation Analysis]
379 Park JS, Lim MA, Cho ML, Ryu JG, Moon YM, Jhun JY, Byun JK, Kim EK, Hwang SY, Ju JH. p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice. Arthritis Rheum. 2013;65:949-959. [PMID: 23280308 DOI: 10.1002/art.37841] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 5.4] [Reference Citation Analysis]
380 Cho SJ, Rossi A, Jung YS, Yan W, Liu G, Zhang J, Zhang M, Chen X. Ninjurin1, a target of p53, regulates p53 expression and p53-dependent cell survival, senescence, and radiation-induced mortality. Proc Natl Acad Sci U S A 2013;110:9362-7. [PMID: 23690620 DOI: 10.1073/pnas.1221242110] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
381 Hu J, Wang Y. p53 and the PWWP domain containing effector proteins in chromatin damage repair. Cell Dev Biol 2013;2:112. [PMID: 25264544 DOI: 10.4172/2168-9296.1000112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
382 Khoury K, Dömling A. P53 mdm2 inhibitors. Curr Pharm Des 2012;18:4668-78. [PMID: 22650254 DOI: 10.2174/138161212802651580] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
383 Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A. Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 2013;4:e610. [PMID: 23618908 DOI: 10.1038/cddis.2013.127] [Cited by in Crossref: 61] [Cited by in F6Publishing: 68] [Article Influence: 6.1] [Reference Citation Analysis]
384 Chen X, He C, Zhang Z, Wang J. Sensitive chemiluminescence detection of wild-type p53 protein captured by surface-confined consensus DNA duplexes. Biosens Bioelectron 2013;47:335-9. [PMID: 23603130 DOI: 10.1016/j.bios.2013.03.059] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
385 Smardova J, Liskova K, Ravcukova B, Kubiczkova L, Sevcikova S, Michalek J, Svitakova M, Vybihal V, Kren L, Smarda J. High frequency of temperature-sensitive mutants of p53 in glioblastoma. Pathol Oncol Res 2013;19:421-8. [PMID: 23536279 DOI: 10.1007/s12253-012-9596-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
386 Boyd MT, Vlatkovic N. p53: a molecular marker for the detection of cancer. Expert Opin Med Diagn 2008;2:1013-24. [PMID: 23495923 DOI: 10.1517/17530059.2.9.1013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
387 Davis JR, Mossalam M, Lim CS. Controlled access of p53 to the nucleus regulates its proteasomal degradation by MDM2. Mol Pharm 2013;10:1340-9. [PMID: 23398638 DOI: 10.1021/mp300543t] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
388 Khoury K, Holak TA, Dömling A. p53/MDM2 Antagonists: Towards Nongenotoxic Anticancer Treatments. Protein-Protein Interactions in Drug Discovery 2013. [DOI: 10.1002/9783527648207.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
389 Alam MJ, Devi GR, Ravins, Ishrat R, Agarwal SM, Singh RK. Switching p53 states by calcium: dynamics and interaction of stress systems. Mol Biosyst 2013;9:508-21. [PMID: 23360948 DOI: 10.1039/c3mb25277a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
390 Balik V, Srovnal J, Sulla I, Kalita O, Foltanova T, Vaverka M, Hrabalek L, Hajduch M. MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol. 2013;112:1-8. [PMID: 23307326 DOI: 10.1007/s11060-012-1038-6] [Cited by in Crossref: 85] [Cited by in F6Publishing: 84] [Article Influence: 8.5] [Reference Citation Analysis]
391 Sahora A, Khanna C. Cellular Growth/Neoplasia. Canine and Feline Gastroenterology 2013. [DOI: 10.1016/b978-1-4160-3661-6.00005-5] [Reference Citation Analysis]
392 Liao JM, Lu H. ChIP for identification of p53 responsive DNA promoters. Methods Mol Biol 2013;962:201-10. [PMID: 23150449 DOI: 10.1007/978-1-62703-236-0_17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
393 Tanaka T, Okada M, Hozumi Y, Tachibana K, Kitanaka C, Hamamoto Y, Martelli AM, Topham MK, Iino M, Goto K. Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. Journal of Cell Science. [DOI: 10.1242/jcs.118711] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
394 Argyle DJ, Khanna C. Tumor Biology and Metastasis. Withrow and MacEwen's Small Animal Clinical Oncology 2013. [DOI: 10.1016/b978-1-4377-2362-5.00002-5] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
395 Jung HY, Joo HJ, Park JK, Kim YH. The Blocking of c-Met Signaling Induces Apoptosis through the Increase of p53 Protein in Lung Cancer. Cancer Res Treat 2012;44:251-61. [PMID: 23341789 DOI: 10.4143/crt.2012.44.4.251] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
396 Kubo N, Wu D, Yoshihara Y, Sang M, Nakagawara A, Ozaki T. Co-chaperon DnaJC7/TPR2 enhances p53 stability and activity through blocking the complex formation between p53 and MDM2. Biochem Biophys Res Commun. 2013;430:1034-1039. [PMID: 23261415 DOI: 10.1016/j.bbrc.2012.11.121] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
397 Yun SJ, Moon SK, Kim WJ. Investigational cell cycle inhibitors in clinical trials for bladder cancer. Expert Opin Investig Drugs 2013;22:369-77. [PMID: 23256895 DOI: 10.1517/13543784.2013.751097] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
398 Bhattacharya S, Chaum E, Johnson DA, Johnson LR. Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association. Invest Ophthalmol Vis Sci 2012;53:8350-66. [PMID: 23139272 DOI: 10.1167/iovs.12-10495] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 4.4] [Reference Citation Analysis]
399 Jung YS, Qian Y, Yan W, Chen X. Pirh2 E3 ubiquitin ligase modulates keratinocyte differentiation through p63. J Invest Dermatol 2013;133:1178-87. [PMID: 23235527 DOI: 10.1038/jid.2012.466] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.0] [Reference Citation Analysis]
400 Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 2012;7:e51426. [PMID: 23251530 DOI: 10.1371/journal.pone.0051426] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 7.5] [Reference Citation Analysis]
401 Gadbail AR, Patil R, Chaudhary M. Co-expression of Ki-67 and p53 protein in ameloblastoma and keratocystic odontogenic tumor. Acta Odontol Scand 2012;70:529-35. [PMID: 21780975 DOI: 10.3109/00016357.2011.600714] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
402 Choi M, Shi J, Jung SH, Chen X, Cho KH. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci Signal 2012;5:ra83. [PMID: 23169817 DOI: 10.1126/scisignal.2003363] [Cited by in Crossref: 124] [Cited by in F6Publishing: 126] [Article Influence: 11.3] [Reference Citation Analysis]
403 Hu W, Feng Z, Levine AJ. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Genes Cancer 2012;3:199-208. [PMID: 23150753 DOI: 10.1177/1947601912454734] [Cited by in Crossref: 101] [Cited by in F6Publishing: 106] [Article Influence: 9.2] [Reference Citation Analysis]
404 Zhou X, Liao JM, Liao WJ, Lu H. Scission of the p53-MDM2 Loop by Ribosomal Proteins. Genes Cancer 2012;3:298-310. [PMID: 23150763 DOI: 10.1177/1947601912455200] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 4.8] [Reference Citation Analysis]
405 Gannon HS, Jones SN. Using Mouse Models to Explore MDM-p53 Signaling in Development, Cell Growth, and Tumorigenesis. Genes Cancer 2012;3:209-18. [PMID: 23150754 DOI: 10.1177/1947601912455324] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
406 Tollini LA, Zhang Y. p53 Regulation Goes Live-Mdm2 and MdmX Co-Star: Lessons Learned from Mouse Modeling. Genes Cancer 2012;3:219-25. [PMID: 23150755 DOI: 10.1177/1947601912454732] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
407 Delbridge AR, Valente LJ, Strasser A. The role of the apoptotic machinery in tumor suppression. Cold Spring Harb Perspect Biol 2012;4:a008789. [PMID: 23125015 DOI: 10.1101/cshperspect.a008789] [Cited by in Crossref: 60] [Cited by in F6Publishing: 69] [Article Influence: 5.5] [Reference Citation Analysis]
408 Zhuang C, Miao Z, Zhu L, Dong G, Guo Z, Wang S, Zhang Y, Wu Y, Yao J, Sheng C, Zhang W. Discovery, synthesis, and biological evaluation of orally active pyrrolidone derivatives as novel inhibitors of p53-MDM2 protein-protein interaction. J Med Chem 2012;55:9630-42. [PMID: 23046248 DOI: 10.1021/jm300969t] [Cited by in Crossref: 94] [Cited by in F6Publishing: 95] [Article Influence: 8.5] [Reference Citation Analysis]
409 Proestling K, Hebar A, Pruckner N, Marton E, Vinatzer U, Schreiber M. The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLoS One 2012;7:e47325. [PMID: 23071787 DOI: 10.1371/journal.pone.0047325] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
410 Wu S, Chen L, Becker A, Schonbrunn E, Chen J. Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding. Mol Cell Biol 2012;32:4821-32. [PMID: 23028042 DOI: 10.1128/MCB.00851-12] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
411 Tiwari A, Igoshin OA. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times. Phys Biol 2012;9:055003. [PMID: 23011599 DOI: 10.1088/1478-3975/9/5/055003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
412 Sosin AM, Burger AM, Siddiqi A, Abrams J, Mohammad RM, Al-Katib AM. HDM2 antagonist MI-219 (spiro-oxindole), but not Nutlin-3 (cis-imidazoline), regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas. J Hematol Oncol. 2012;5:57. [PMID: 22989009 DOI: 10.1186/1756-8722-5-57] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 2.4] [Reference Citation Analysis]
413 Dimitrio L, Clairambault J, Natalini R. A spatial physiological model for p53 intracellular dynamics. J Theor Biol 2013;316:9-24. [PMID: 22982291 DOI: 10.1016/j.jtbi.2012.08.035] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
414 Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JÅ, Steffensen KR, Mulder M, Stinissen P, Hellings N, Hendriks JJ. Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS One 2012;7:e44998. [PMID: 22984598 DOI: 10.1371/journal.pone.0044998] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 4.1] [Reference Citation Analysis]
415 Hayashida K, Kajino K, Hattori M, Wallace M, Morrison I, Greene MI, Sugimoto C. MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes. Exp Mol Pathol 2013;94:228-38. [PMID: 22981919 DOI: 10.1016/j.yexmp.2012.08.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
416 Smolka MB, Bastos de Oliveira FM, Harris MR, de Bruin RA. The checkpoint transcriptional response: make sure to turn it off once you are satisfied. Cell Cycle 2012;11:3166-74. [PMID: 22895177 DOI: 10.4161/cc.21197] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
417 Lipski R, Lippincott DJ, Durden BC, Kaplan AR, Keiser HE, Park JH, Levesque AA. p53 Dimers associate with a head-to-tail response element to repress cyclin B transcription. PLoS One 2012;7:e42615. [PMID: 22905155 DOI: 10.1371/journal.pone.0042615] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
418 Zhang Y, Zhang Q, Zeng SX, Zhang Y, Mayo LD, Lu H. Inauhzin and Nutlin3 synergistically activate p53 and suppress tumor growth. Cancer Biol Ther. 2012;13:915-924. [PMID: 22785205 DOI: 10.4161/cbt.20844] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
419 Warner WA, Sanchez R, Dawoodian A, Li E, Momand J. Identification of FDA-approved drugs that computationally bind to MDM2. Chem Biol Drug Des 2012;80:631-7. [PMID: 22703617 DOI: 10.1111/j.1747-0285.2012.01428.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
420 Chakraborty A, Kenmochi N. Ribosomes and Ribosomal Proteins: More Than Just ‘Housekeeping’. eLS 2012. [DOI: 10.1002/9780470015902.a0005055.pub2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
421 Zhang X, Zhang Z, Cheng J, Li M, Wang W, Xu W, Wang H, Zhang R. Transcription factor NFAT1 activates the mdm2 oncogene independent of p53. J Biol Chem 2012;287:30468-76. [PMID: 22787160 DOI: 10.1074/jbc.M112.373738] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 3.4] [Reference Citation Analysis]
422 Zhang X, Wang W, Wang H, Wang MH, Xu W, Zhang R. Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene. 2013;32:2782-2791. [PMID: 22777350 DOI: 10.1038/onc.2012.289] [Cited by in Crossref: 57] [Cited by in F6Publishing: 64] [Article Influence: 5.2] [Reference Citation Analysis]
423 Bourthoumieu S, Magnaudeix A, Terro F, Leveque P, Collin A, Yardin C. Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 2013;34:52-60. [DOI: 10.1002/bem.21744] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
424 Bernard D, Zhao Y, Wang S. AM-8553: a novel MDM2 inhibitor with a promising outlook for potential clinical development. J Med Chem 2012;55:4934-5. [PMID: 22624960 DOI: 10.1021/jm3007068] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
425 Gannon HS, Woda BA, Jones SN. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 2012;21:668-79. [PMID: 22624716 DOI: 10.1016/j.ccr.2012.04.011] [Cited by in Crossref: 63] [Cited by in F6Publishing: 69] [Article Influence: 5.7] [Reference Citation Analysis]
426 Zhang XP, Liu F, Wang W. Regulation of the DNA damage response by p53 cofactors. Biophys J 2012;102:2251-60. [PMID: 22677378 DOI: 10.1016/j.bpj.2012.04.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
427 Lee JH, Jin Y, He G, Zeng SX, Wang YV, Wahl GM, Lu H. Hypoxia activates tumor suppressor p53 by inducing ATR-Chk1 kinase cascade-mediated phosphorylation and consequent 14-3-3γ inactivation of MDMX protein. J Biol Chem 2012;287:20898-903. [PMID: 22556425 DOI: 10.1074/jbc.M111.336875] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
428 Jung YS, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: its role in tumorigenesis and cancer therapy. FEBS Lett. 2012;586:1397-1402. [PMID: 22673504 DOI: 10.1016/j.febslet.2012.03.052] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 3.6] [Reference Citation Analysis]
429 Dai MS, Challagundla KB, Sun XX, Palam LR, Zeng SX, Wek RC, Lu H. Physical and functional interaction between ribosomal protein L11 and the tumor suppressor ARF. J Biol Chem 2012;287:17120-9. [PMID: 22467867 DOI: 10.1074/jbc.M111.311902] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
430 Zhou X, Hao Q, Liao J, Zhang Q, Lu H. Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene. 2013;32:388-396. [PMID: 22391559 DOI: 10.1038/onc.2012.63] [Cited by in Crossref: 108] [Cited by in F6Publishing: 121] [Article Influence: 9.8] [Reference Citation Analysis]
431 Koo T, Choi IK, Kim M, Lee JS, Oh E, Kim J, Yun CO. Negative regulation-resistant p53 variant enhances oncolytic adenoviral gene therapy. Hum Gene Ther 2012;23:609-22. [PMID: 22248367 DOI: 10.1089/hum.2011.114] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
432 Lafontaine J, Rodier F, Ouellet V, Mes-Masson AM. Necdin, a p53-target gene, is an inhibitor of p53-mediated growth arrest. PLoS One 2012;7:e31916. [PMID: 22355404 DOI: 10.1371/journal.pone.0031916] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
433 Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, Meroueh SO, Lu H. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol Med 2012;4:298-312. [PMID: 22331558 DOI: 10.1002/emmm.201100211] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 6.8] [Reference Citation Analysis]
434 Biderman L, Poyurovsky MV, Assia Y, Manley JL, Prives C. MdmX is required for p53 interaction with and full induction of the Mdm2 promoter after cellular stress. Mol Cell Biol. 2012;32:1214-1225. [PMID: 22290440 DOI: 10.1128/mcb.06150-11] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 1.5] [Reference Citation Analysis]
435 Coschi CH, Dick FA. Chromosome instability and deregulated proliferation: an unavoidable duo. Cell Mol Life Sci 2012;69:2009-24. [PMID: 22223110 DOI: 10.1007/s00018-011-0910-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
436 Lu X. p53. Recent Advances in Cancer Research and Therapy 2012. [DOI: 10.1016/b978-0-12-397833-2.00009-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
437 Wang S, Zhao Y, Bernard D, Aguilar A, Kumar S. Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. Topics in Medicinal Chemistry 2012. [DOI: 10.1007/978-3-642-28965-1_2] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 4.9] [Reference Citation Analysis]
438 Charles N, Lassman AB, Holland EC. Mouse models for brain tumor therapy. Brain Tumors 2012. [DOI: 10.1016/b978-0-443-06967-3.00017-x] [Reference Citation Analysis]
439 Park JH, Park J, Choi JK, Lyu J, Bae MG, Lee YG, Bae JB, Park DY, Yang HK, Kim TY, Kim YJ. Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genomics 2011;4:82. [PMID: 22133303 DOI: 10.1186/1755-8794-4-82] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 3.3] [Reference Citation Analysis]
440 Sun XX, Challagundla KB, Dai MS. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J. 2012;31:576-592. [PMID: 22124327 DOI: 10.1038/emboj.2011.434] [Cited by in Crossref: 132] [Cited by in F6Publishing: 141] [Article Influence: 11.0] [Reference Citation Analysis]
441 Li X, Gilkes D, Li B, Cheng Q, Pernazza D, Lawrence H, Lawrence N, Chen J. Abnormal MDMX degradation in tumor cells due to ARF deficiency. Oncogene 2012;31:3721-32. [PMID: 22120712 DOI: 10.1038/onc.2011.534] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
442 Mihalas GI, Simon Z, Balea G, Popa E. POSSIBLE OSCILLATORY BEHAVIOR IN P53–MDM2 INTERACTION COMPUTER SIMULATION. J Biol Syst 2011;08:21-9. [DOI: 10.1142/s0218339000000031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.7] [Reference Citation Analysis]
443 Solé RV, Pastor-satorras R, Smith E, Kepler TB. A MODEL OF LARGE-SCALE PROTEOME EVOLUTION. Advs Complex Syst 2011;05:43-54. [DOI: 10.1142/s021952590200047x] [Cited by in Crossref: 214] [Cited by in F6Publishing: 212] [Article Influence: 17.8] [Reference Citation Analysis]
444 Sun T, Yang W, Liu J, Shen P. Modeling the basal dynamics of p53 system. PLoS One 2011;6:e27882. [PMID: 22114721 DOI: 10.1371/journal.pone.0027882] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 2.6] [Reference Citation Analysis]
445 Wen R, Li J, Xu X, Cui Z, Xiao W. Zebrafish Mms2 promotes K63-linked polyubiquitination and is involved in p53-mediated DNA-damage response. DNA Repair (Amst) 2012;11:157-66. [PMID: 22055568 DOI: 10.1016/j.dnarep.2011.10.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
446 Latini P, Frontini M, Caputo M, Gregan J, Cipak L, Filippi S, Kumar V, Vélez-Cruz R, Stefanini M, Proietti-De-Santis L. CSA and CSB proteins interact with p53 and regulate its Mdm2-dependent ubiquitination. Cell Cycle 2011;10:3719-30. [PMID: 22032989 DOI: 10.4161/cc.10.21.17905] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
447 Melanson BD, Bose R, Hamill JD, Marcellus KA, Pan EF, McKay BC. The role of mRNA decay in p53-induced gene expression. RNA 2011;17:2222-34. [PMID: 22020975 DOI: 10.1261/rna.030122.111] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.9] [Reference Citation Analysis]
448 Zegura B, Gajski G, Straser A, Garaj-Vrhovac V, Filipič M. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes. Mutat Res 2011;726:116-22. [PMID: 22001196 DOI: 10.1016/j.mrgentox.2011.10.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
449 Oliver TG, Meylan E, Chang GP, Xue W, Burke JR, Humpton TJ, Hubbard D, Bhutkar A, Jacks T. Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 2011;43:57-71. [PMID: 21726810 DOI: 10.1016/j.molcel.2011.06.012] [Cited by in Crossref: 108] [Cited by in F6Publishing: 97] [Article Influence: 9.0] [Reference Citation Analysis]
450 Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, Skorupski K, Chen H, Chen X. Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev 2011;25:1528-43. [PMID: 21764855 DOI: 10.1101/gad.2069311] [Cited by in Crossref: 101] [Cited by in F6Publishing: 105] [Article Influence: 8.4] [Reference Citation Analysis]
451 Zhang Q, Xiao H, Chai SC, Hoang QQ, Lu H. Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem 2011;286:38264-74. [PMID: 21903592 DOI: 10.1074/jbc.M111.277012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
452 Batchelor E, Loewer A, Mock C, Lahav G. Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 2011;7:488. [PMID: 21556066 DOI: 10.1038/msb.2011.20] [Cited by in Crossref: 237] [Cited by in F6Publishing: 242] [Article Influence: 19.8] [Reference Citation Analysis]
453 Gonzalez-moles M, Scully C, Ruiz-avila I. Molecular findings in oral premalignant fields: update on their diagnostic and clinical implications: Oral premalignant fields. Oral Diseases 2012;18:40-7. [DOI: 10.1111/j.1601-0825.2011.01845.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
454 Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R, Prives C, Stockwell BR. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov 2011;1:312-25. [PMID: 22586610 DOI: 10.1158/2159-8290.CD-11-0104] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 5.6] [Reference Citation Analysis]
455 Wang Z, Sun Y. Targeting p53 for Novel Anticancer Therapy. Transl Oncol 2010;3:1-12. [PMID: 20165689 DOI: 10.1593/tlo.09250] [Cited by in Crossref: 173] [Cited by in F6Publishing: 183] [Article Influence: 14.4] [Reference Citation Analysis]
456 Patterson H, Barnes D, Gill S, Spicer J, Fisher C, Thomas M, Grimer R, Fletcher C, Gusterson B, Cooper C. Amplification and Over-Expression of the MDM2 Gene in Human Soft Tissue Tumours. Sarcoma 1997;1:17-22. [PMID: 18521196 DOI: 10.1080/13577149778434] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
457 Pollock RE, Lang A, El-Naggar AK, Radinsky R, Hung MC. Enhanced MDM2 Oncoprotein Expression in Soft Tissue Sarcoma: Several Possible Regulatory Mechanisms. Sarcoma 1997;1:23-9. [PMID: 18521197 DOI: 10.1080/13577149778443] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
458 Noon AP, Polański R, El-fert AY, Kalirai H, Shawki H, Campbell F, Dodson A, Eccles RM, Lloyd BH, Sibson DR, Coupland SE, Lake SL, Parsons K, Vlatković N, Boyd MT. Combined p53 and MDM2 biomarker analysis shows a unique pattern of expression associated with poor prognosis in patients with renal cell carcinoma undergoing radical nephrectomy: p53 AND MDM2 ASSOCIATION IN RENAL CANCER. BJU International 2012;109:1250-7. [DOI: 10.1111/j.1464-410x.2011.10433.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
459 Riedinger C, McDonnell JM. Inhibitors of MDM2 and MDMX: a structural perspective. Future Med Chem 2009;1:1075-94. [PMID: 21425995 DOI: 10.4155/fmc.09.75] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
460 Abo-Elwafa HA, Attia FM, Sharaf AE. The prognostic value of p53 mutation in pediatric marrow hypoplasia. Diagn Pathol 2011;6:58. [PMID: 21718492 DOI: 10.1186/1746-1596-6-58] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
461 Wu H, Leng RP. UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation. Cell Cycle 2011;10:1912-5. [PMID: 21558803 DOI: 10.4161/cc.10.12.15882] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 3.0] [Reference Citation Analysis]
462 Sermeus A, Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2011;2:e164. [PMID: 21614094 DOI: 10.1038/cddis.2011.48] [Cited by in Crossref: 196] [Cited by in F6Publishing: 205] [Article Influence: 16.3] [Reference Citation Analysis]
463 Zhang XP, Liu F, Wang W. Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci U S A 2011;108:8990-5. [PMID: 21576488 DOI: 10.1073/pnas.1100600108] [Cited by in Crossref: 215] [Cited by in F6Publishing: 227] [Article Influence: 17.9] [Reference Citation Analysis]
464 Sun XX, DeVine T, Challagundla KB, Dai MS. Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem. 2011;286:22730-22741. [PMID: 21561866 DOI: 10.1074/jbc.m111.223651] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 5.4] [Reference Citation Analysis]
465 Tovar C, Higgins B, Kolinsky K, Xia M, Packman K, Heimbrook DC, Vassilev LT. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer. Mol Cancer 2011;10:49. [PMID: 21539745 DOI: 10.1186/1476-4598-10-49] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
466 Wang F, Li Y, Ma Z, Wang X, Wang Y. Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model 2012;18:295-306. [DOI: 10.1007/s00894-011-1041-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
467 Cheng Q, Chen J. The phenotype of MDM2 auto-degradation after DNA damage is due to epitope masking by phosphorylation. Cell Cycle 2011;10:1162-6. [PMID: 21386656 DOI: 10.4161/cc.10.7.15249] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
468 Zeng Y, Kotake Y, Pei XH, Smith MD, Xiong Y. p53 binds to and is required for the repression of Arf tumor suppressor by HDAC and polycomb. Cancer Res 2011;71:2781-92. [PMID: 21447739 DOI: 10.1158/0008-5472.CAN-10-3483] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.3] [Reference Citation Analysis]
469 Renault VM, Thekkat PU, Hoang KL, White JL, Brady CA, Kenzelmann Broz D, Venturelli OS, Johnson TM, Oskoui PR, Xuan Z, Santo EE, Zhang MQ, Vogel H, Attardi LD, Brunet A. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 2011;30:3207-21. [PMID: 21423206 DOI: 10.1038/onc.2011.35] [Cited by in Crossref: 92] [Cited by in F6Publishing: 93] [Article Influence: 7.7] [Reference Citation Analysis]
470 Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J Biol Chem 2011;286:16018-29. [PMID: 21454483 DOI: 10.1074/jbc.M111.228981] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 3.6] [Reference Citation Analysis]
471 Li TJ. The odontogenic keratocyst: a cyst, or a cystic neoplasm? J Dent Res 2011;90:133-42. [PMID: 21270459 DOI: 10.1177/0022034510379016] [Cited by in Crossref: 92] [Cited by in F6Publishing: 101] [Article Influence: 7.7] [Reference Citation Analysis]
472 Hew HC, Liu H, Miki Y, Yoshida K. PKCδ regulates Mdm2 independently of p53 in the apoptotic response to DNA damage. Mol Carcinog 2011;50:719-31. [PMID: 21374733 DOI: 10.1002/mc.20748] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
473 Fang Y, Kong B, Yang Q, Ma D, Qu X. The p53-HDM2 gene-gene polymorphism interaction is associated with the development of missed abortion. Human Reproduction 2011;26:1252-8. [DOI: 10.1093/humrep/der017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
474 Sotillo E, Laver T, Mellert H, Schelter JM, Cleary MA, McMahon S, Thomas-Tikhonenko A. Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 2011;30:2587-94. [PMID: 21297663 DOI: 10.1038/onc.2010.634] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 5.0] [Reference Citation Analysis]
475 Wang J, Zheng T, Chen X, Song X, Meng X, Bhatta N, Pan S, Jiang H, Liu L. MDM2 antagonist can inhibit tumor growth in hepatocellular carcinoma with different types of p53 in vitro. J Gastroenterol Hepatol 2011;26:371-7. [PMID: 21261729 DOI: 10.1111/j.1440-1746.2010.06440.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
476 Chakraborty A, Uechi T, Kenmochi N. Guarding the 'translation apparatus': defective ribosome biogenesis and the p53 signaling pathway. Wiley Interdiscip Rev RNA 2011;2:507-22. [PMID: 21957040 DOI: 10.1002/wrna.73] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 5.0] [Reference Citation Analysis]
477 Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. Biochemistry Moscow 2010;75:1692-721. [DOI: 10.1134/s0006297910130110] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
478 Brekman A, Singh KE, Polotskaia A, Kundu N, Bargonetti J. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Res 2011;13:R3. [PMID: 21223569 DOI: 10.1186/bcr2804] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 5.0] [Reference Citation Analysis]
479 Vlatković N, El-Fert A, Devling T, Ray-Sinha A, Gore DM, Rubbi CP, Dodson A, Jones AS, Helliwell TR, Jones TM, Boyd MT. Loss of MTBP expression is associated with reduced survival in a biomarker-defined subset of patients with squamous cell carcinoma of the head and neck. Cancer 2011;117:2939-50. [PMID: 21692053 DOI: 10.1002/cncr.25864] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
480 Wang Z, Li B. Mdm2 links genotoxic stress and metabolism to p53. Protein Cell 2010;1:1063-72. [PMID: 21213101 DOI: 10.1007/s13238-010-0140-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
481 Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett 2011;21:1472-5. [PMID: 21277201 DOI: 10.1016/j.bmcl.2011.01.004] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 7.0] [Reference Citation Analysis]
482 Lukaesko L, Meller R. Regulation of Gene Expression by the Ubiquitin–Proteasome System and Implications for Neurological Disease. Post-Translational Modifications in Health and Disease 2011. [DOI: 10.1007/978-1-4419-6382-6_12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
483 Khoury K, Popowicz GM, Holak TA, Dömling A. The p53-MDM2/MDMX axis - A chemotype perspective. Medchemcomm 2011;2:246-60. [PMID: 24466404 DOI: 10.1039/C0MD00248H] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.7] [Reference Citation Analysis]
484 Dufour J, Hora C. Primary Hepatocellular Carcinoma. Molecular Pathology Library 2011. [DOI: 10.1007/978-1-4419-7107-4_56] [Reference Citation Analysis]
485 Marine J. MDM2 and MDMX in Cancer and Development. Current Topics in Developmental Biology 2011. [DOI: 10.1016/b978-0-12-380916-2.00003-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
486 Xiong X, Zhao Y, He H, Sun Y. Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene. 2011;30:1798-1811. [PMID: 21170087 DOI: 10.1038/onc.2010.569] [Cited by in Crossref: 85] [Cited by in F6Publishing: 94] [Article Influence: 6.5] [Reference Citation Analysis]
487 Dudgeon DD, Shinde SN, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA. Characterization and optimization of a novel protein-protein interaction biosensor high-content screening assay to identify disruptors of the interactions between p53 and hDM2. Assay Drug Dev Technol 2010;8:437-58. [PMID: 20662736 DOI: 10.1089/adt.2010.0281] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
488 Neilsen PM, Pishas KI, Callen DF, Thomas DM. Targeting the p53 Pathway in Ewing Sarcoma. Sarcoma 2011;2011:746939. [PMID: 21197471 DOI: 10.1155/2011/746939] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
489 Kasiappan R, Shih HJ, Wu MH, Choy C, Lin TD, Chen L, Hsu HL. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes. Mol Cancer 2010;9:311. [PMID: 21138557 DOI: 10.1186/1476-4598-9-311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
490 Terzian T, Lozano G. Building p53. Genes Dev 2010;24:2229-32. [PMID: 20952532 DOI: 10.1101/gad.1988510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
491 Shangary S, Bernard D, Wang S. Case Study: Inhibitors of the MDM2‐p53 Protein–Protein Interaction. Protein Surface Recognition 2010. [DOI: 10.1002/9780470972137.ch10] [Reference Citation Analysis]
492 Petković J, Žegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S, Filipič M. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO 2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2010;5:341-53. [DOI: 10.3109/17435390.2010.507316] [Cited by in Crossref: 163] [Cited by in F6Publishing: 171] [Article Influence: 12.5] [Reference Citation Analysis]
493 Jung CR, Lim JH, Choi Y, Kim DG, Kang KJ, Noh SM, Im DS. Enigma negatively regulates p53 through MDM2 and promotes tumor cell survival in mice. J Clin Invest 2010;120:4493-506. [PMID: 21060154 DOI: 10.1172/JCI42674] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 2.3] [Reference Citation Analysis]
494 Ohsaka Y, Nishino H. MDM2-related responses in 3T3-L1 adipocytes exposed to cooling and subsequent rewarming. Cryobiology 2010;61:308-16. [PMID: 21034728 DOI: 10.1016/j.cryobiol.2010.10.156] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
495 Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol 2011;223:116-26. [PMID: 21125670 DOI: 10.1002/path.2784] [Cited by in Crossref: 257] [Cited by in F6Publishing: 281] [Article Influence: 19.8] [Reference Citation Analysis]
496 Dutertre M, Sanchez G, De Cian MC, Barbier J, Dardenne E, Gratadou L, Dujardin G, Le Jossic-Corcos C, Corcos L, Auboeuf D. Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol. 2010;17:1358-1366. [PMID: 20972445 DOI: 10.1038/nsmb.1912] [Cited by in Crossref: 122] [Cited by in F6Publishing: 131] [Article Influence: 9.4] [Reference Citation Analysis]
497 Fernandez-Fernandez MR, Sot B. The relevance of protein-protein interactions for p53 function: the CPE contribution. Protein Eng Des Sel 2011;24:41-51. [PMID: 20952436 DOI: 10.1093/protein/gzq074] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
498 Jain AK, Barton MC. Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther 2010;10:665-72. [PMID: 20930521 DOI: 10.4161/cbt.10.7.13445] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 3.5] [Reference Citation Analysis]
499 Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol 2010;2:a000968. [PMID: 20182601 DOI: 10.1101/cshperspect.a000968] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 5.1] [Reference Citation Analysis]
500 Toettcher JE, Mock C, Batchelor E, Loewer A, Lahav G. A synthetic-natural hybrid oscillator in human cells. Proc Natl Acad Sci U S A 2010;107:17047-52. [PMID: 20837528 DOI: 10.1073/pnas.1005615107] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 3.5] [Reference Citation Analysis]
501 Sun T, Yuan R, Xu W, Zhu F, Shen P. Exploring a minimal two-component p53 model. Phys Biol 2010;7:036008. [DOI: 10.1088/1478-3975/7/3/036008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
502 Roullet M, Bagg A. The basis and rational use of molecular genetic testing in mature B-cell lymphomas. Adv Anat Pathol 2010;17:333-58. [PMID: 20733353 DOI: 10.1097/PAP.0b013e3181ec7466] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
503 Shcherbik N, Pestov DG. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory. Genes Cancer 2010;1:681-9. [PMID: 21113400 DOI: 10.1177/1947601910381382] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]
504 Samudio IJ, Duvvuri S, Clise-Dwyer K, Watt JC, Mak D, Kantarjian H, Yang D, Ruvolo V, Borthakur G. Activation of p53 signaling by MI-63 induces apoptosis in acute myeloid leukemia cells. Leuk Lymphoma 2010;51:911-9. [PMID: 20423286 DOI: 10.3109/10428191003731325] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
505 Busso CS, Lake MW, Izumi T. Posttranslational modification of mammalian AP endonuclease (APE1). Cell Mol Life Sci 2010;67:3609-20. [PMID: 20711647 DOI: 10.1007/s00018-010-0487-3] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
506 Loewer A, Batchelor E, Gaglia G, Lahav G. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 2010;142:89-100. [PMID: 20598361 DOI: 10.1016/j.cell.2010.05.031] [Cited by in Crossref: 192] [Cited by in F6Publishing: 196] [Article Influence: 14.8] [Reference Citation Analysis]
507 Liu M, Li C, Pazgier M, Li C, Mao Y, Lv Y, Gu B, Wei G, Yuan W, Zhan C, Lu W, Lu W. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proceedings of the National Academy of Sciences 2010;107:14321-6. [DOI: 10.1073/pnas.1008930107] [Cited by in Crossref: 158] [Cited by in F6Publishing: 161] [Article Influence: 12.2] [Reference Citation Analysis]
508 Phillips A, Teunisse A, Lam S, Lodder K, Darley M, Emaduddin M, Wolf A, Richter J, de Lange J, Verlaan-de Vries M, Lenos K, Böhnke A, Bartel F, Blaydes JP, Jochemsen AG. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 2010;285:29111-27. [PMID: 20659896 DOI: 10.1074/jbc.M110.129726] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 2.8] [Reference Citation Analysis]
509 Dudgeon DD, Shinde S, Hua Y, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA. Implementation of a 220,000-compound HCS campaign to identify disruptors of the interaction between p53 and hDM2 and characterization of the confirmed hits. J Biomol Screen 2010;15:766-82. [PMID: 20639499 DOI: 10.1177/1087057110375304] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
510 Arya AK, El-Fert A, Devling T, Eccles RM, Aslam MA, Rubbi CP, Vlatković N, Fenwick J, Lloyd BH, Sibson DR, Jones TM, Boyd MT. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Br J Cancer 2010;103:186-95. [PMID: 20588277 DOI: 10.1038/sj.bjc.6605739] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.2] [Reference Citation Analysis]
511 Tzardi M, Kouvidou C, Panayiotides I, Stefanaki K, Rontogianni D, Zois E, Koutsoubi K, Eliopoulos G, Delides G, Kanavaros P. p53 protein expression in non-Hodgkin's lymphoma. Comparative study with the wild type p53 induced proteins mdm2 and p21/waf1. Clin Mol Pathol 1996;49:M278-82. [PMID: 16696089 DOI: 10.1136/mp.49.5.m278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
512 Sun XX, Wang YG, Xirodimas DP, Dai MS. Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation. J Biol Chem 2010;285:25812-21. [PMID: 20554519 DOI: 10.1074/jbc.M109.098442] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 5.0] [Reference Citation Analysis]
513 Hublarova P, Greplova K, Holcakova J, Vojtesek B, Hrstka R. Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases. Cell Mol Biol Lett 2010;15:473-84. [PMID: 20526748 DOI: 10.2478/s11658-010-0021-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
514 Hu G, Wang D, Liu X, Zhang Q. A computational analysis of the binding model of MDM2 with inhibitors. J Comput Aided Mol Des 2010;24:687-97. [PMID: 20490618 DOI: 10.1007/s10822-010-9366-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.3] [Reference Citation Analysis]
515 Jolma IW, Ni XY, Rensing L, Ruoff P. Harmonic oscillations in homeostatic controllers: Dynamics of the p53 regulatory system. Biophys J 2010;98:743-52. [PMID: 20197027 DOI: 10.1016/j.bpj.2009.11.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
516 Lane D, Levine A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010;2:a000893. [PMID: 20463001 DOI: 10.1101/cshperspect.a000893] [Cited by in Crossref: 229] [Cited by in F6Publishing: 288] [Article Influence: 17.6] [Reference Citation Analysis]
517 Lane DP, Cheok CF, Lain S. p53-based cancer therapy. Cold Spring Harb Perspect Biol. 2010;2:a001222. [PMID: 20463003 DOI: 10.1101/cshperspect.a001222] [Cited by in Crossref: 118] [Cited by in F6Publishing: 161] [Article Influence: 9.1] [Reference Citation Analysis]
518 Blüthgen N. Transcriptional feedbacks in mammalian signal transduction pathways facilitate rapid and reliable protein induction. Mol Biosyst 2010;6:1277-84. [PMID: 20449523 DOI: 10.1039/c002598d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
519 Mandal S, Freije WA, Guptan P, Banerjee U. Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol 2010;188:473-9. [PMID: 20176921 DOI: 10.1083/jcb.200912024] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 4.9] [Reference Citation Analysis]
520 Noon AP, Vlatković N, Polański R, Maguire M, Shawki H, Parsons K, Boyd MT. p53 and MDM2 in renal cell carcinoma: biomarkers for disease progression and future therapeutic targets? Cancer 2010;116:780-90. [PMID: 20052733 DOI: 10.1002/cncr.24841] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
521 Gottwein E, Cullen BR. A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 2010;84:5229-37. [PMID: 20219912 DOI: 10.1128/JVI.00202-10] [Cited by in Crossref: 131] [Cited by in F6Publishing: 137] [Article Influence: 10.1] [Reference Citation Analysis]
522 Kim D, Kim E, Na H, Sun Y, Surh Y. 15-Deoxy-Δ12,14-prostaglandin J2 stabilizes, but functionally inactivates p53 by binding to the cysteine 277 residue. Oncogene 2010;29:2560-76. [DOI: 10.1038/onc.2010.8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
523 Lee JT, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 2010;17:86-92. [PMID: 19543236 DOI: 10.1038/cdd.2009.77] [Cited by in Crossref: 202] [Cited by in F6Publishing: 210] [Article Influence: 15.5] [Reference Citation Analysis]
524 Hollstein M, Hainaut P. Massively regulated genes: the example of TP53. J Pathol 2010;220:164-73. [PMID: 19918835 DOI: 10.1002/path.2637] [Cited by in Crossref: 89] [Cited by in F6Publishing: 94] [Article Influence: 6.8] [Reference Citation Analysis]
525 Zheng T, Wang J, Song X, Meng X, Pan S, Jiang H, Liu L. Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol 2010;136:1597-604. [PMID: 20174822 DOI: 10.1007/s00432-010-0817-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
526 Chandrachud U, Gal S. Three assays show differences in binding of wild-type and mutant p53 to unique gene sequences. Technol Cancer Res Treat 2009;8:445-53. [PMID: 19925028 DOI: 10.1177/153303460900800606] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
527 Li Y, Tanaka K, Fan X, Nakatani F, Li X, Nakamura T, Takasaki M, Yamamoto S, Iwamoto Y. Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing Family Tumors. Cancer Lett 2010;294:57-65. [PMID: 20153576 DOI: 10.1016/j.canlet.2010.01.022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
528 Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP. Distinct p53, p53:LANA, and LANA complexes in Kaposi's Sarcoma--associated Herpesvirus Lymphomas. J Virol 2010;84:3898-908. [PMID: 20130056 DOI: 10.1128/JVI.01321-09] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 4.2] [Reference Citation Analysis]
529 Cosse JP, Ronvaux M, Ninane N, Raes MJ, Michiels C. Hypoxia-induced decrease in p53 protein level and increase in c-jun DNA binding activity results in cancer cell resistance to etoposide. Neoplasia 2009;11:976-86. [PMID: 19794957 DOI: 10.1593/neo.09632] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
530 Nguyen KV. Human p53 and Hdm2: Cloning and Construction of Expression Plasmid. Analytical Letters 2010;43:323-334. [DOI: 10.1080/00032710903327530] [Reference Citation Analysis]
531 Rayburn ER, Ezell SJ, Zhang R. Recent advances in validating MDM2 as a cancer target. Anticancer Agents Med Chem 2009;9:882-903. [PMID: 19538162 DOI: 10.2174/187152009789124628] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 2.5] [Reference Citation Analysis]
532 Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, McEachern D, Qiu S, Nikolovska-Coleska Z, Miller R, Kang S, Yang D, Wang S. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 2009;52:7970-3. [PMID: 19928922 DOI: 10.1021/jm901400z] [Cited by in Crossref: 146] [Cited by in F6Publishing: 148] [Article Influence: 11.2] [Reference Citation Analysis]
533 Dickinson SI. Carcinogenetic Pathway of Urothelial Carcinoma. Mechanisms of Oncogenesis 2010. [DOI: 10.1007/978-90-481-3725-1_20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
534 Anderson CW, Appella E. Signaling to the p53 Tumor Suppressor through Pathways Activated by Genotoxic and Non-Genotoxic Stresses. Handbook of Cell Signaling. Elsevier; 2010. pp. 2185-204. [DOI: 10.1016/b978-0-12-374145-5.00264-3] [Cited by in Crossref: 6] [Article Influence: 0.5] [Reference Citation Analysis]
535 Xirodimas DP, Scheffner M. Ubiquitin Family Members in the Regulation of the Tumor Suppressor p53. Subcellular Biochemistry 2010. [DOI: 10.1007/978-1-4419-6676-6_10] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
536 Post SM, Quintás-cardama A, Lozano G. Regulation of p53 Activity and Associated Checkpoint Controls. Checkpoint Controls and Targets in Cancer Therapy 2010. [DOI: 10.1007/978-1-60761-178-3_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
537 Blechacz BR, Gores GJ. Genetics and Epidemiology of Cholangiocarcinoma. Molecular Genetics of Liver Neoplasia 2010. [DOI: 10.1007/978-1-4419-6082-5_5] [Reference Citation Analysis]
538 Tsai W, Barton MC. p53. Signaling Pathways in Liver Diseases 2010. [DOI: 10.1007/978-3-642-00150-5_23] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
539 Turesson I, Nyman J, Qvarnström F, Simonsson M, Book M, Hermansson I, Sigurdardottir S, Johansson K. A low-dose hypersensitive keratinocyte loss in response to fractionated radiotherapy is associated with growth arrest and apoptosis. Radiotherapy and Oncology 2010;94:90-101. [DOI: 10.1016/j.radonc.2009.10.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 3.1] [Reference Citation Analysis]
540 Kim YS, Lee HJ, Jang C, Kim HS, Cho YJ. Knockdown of RCAN1.4 Increases Susceptibility to FAS-mediated and DNA-damage-induced Apoptosis by Upregulation of p53 Expression. Korean J Physiol Pharmacol 2009;13:483-9. [PMID: 20054496 DOI: 10.4196/kjpp.2009.13.6.483] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
541 Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW, Matison ME, Schneider S, Huang X, Yu D, Andrews PS, Reichelt A, Long AM, Yakowec P, Yang EY, Lee TA, Oliner JD. Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 2009;52:7044-53. [PMID: 19856920 DOI: 10.1021/jm900681h] [Cited by in Crossref: 112] [Cited by in F6Publishing: 118] [Article Influence: 8.0] [Reference Citation Analysis]
542 Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, Cejkova S, Svitakova M, Skuhrova Francova H, Brychtova Y, Doubek M, Brejcha M, Klabusay M, Mayer J, Pospisilova S, Trbusek M. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 2009;114:5307-14. [DOI: 10.1182/blood-2009-07-234708] [Cited by in Crossref: 129] [Cited by in F6Publishing: 139] [Article Influence: 9.2] [Reference Citation Analysis]
543 Lowe JM, Cha H, Yang Q, Fornace AJ Jr. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem 2010;285:5249-57. [PMID: 20007970 DOI: 10.1074/jbc.M109.034579] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 3.4] [Reference Citation Analysis]
544 Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD. TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest 2010;120:290-302. [PMID: 19955655 DOI: 10.1172/JCI39194] [Cited by in Crossref: 99] [Cited by in F6Publishing: 106] [Article Influence: 7.1] [Reference Citation Analysis]
545 Ooi MG, Hayden PJ, Kotoula V, McMillin DW, Charalambous E, Daskalaki E, Raje NS, Munshi NC, Chauhan D, Hideshima T, Buon L, Clynes M, O'Gorman P, Richardson PG, Mitsiades CS, Anderson KC, Mitsiades N. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res 2009;15:7153-60. [PMID: 19934289 DOI: 10.1158/1078-0432.CCR-09-1071] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
546 Bork U, Lee WK, Kuchler A, Dittmar T, Thévenod F. Cadmium-induced DNA damage triggers G(2)/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells. Am J Physiol Renal Physiol 2010;298:F255-65. [PMID: 19923412 DOI: 10.1152/ajprenal.00273.2009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
547 Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, Schönbrunn E, Chen J. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J Biol Chem 2010;285:2174-83. [PMID: 19910468 DOI: 10.1074/jbc.M109.073056] [Cited by in Crossref: 116] [Cited by in F6Publishing: 118] [Article Influence: 8.3] [Reference Citation Analysis]
548 Dickens MP, Fitzgerald R, Fischer PM. Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Semin Cancer Biol 2010;20:10-8. [PMID: 19897042 DOI: 10.1016/j.semcancer.2009.10.003] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 4.8] [Reference Citation Analysis]
549 Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009;16:369-77. [PMID: 19878869 DOI: 10.1016/j.ccr.2009.09.024] [Cited by in Crossref: 434] [Cited by in F6Publishing: 444] [Article Influence: 31.0] [Reference Citation Analysis]
550 Meade JD, Cho YJ, Shester BR, Walden JC, Guo Z, Liang P. Automated fluorescent differential display for cancer gene profiling. Methods Mol Biol 2010;576:99-133. [PMID: 19882260 DOI: 10.1007/978-1-59745-545-9_7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
551 Pitiyage G, Tilakaratne WM, Tavassoli M, Warnakulasuriya S. Molecular markers in oral epithelial dysplasia: review. Journal of Oral Pathology & Medicine 2009;38:737-52. [DOI: 10.1111/j.1600-0714.2009.00804.x] [Cited by in Crossref: 121] [Cited by in F6Publishing: 129] [Article Influence: 8.6] [Reference Citation Analysis]
552 Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009;9:749-58. [PMID: 19776744 DOI: 10.1038/nrc2723] [Cited by in Crossref: 1292] [Cited by in F6Publishing: 1339] [Article Influence: 92.3] [Reference Citation Analysis]
553 Meek DW. Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 2009;9:714-23. [PMID: 19730431 DOI: 10.1038/nrc2716] [Cited by in Crossref: 435] [Cited by in F6Publishing: 462] [Article Influence: 31.1] [Reference Citation Analysis]
554 Cai X, Yuan ZM. Stochastic modeling and simulation of the p53-MDM2/MDMX loop. J Comput Biol 2009;16:917-33. [PMID: 19580521 DOI: 10.1089/cmb.2008.0231] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
555 Hainaut P, Wiman KG. 30 years and a long way into p53 research. Lancet Oncol. 2009;10:913-919. [PMID: 19717093 DOI: 10.1016/S1470-2045(09)70198-6] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 3.9] [Reference Citation Analysis]
556 Khoo KH, Mayer S, Fersht AR. Effects of stability on the biological function of p53. J Biol Chem 2009;284:30974-80. [PMID: 19700401 DOI: 10.1074/jbc.M109.033183] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
557 Turinetto V, Porcedda P, Orlando L, De Marchi M, Amoroso A, Giachino C. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status. BMC Cancer 2009;9:281. [PMID: 19674456 DOI: 10.1186/1471-2407-9-281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
558 Fasanaro P, Capogrossi MC, Martelli F. Regulation of the endothelial cell cycle by the ubiquitin-proteasome system. Cardiovasc Res 2010;85:272-80. [PMID: 19617222 DOI: 10.1093/cvr/cvp244] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.2] [Reference Citation Analysis]
559 Kao CL, Hsu HS, Chen HW, Cheng TH. Rapamycin increases the p53/MDM2 protein ratio and p53-dependent apoptosis by translational inhibition of mdm2 in cancer cells. Cancer Lett 2009;286:250-9. [PMID: 19560264 DOI: 10.1016/j.canlet.2009.05.031] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
560 Ku WC, Chiu SK, Chen YJ, Huang HH, Wu WG, Chen YJ. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2. Mol Cell Proteomics 2009;8:2034-50. [PMID: 19505873 DOI: 10.1074/mcp.M900013-MCP200] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
561 Grover R, Candeias MM, Fåhraeus R, Das S. p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 2009;28:2766-72. [DOI: 10.1038/onc.2009.138] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.0] [Reference Citation Analysis]
562 Nguyen LK, Kulasiri D. On the functional diversity of dynamical behaviour in genetic and metabolic feedback systems. BMC Syst Biol 2009;3:51. [PMID: 19432996 DOI: 10.1186/1752-0509-3-51] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
563 Yan J, Menendez D, Yang XP, Resnick MA, Jetten AM. A regulatory loop composed of RAP80-HDM2-p53 provides RAP80-enhanced p53 degradation by HDM2 in response to DNA damage. J Biol Chem 2009;284:19280-9. [PMID: 19433585 DOI: 10.1074/jbc.M109.013102] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
564 Rong JJ, Hu R, Qi Q, Gu HY, Zhao Q, Wang J, Mu R, You QD, Guo QL. Gambogic acid down-regulates MDM2 oncogene and induces p21(Waf1/CIP1) expression independent of p53. Cancer Lett. 2009;284:102-112. [PMID: 19428175 DOI: 10.1016/j.canlet.2009.04.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 2.6] [Reference Citation Analysis]
565 Batchelor E, Loewer A, Lahav G. The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 2009;9:371-7. [PMID: 19360021 DOI: 10.1038/nrc2604] [Cited by in Crossref: 188] [Cited by in F6Publishing: 192] [Article Influence: 13.4] [Reference Citation Analysis]
566 Chari NS, Pinaire NL, Thorpe L, Medeiros LJ, Routbort MJ, McDonnell TJ. The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. Apoptosis. 2009;14:336-347. [PMID: 19229632 DOI: 10.1007/s10495-009-0327-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 2.8] [Reference Citation Analysis]
567 Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009;49:223-41. [PMID: 18834305 DOI: 10.1146/annurev.pharmtox.48.113006.094723] [Cited by in Crossref: 455] [Cited by in F6Publishing: 476] [Article Influence: 32.5] [Reference Citation Analysis]
568 Sashida G, Liu Y, Elf S, Miyata Y, Ohyashiki K, Izumi M, Menendez S, Nimer SD. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation. Mol Cell Biol 2009;29:3687-99. [PMID: 19380490 DOI: 10.1128/MCB.01551-08] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 2.0] [Reference Citation Analysis]
569 Cai KQ, Wu H, Klein-Szanto AJ, Xu XX. Acquisition of a second mutation of the Tp53 alleles immediately precedes epithelial morphological transformation in ovarian tumorigenicity. Gynecol Oncol 2009;114:18-25. [PMID: 19375154 DOI: 10.1016/j.ygyno.2009.03.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
570 Valentin-Vega YA, Box N, Terzian T, Lozano G. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation 2009;77:442-9. [PMID: 19371999 DOI: 10.1016/j.diff.2009.03.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 1.4] [Reference Citation Analysis]
571 Takahashi A, Ohnishi T. A low dose pre-irradiation induces radio- and heat-resistance via HDM2 and NO radicals, and is associated with p53 functioning. Advances in Space Research 2009;43:1185-92. [DOI: 10.1016/j.asr.2008.11.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
572 Fang Y, Kong B, Yang Q, Ma D, Qu X. MDM2 309 polymorphism is associated with missed abortion. Hum Reprod 2009;24:1346-9. [PMID: 19246469 DOI: 10.1093/humrep/dep044] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
573 Wee KB, Surana U, Aguda BD. Oscillations of the p53-Akt network: implications on cell survival and death. PLoS One 2009;4:e4407. [PMID: 19197384 DOI: 10.1371/journal.pone.0004407] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 4.1] [Reference Citation Analysis]
574 Zhang J, Chen X. Posttranscriptional regulation of p53 and its targets by RNA-binding proteins. Curr Mol Med 2008;8:845-9. [PMID: 19075680 DOI: 10.2174/156652408786733748] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 2.6] [Reference Citation Analysis]
575 Wawrzynow B, Pettersson S, Zylicz A, Bramham J, Worrall E, Hupp TR, Ball KL. A function for the RING finger domain in the allosteric control of MDM2 conformation and activity. J Biol Chem 2009;284:11517-30. [PMID: 19188367 DOI: 10.1074/jbc.M809294200] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 1.7] [Reference Citation Analysis]
576 Levine AJ. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 2009;384:285-93. [DOI: 10.1016/j.virol.2008.09.034] [Cited by in Crossref: 143] [Cited by in F6Publishing: 152] [Article Influence: 10.2] [Reference Citation Analysis]
577 Yun Y, Lee JY, Ahn E, Lee KH, Yoon HK, Lim Y. Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line. Toxicology in Vitro 2009;23:21-8. [DOI: 10.1016/j.tiv.2008.09.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
578 Högberg J, Silins I, Stenius U. Chemical induced alterations in p53 signaling. In: Luch A, editor. Molecular, Clinical and Environmental Toxicology. Basel: Birkhäuser; 2009. pp. 181-208. [DOI: 10.1007/978-3-7643-8336-7_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
579 Zambetti GP, Ribeiro RC. TP53 Molecular Genetics. Adrenocortical Carcinoma 2009. [DOI: 10.1007/978-0-387-77236-3_12] [Reference Citation Analysis]
580 Harada H, Hiraoka M. Protein Transduction Domain-Mediated Delivery of Anticancer Proteins. Pharmaceutical Perspectives of Cancer Therapeutics 2009. [DOI: 10.1007/978-1-4419-0131-6_10] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
581 Lahav G. Oscillations by the p53-Mdm2 feedback loop. Adv Exp Med Biol 2008;641:28-38. [PMID: 18783169 DOI: 10.1007/978-0-387-09794-7_2] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 3.4] [Reference Citation Analysis]
582 Murase D, Hachiya A, Amano Y, Ohuchi A, Kitahara T, Takema Y. The essential role of p53 in hyperpigmentation of the skin via regulation of paracrine melanogenic cytokine receptor signaling. J Biol Chem 2009;284:4343-53. [PMID: 19098008 DOI: 10.1074/jbc.M805570200] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 4.3] [Reference Citation Analysis]
583 Sirintrapun SJ, Parwani AV. Molecular Pathology of the Genitourinary Tract: Prostate and Bladder. Surg Pathol Clin 2008;1:211-36. [PMID: 26837907 DOI: 10.1016/j.path.2008.08.002] [Reference Citation Analysis]
584 Youssef RF, Mitra AP, Bartsch G Jr, Jones PA, Skinner DG, Cote RJ. Molecular targets and targeted therapies in bladder cancer management. World J Urol 2009;27:9-20. [PMID: 19039591 DOI: 10.1007/s00345-008-0357-x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.1] [Reference Citation Analysis]
585 Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell. 2008;32:180-189. [PMID: 18951086 DOI: 10.1016/j.molcel.2008.08.031] [Cited by in Crossref: 170] [Cited by in F6Publishing: 186] [Article Influence: 11.3] [Reference Citation Analysis]
586 Riedinger C, Endicott JA, Kemp SJ, Smyth LA, Watson A, Valeur E, Golding BT, Griffin RJ, Hardcastle IR, Noble ME, Mcdonnell JM. Analysis of Chemical Shift Changes Reveals the Binding Modes of Isoindolinone Inhibitors of the MDM2-p53 Interaction. J Am Chem Soc 2008;130:16038-44. [DOI: 10.1021/ja8062088] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 5.5] [Reference Citation Analysis]
587 Matijasevic Z, Krzywicka-Racka A, Sluder G, Jones SN. MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 2008;7:2967-73. [PMID: 18818521 DOI: 10.4161/cc.7.19.6797] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.5] [Reference Citation Analysis]
588 Rothweiler U, Czarna A, Krajewski M, Ciombor J, Kalinski C, Khazak V, Ross G, Skobeleva N, Weber L, Holak TA. Isoquinolin-1-one inhibitors of the MDM2-p53 interaction. ChemMedChem 2008;3:1118-28. [PMID: 18428185 DOI: 10.1002/cmdc.200800025] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 2.8] [Reference Citation Analysis]
589 Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 2008;14:5318-24. [PMID: 18765522 DOI: 10.1158/1078-0432.CCR-07-5136] [Cited by in Crossref: 222] [Cited by in F6Publishing: 230] [Article Influence: 14.8] [Reference Citation Analysis]
590 Levy D, Reuven N, Shaul Y. A Regulatory Circuit Controlling Itch-mediated p73 Degradation by Runx. Journal of Biological Chemistry 2008;283:27462-8. [DOI: 10.1074/jbc.m803941200] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 2.7] [Reference Citation Analysis]
591 Tuoc TC, Stoykova A. Trim11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system. Genes Dev 2008;22:1972-86. [PMID: 18628401 DOI: 10.1101/gad.471708] [Cited by in Crossref: 82] [Cited by in F6Publishing: 87] [Article Influence: 5.5] [Reference Citation Analysis]
592 Lo HW, Stephenson L, Cao X, Milas M, Pollock R, Ali-Osman F. Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. Mol Cancer Res 2008;6:843-50. [PMID: 18505928 DOI: 10.1158/1541-7786.MCR-07-2105] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 2.7] [Reference Citation Analysis]
593 Shangary S, Ding K, Qiu S, Nikolovska-Coleska Z, Bauer JA, Liu M, Wang G, Lu Y, McEachern D, Bernard D. Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Mol Cancer Ther. 2008;7:1533-1542. [PMID: 18566224 DOI: 10.1158/1535-7163.mct-08-0140] [Cited by in Crossref: 64] [Cited by in F6Publishing: 72] [Article Influence: 4.3] [Reference Citation Analysis]
594 Ding Y, Mei Y, Zhang JZH. Quantum Mechanical Studies of Residue-Specific Hydrophobic Interactions in p53−MDM2 Binding. J Phys Chem B 2008;112:11396-401. [DOI: 10.1021/jp8015886] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
595 Sugiyama T, Frazier DP, Taneja P, Morgan RL, Willingham MC, Inoue K. Role of DMP1 and its future in lung cancer diagnostics. Expert Rev Mol Diagn 2008;8:435-47. [PMID: 18598225 DOI: 10.1586/14737159.8.4.435] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.3] [Reference Citation Analysis]
596 Prives C, White E. Does control of mutant p53 by Mdm2 complicate cancer therapy? Genes Dev. 2008;22:1259-1264. [PMID: 18483214 DOI: 10.1101/gad.1680508] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
597 Akbay EA, Contreras CM, Perera SA, Sullivan JP, Broaddus RR, Schorge JO, Ashfaq R, Saboorian H, Wong KK, Castrillon DH. Differential roles of telomere attrition in type I and II endometrial carcinogenesis. Am J Pathol 2008;173:536-44. [PMID: 18599611 DOI: 10.2353/ajpath.2008.071179] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
598 Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G. Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol Cell 2008;30:277-89. [PMID: 18471974 DOI: 10.1016/j.molcel.2008.03.016] [Cited by in Crossref: 324] [Cited by in F6Publishing: 329] [Article Influence: 21.6] [Reference Citation Analysis]
599 Fang M, Ji X, Tang Y, Liu W. P53 regulation of leukemia cells with the blockage of MDM2 by antisense oligonucleotides. J Huazhong Univ Sci Technolog Med Sci 2006;26:414-6. [PMID: 17120736 DOI: 10.1007/s11596-006-0409-7] [Reference Citation Analysis]
600 Mcandrew CW, Gastwirt RF, Donoghue DJ. Cell Cycle: Regulation. Wiley Encyclopedia of Chemical Biology 2008. [DOI: 10.1002/9780470048672.wecb057] [Reference Citation Analysis]
601 Dai MS, Sun XX, Lu H. Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 2008;28:4365-76. [PMID: 18426907 DOI: 10.1128/MCB.01662-07] [Cited by in Crossref: 130] [Cited by in F6Publishing: 142] [Article Influence: 8.7] [Reference Citation Analysis]
602 Golubovskaya VM, Finch R, Zheng M, Kurenova EV, Cance WG. The 7-amino-acid site in the proline-rich region of the N-terminal domain of p53 is involved in the interaction with FAK and is critical for p53 functioning. Biochem J 2008;411:151-60. [PMID: 18215142 DOI: 10.1042/BJ20071657] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 1.7] [Reference Citation Analysis]
603 Takahashi A, Matsumoto H, Ohnishi T. Hdm2 and nitric oxide radicals contribute to the p53-dependent radioadaptive response. Int J Radiat Oncol Biol Phys 2008;71:550-8. [PMID: 18410999 DOI: 10.1016/j.ijrobp.2008.02.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
604 Moreira IS, Fernandes PA, Ramos MJ. Protein–protein recognition: a computational mutagenesis study of the MDM2–P53 complex. Theor Chem Account 2008;120:533-42. [DOI: 10.1007/s00214-008-0432-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
605 Lents NH, Wheeler LW, Baldassare JJ, Dynlacht BD. Identification and characterization of a novel Mdm2 splice variant acutely induced by the chemotherapeutic agents adriamycin and actinomycin D. Cell Cycle 2008;7:1580-6. [PMID: 18469520 DOI: 10.4161/cc.7.11.5985] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
606 Martin J, Dufour JF. Tumor suppressor and hepatocellular carcinoma. World J Gastroenterol 2008; 14(11): 1720-1733 [PMID: 18350603 DOI: 10.3748/wjg.14.1720] [Cited by in CrossRef: 60] [Cited by in F6Publishing: 67] [Article Influence: 4.0] [Reference Citation Analysis]
607 White AW, Westwell AD, Brahemi G. Protein-protein interactions as targets for small-molecule therapeutics in cancer. Expert Rev Mol Med 2008;10:e8. [PMID: 18353193 DOI: 10.1017/S1462399408000641] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 4.5] [Reference Citation Analysis]
608 Žegura B, Zajc I, Lah TT, Filipič M. Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon 2008;51:615-23. [DOI: 10.1016/j.toxicon.2007.11.009] [Cited by in Crossref: 84] [Cited by in F6Publishing: 84] [Article Influence: 5.6] [Reference Citation Analysis]
609 Becker K, Marchenko ND, Palacios G, Moll UM. A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle. 2008;7:1205-1213. [PMID: 18418047 DOI: 10.4161/cc.7.9.5756] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 3.1] [Reference Citation Analysis]
610 Murray JK, Gellman SH. Targeting protein-protein interactions: lessons from p53/MDM2. Biopolymers 2007;88:657-86. [PMID: 17427181 DOI: 10.1002/bip.20741] [Cited by in Crossref: 145] [Cited by in F6Publishing: 150] [Article Influence: 9.7] [Reference Citation Analysis]
611 Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene. 2008;27:3371-3383. [PMID: 18223694 DOI: 10.1038/sj.onc.1211010] [Cited by in Crossref: 134] [Cited by in F6Publishing: 140] [Article Influence: 8.9] [Reference Citation Analysis]
612 Liu G, Terzian T, Xiong S, Van Pelt CS, Audiffred A, Box NF, Lozano G. The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J Pathol 2007;213:360-8. [PMID: 17893884 DOI: 10.1002/path.2238] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 2.7] [Reference Citation Analysis]
613 Carter BZ, Mak DH, Schober WD, Dietrich MF, Pinilla C, Vassilev LT, Reed JC, Andreeff M. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood 2008;111:3742-50. [PMID: 18187663 DOI: 10.1182/blood-2007-05-091504] [Cited by in Crossref: 98] [Cited by in F6Publishing: 104] [Article Influence: 6.5] [Reference Citation Analysis]
614 Gilkes DM, Pan Y, Coppola D, Yeatman T, Reuther GW, Chen J. Regulation of MDMX expression by mitogenic signaling. Mol Cell Biol 2008;28:1999-2010. [PMID: 18172009 DOI: 10.1128/MCB.01633-07] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 3.1] [Reference Citation Analysis]
615 Förster Y, Schwenzer B. Antisense Oligonucleotides and siRNA as Specific Inhibitors of Gene Expression: Mechanisms of Action and Therapeutic Potential. Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy 2008. [DOI: 10.1007/978-1-59745-474-2_20] [Reference Citation Analysis]
616 Brooks CL, Gu W. Post-translational Modifications of the p53 Transcription Factor. Gene Expression and Regulation. [DOI: 10.1007/978-0-387-40049-5_15] [Reference Citation Analysis]
617 Boyd MT, Vlatković N. MDM2 polymorphisms and cancer risk in basal cell carcinoma. Br J Dermatol 2008;158:636; author reply 636-7. [PMID: 18076702 DOI: 10.1111/j.1365-2133.2007.08375.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
618 Xiong L, Kou F, Yang Y, Wu J. A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop. J Cell Biol 2007;178:995-1007. [PMID: 17846171 DOI: 10.1083/jcb.200703044] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 2.1] [Reference Citation Analysis]
619 Groskreutz DJ, Monick MM, Yarovinsky TO, Powers LS, Quelle DE, Varga SM, Look DC, Hunninghake GW. Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J Immunol 2007;179:2741-7. [PMID: 17709487 DOI: 10.4049/jimmunol.179.5.2741] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 3.4] [Reference Citation Analysis]
620 Nitsche M, Koy S, Mörz M, Koch R, Eckelt U. [Exploration of tumor suppressors p16INK4a and p14ARF in oral leukoplakias]. Mund Kiefer Gesichtschir 2007;11:317-26. [PMID: 17990010 DOI: 10.1007/s10006-007-0086-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
621 Taylor K, Micha D, Ranson M, Dive C. Recent advances in targeting regulators of apoptosis in cancer cells for therapeutic gain. Expert Opin Investig Drugs 2006;15:669-90. [PMID: 16732718 DOI: 10.1517/13543784.15.6.669] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
622 Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA, Lee SW. Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell. 2007;130:624-637. [PMID: 17719541 DOI: 10.1016/j.cell.2007.06.013] [Cited by in Crossref: 111] [Cited by in F6Publishing: 116] [Article Influence: 6.9] [Reference Citation Analysis]
623 Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007;27:8284-95. [PMID: 17908790 DOI: 10.1128/MCB.00050-07] [Cited by in Crossref: 161] [Cited by in F6Publishing: 167] [Article Influence: 10.1] [Reference Citation Analysis]
624 Wang P, Lushnikova T, Odvody J, Greiner TC, Jones SN, Eischen CM. Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 2008;27:1590-8. [PMID: 17828300 DOI: 10.1038/sj.onc.1210788] [Cited by in Crossref: 53] [Cited by in F6Publishing: 62] [Article Influence: 3.3] [Reference Citation Analysis]
625 Tan M, Gu Q, He H, Pamarthy D, Semenza GL, Sun Y. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1 alpha ubiquitination and degradation. Oncogene. 2008;27:1404-1411. [PMID: 17828303 DOI: 10.1038/sj.onc.1210780] [Cited by in Crossref: 56] [Cited by in F6Publishing: 65] [Article Influence: 3.5] [Reference Citation Analysis]
626 Mitra AP, Birkhahn M, Cote RJ. p53 and retinoblastoma pathways in bladder cancer. World J Urol. 2007;25:563-571. [PMID: 17710407 DOI: 10.1007/s00345-007-0197-0] [Cited by in Crossref: 61] [Cited by in F6Publishing: 45] [Article Influence: 3.8] [Reference Citation Analysis]
627 Michod D, Widmann C. DNA-damage sensitizers: Potential new therapeutical tools to improve chemotherapy. Critical Reviews in Oncology/Hematology 2007;63:160-71. [DOI: 10.1016/j.critrevonc.2007.04.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
628 Bottani S, Grammaticos B. Analysis of a minimal model for p53 oscillations. J Theor Biol 2007;249:235-45. [PMID: 17850824 DOI: 10.1016/j.jtbi.2007.04.026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
629 Moll UM, Concin N. p53 in Human Cancer — Somatic and Inherited Mutations and Mutation-independent Mechanisms. The p53 Tumor Suppressor Pathway and Cancer. [DOI: 10.1007/0-387-30127-5_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
630 Momand J, Aspuria PJ, Furuta S. MDM2 and MDMX Regulators of p53 Activity. The p53 Tumor Suppressor Pathway and Cancer. [DOI: 10.1007/0-387-30127-5_7] [Reference Citation Analysis]
631 Kim J, Keay SK, Dimitrakov JD, Freeman MR. p53 mediates interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human urothelial cells. FEBS Lett 2007;581:3795-9. [PMID: 17628545 DOI: 10.1016/j.febslet.2007.06.058] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 2.8] [Reference Citation Analysis]
632 Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W, Cao Y. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res 2007;130:275-80. [PMID: 17576019 DOI: 10.1016/j.virusres.2007.05.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
633 Yamayoshi A, Kato K, Suga S, Ichinoe A, Arima T, Matsuda T, Kato H, Murakami A, Wake N. Specific apoptosis induction in human papillomavirus-positive cervical carcinoma cells by photodynamic antisense regulation. Oligonucleotides 2007;17:66-79. [PMID: 17461764 DOI: 10.1089/oli.2006.0047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
634 Brynczka C, Labhart P, Merrick BA. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 2007;8:139. [PMID: 17540029 DOI: 10.1186/1471-2164-8-139] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 2.6] [Reference Citation Analysis]
635 Tiana G, Krishna S, Pigolotti S, Jensen MH, Sneppen K. Oscillations and temporal signalling in cells. Phys Biol 2007;4:R1-17. [PMID: 17664651 DOI: 10.1088/1478-3975/4/2/R01] [Cited by in Crossref: 103] [Cited by in F6Publishing: 102] [Article Influence: 6.4] [Reference Citation Analysis]
636 Bossi G, Sacchi A. Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck 2007;29:272-84. [PMID: 17230559 DOI: 10.1002/hed.20529] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 4.3] [Reference Citation Analysis]
637 Lee CH, Lim H, Moon S, Shin C, Kim S, Kim BJ, Lim Y. Novel anticancer agent, benzyldihydroxyoctenone, isolated from Streptomyces sp. causes G1 cell cycle arrest and induces apoptosis of HeLa cells. Cancer Sci 2007;98:795-802. [PMID: 17433036 DOI: 10.1111/j.1349-7006.2007.00473.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
638 Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer. Eur J Cancer 2007;43:1361-72. [PMID: 17428654 DOI: 10.1016/j.ejca.2007.01.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 1.7] [Reference Citation Analysis]
639 Pigolotti S, Krishna S, Jensen MH. Oscillation patterns in negative feedback loops. Proc Natl Acad Sci U S A 2007;104:6533-7. [PMID: 17412833 DOI: 10.1073/pnas.0610759104] [Cited by in Crossref: 107] [Cited by in F6Publishing: 107] [Article Influence: 6.7] [Reference Citation Analysis]
640 Fuster JJ, Sanz-González SM, Moll UM, Andrés V. Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 2007;13:192-9. [PMID: 17383232 DOI: 10.1016/j.molmed.2007.03.002] [Cited by in Crossref: 100] [Cited by in F6Publishing: 81] [Article Influence: 6.3] [Reference Citation Analysis]
641 Guan YS, La Z, Yang L, He Q, Li P. p53 gene in treatment of hepatic carcinoma: Status quoWorld J Gastroenterol 2007; 13(7): 985-992 [PMID: 17373730 DOI: 10.3748/wjg.v13.i7.985] [Cited by in CrossRef: 38] [Cited by in F6Publishing: 38] [Article Influence: 2.4] [Reference Citation Analysis]
642 Meng LH, Kohn KW, Pommier Y. Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288). Oncogene 2007;26:4806-16. [PMID: 17297446 DOI: 10.1038/sj.onc.1210283] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
643 Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 2007;26:976-86. [PMID: 17290220 DOI: 10.1038/sj.emboj.7601567] [Cited by in Crossref: 211] [Cited by in F6Publishing: 222] [Article Influence: 13.2] [Reference Citation Analysis]
644 Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 2007;129:2456-7. [PMID: 17284038 DOI: 10.1021/ja0693587] [Cited by in Crossref: 411] [Cited by in F6Publishing: 430] [Article Influence: 25.7] [Reference Citation Analysis]
645 Marine JW, Dyer MA, Jochemsen AG. MDMX: from bench to bedside. Journal of Cell Science 2007;120:371-8. [DOI: 10.1242/jcs.03362] [Cited by in Crossref: 169] [Cited by in F6Publishing: 183] [Article Influence: 10.6] [Reference Citation Analysis]
646 Lyustikman Y, Lassman AB. Glioma oncogenesis and animal models of glioma formation. Hematol Oncol Clin North Am 2006;20:1193-214. [PMID: 17113459 DOI: 10.1016/j.hoc.2006.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
647 Sun XX, Dai MS, Lu H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 2007;282:8052-9. [PMID: 17242401 DOI: 10.1074/jbc.M610621200] [Cited by in Crossref: 132] [Cited by in F6Publishing: 143] [Article Influence: 8.3] [Reference Citation Analysis]
648 Allende-Vega N, Saville MK, Meek DW. Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53. Oncogene 2007;26:4234-42. [PMID: 17237821 DOI: 10.1038/sj.onc.1210209] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
649 Zhu Q, Wani G, Yao J, Patnaik S, Wang Q, El-mahdy MA, Prætorius-ibba M, Wani AA. The ubiquitin–proteasome system regulates p53-mediated transcription at p21waf1 promoter. Oncogene 2007;26:4199-208. [DOI: 10.1038/sj.onc.1210191] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 3.4] [Reference Citation Analysis]
650 Wahl GM, Stommel JM, Krummel K, Wade M. Gatekeepers of the Guardian: p53 Regulation by Post-Translational Modification, MDM2 and MDMX. In: Hainaut P, Wiman KG, editors. 25 Years of p53 Research. Dordrecht: Springer Netherlands; 2007. pp. 73-113. [DOI: 10.1007/978-1-4020-2922-6_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
651 Robins H, Alexe G, Harris S, Levine AJ. The First Twenty-Five Years of p53 Research. 25 Years of p53 Research 2007. [DOI: 10.1007/978-1-4020-2922-6_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
652 Mclure KG, Kastan MB. 20 Years of DNA Damage Signaling to p53. 25 Years of p53 Research 2007. [DOI: 10.1007/978-1-4020-2922-6_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
653 Wang S, El-deiry WS. P53, Cell Cycle Arrest and Apoptosis. 25 Years of p53 Research 2007. [DOI: 10.1007/978-1-4020-2922-6_6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
654 Magrini R, Bakker A, Gaviraghi G, Terstappen GC. Targeting the p53 tumor suppressor gene function in glioblastomas using small chemical molecules. Drug Dev Res 2006;67:790-800. [DOI: 10.1002/ddr.20151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
655 Matsumoto M, Furihata M, Ohtsuki Y. Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol 2006;39:79-87. [PMID: 16821145 DOI: 10.1007/s00795-006-0320-0] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 2.1] [Reference Citation Analysis]
656 Mattia M, Gottifredi V, McKinney K, Prives C. p53-Dependent p21 mRNA elongation is impaired when DNA replication is stalled. Mol Cell Biol 2007;27:1309-20. [PMID: 17158927 DOI: 10.1128/MCB.01520-06] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 2.0] [Reference Citation Analysis]
657 Mitra AP, Datar RH, Cote RJ. Molecular Pathways in Invasive Bladder Cancer: New Insights Into Mechanisms, Progression, and Target Identification. JCO 2006;24:5552-64. [DOI: 10.1200/jco.2006.08.2073] [Cited by in Crossref: 209] [Cited by in F6Publishing: 219] [Article Influence: 12.3] [Reference Citation Analysis]
658 Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V. A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 2007;63:679-88. [PMID: 17143578 DOI: 10.1007/s11103-006-9116-9] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 2.9] [Reference Citation Analysis]
659 Cheng TH, Cohen SN. Human MDM2 isoforms translated differentially on constitutive versus p53-regulated transcripts have distinct functions in the p53/MDM2 and TSG101/MDM2 feedback control loops. Mol Cell Biol. 2007;27:111-119. [PMID: 17060450 DOI: 10.1128/MCB.00235-06] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 2.9] [Reference Citation Analysis]
660 Shu L, Yan W, Chen X. RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 2006;20:2961-2972. [PMID: 17050675 DOI: 10.1101/gad.1463306] [Cited by in Crossref: 112] [Cited by in F6Publishing: 118] [Article Influence: 6.6] [Reference Citation Analysis]
661 Erson AE, Petty EM. Molecular and Genetic Events in Neoplastic Transformation. Cancer Epidemiology and Prevention 2006. [DOI: 10.1093/acprof:oso/9780195149616.003.0004] [Reference Citation Analysis]
662 Mitra AP, Lin H, Datar RH, Cote RJ. Molecular biology of bladder cancer: prognostic and clinical implications. Clin Genitourin Cancer 2006;5:67-77. [PMID: 16859582 DOI: 10.3816/CGC.2006.n.020] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 2.2] [Reference Citation Analysis]
663 Dai MS, Jin Y, Gallegos JR, Lu H. Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia 2006;8:630-44. [PMID: 16925946 DOI: 10.1593/neo.06334] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 3.6] [Reference Citation Analysis]
664 Xu Y, Chen X. Glyoxalase II, a Detoxifying Enzyme of Glycolysis Byproduct Methylglyoxal and a Target of p63 and p73, Is a Pro-survival Factor of the p53 Family. Journal of Biological Chemistry 2006;281:26702-13. [DOI: 10.1074/jbc.m604758200] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 2.5] [Reference Citation Analysis]
665 Ribas J, Boix J, Meijer L. (R)-roscovitine (CYC202, Seliciclib) sensitizes SH-SY5Y neuroblastoma cells to nutlin-3-induced apoptosis. Exp Cell Res 2006;312:2394-400. [PMID: 16765943 DOI: 10.1016/j.yexcr.2006.04.021] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 2.1] [Reference Citation Analysis]
666 Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. Lab Invest 2006;86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.4] [Reference Citation Analysis]
667 Lind H, Zienolddiny S, Ekstrøm PO, Skaug V, Haugen A. Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer. 2006;119:718-721. [PMID: 16496380 DOI: 10.1002/ijc.21872] [Cited by in Crossref: 114] [Cited by in F6Publishing: 126] [Article Influence: 6.7] [Reference Citation Analysis]
668 Gjerset RA. DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer. J Mol Histol 2006;37:239-51. [PMID: 16855788 DOI: 10.1007/s10735-006-9040-y] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 2.9] [Reference Citation Analysis]
669 Pape M, Engelhard K, Eberspächer E, Hollweck R, Kellermann K, Zintner S, Hutzler P, Werner C. The Long-Term Effect of Sevoflurane on Neuronal Cell Damage and Expression of Apoptotic Factors After Cerebral Ischemia and Reperfusion in Rats. Anesthesia & Analgesia 2006;103:173-9. [DOI: 10.1213/01.ane.0000222634.51192.a4] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 2.8] [Reference Citation Analysis]
670 Christman SA, Kong BW, Landry MM, Kim H, Foster DN. Contributions of differential p53 expression in the spontaneous immortalization of a chicken embryo fibroblast cell line. BMC Cell Biol 2006;7:27. [PMID: 16813656 DOI: 10.1186/1471-2121-7-27] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
671 Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 2006;281:24304-13. [PMID: 16803902 DOI: 10.1074/jbc.M602596200] [Cited by in Crossref: 89] [Cited by in F6Publishing: 98] [Article Influence: 5.2] [Reference Citation Analysis]
672 Kortum RL, Johnson HJ, Costanzo DL, Volle DJ, Razidlo GL, Fusello AM, Shaw AS, Lewis RE. The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence. Mol Cell Biol 2006;26:2202-14. [PMID: 16507997 DOI: 10.1128/MCB.26.6.2202-2214.2006] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 2.4] [Reference Citation Analysis]
673 Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U. Oscillations and variability in the p53 system. Mol Syst Biol 2006;2:2006.0033. [PMID: 16773083 DOI: 10.1038/msb4100068] [Cited by in Crossref: 436] [Cited by in F6Publishing: 474] [Article Influence: 25.6] [Reference Citation Analysis]
674 Sánchez-Aguilera A, García JF, Sánchez-Beato M, Piris MA. Hodgkin's lymphoma cells express alternatively spliced forms of HDM2 with multiple effects on cell cycle control. Oncogene 2006;25:2565-74. [PMID: 16331255 DOI: 10.1038/sj.onc.1209282] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
675 Reed SI. The ubiquitin-proteasome pathway in cell cycle control. Results and Problems in Cell Differentiation. [DOI: 10.1007/b136681] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 3.1] [Reference Citation Analysis]
676 Harada H, Kizaka-Kondoh S, Hiraoka M. Antitumor protein therapy; application of the protein transduction domain to the development of a protein drug for cancer treatment. Breast Cancer 2006;13:16-26. [PMID: 16518058 DOI: 10.2325/jbcs.13.16] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 2.2] [Reference Citation Analysis]
677 Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 2006;172:909-21. [PMID: 16533949 DOI: 10.1083/jcb.200508130] [Cited by in Crossref: 198] [Cited by in F6Publishing: 213] [Article Influence: 11.6] [Reference Citation Analysis]
678 Ohkubo S, Tanaka T, Taya Y, Kitazato K, Prives C. Excess HDM2 impacts cell cycle and apoptosis and has a selective effect on p53-dependent transcription. J Biol Chem 2006;281:16943-50. [PMID: 16624812 DOI: 10.1074/jbc.M601388200] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 2.2] [Reference Citation Analysis]
679 Jean ME, Lowy AM, Chiao PJ, Evans DB. The Molecular Biology of Pancreatic Cancer. M. D. Anderson Solid Tumor Oncology Series. [DOI: 10.1007/0-387-21600-6_2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
680 Fleming JB. Cell Signaling Pathways in Pancreatic Cancer. M. D. Anderson Solid Tumor Oncology Series. [DOI: 10.1007/0-387-21600-6_4] [Reference Citation Analysis]
681 Chène P. Drugs Targeting Protein–Protein Interactions. ChemMedChem 2006;1:400-11. [DOI: 10.1002/cmdc.200600004] [Cited by in Crossref: 98] [Cited by in F6Publishing: 98] [Article Influence: 5.8] [Reference Citation Analysis]
682 Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW. Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 2000;10:249-59. [PMID: 10764044 DOI: 10.1111/j.1750-3639.2000.tb00258.x] [Cited by in Crossref: 139] [Cited by in F6Publishing: 143] [Article Influence: 8.2] [Reference Citation Analysis]
683 Begemann M, Fuller GN, Holland EC. Genetic modeling of glioma formation in mice. Brain Pathol 2002;12:117-32. [PMID: 11770894 DOI: 10.1111/j.1750-3639.2002.tb00428.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 0.9] [Reference Citation Analysis]
684 Newcomb EW, Cohen H, Lee SR, Bhalla SK, Bloom J, Hayes RL, Miller DC. Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol 1998;8:655-67. [PMID: 9804374 DOI: 10.1111/j.1750-3639.1998.tb00191.x] [Cited by in Crossref: 120] [Cited by in F6Publishing: 135] [Article Influence: 7.1] [Reference Citation Analysis]
685 Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006;21:307-315. [PMID: 16455486 DOI: 10.1016/j.molcel.2006.01.020] [Cited by in Crossref: 619] [Cited by in F6Publishing: 659] [Article Influence: 36.4] [Reference Citation Analysis]
686 Russell JL, Weaks RL, Berton TR, Johnson DG. E2F1 suppresses skin carcinogenesis via the ARF-p53 pathway. Oncogene 2006;25:867-76. [PMID: 16205640 DOI: 10.1038/sj.onc.1209120] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 0.6] [Reference Citation Analysis]
687 Jin Y, Dai MS, Lu SZ, Xu Y, Luo Z, Zhao Y, Lu H. 14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J. 2006;25:1207-1218. [PMID: 16511572 DOI: 10.1038/sj.emboj.7601010] [Cited by in Crossref: 85] [Cited by in F6Publishing: 94] [Article Influence: 5.0] [Reference Citation Analysis]
688 Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, Bellefroid E, Marine JC. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci USA. 2006;103:3232-3237. [PMID: 16492744 DOI: 10.1073/pnas.0508476103] [Cited by in Crossref: 178] [Cited by in F6Publishing: 189] [Article Influence: 10.5] [Reference Citation Analysis]
689 Iwasaki H, Oku H, Takara R, Miyahira H, Hanashiro K, Yoshida Y, Kamada Y, Toyokawa T, Takara K, Inafuku M. The tumor specific cytotoxicity of dihydronitidine from Toddalia asiatica Lam. Cancer Chemother Pharmacol 2006;58:451-9. [DOI: 10.1007/s00280-005-0183-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
690 Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol 2006;4:e27. [PMID: 16402859 DOI: 10.1371/journal.pbio.0040027] [Cited by in Crossref: 146] [Cited by in F6Publishing: 160] [Article Influence: 8.6] [Reference Citation Analysis]
691 Wang S, El-Deiry WS. The p53 pathway: targets for the development of novel cancer therapeutics. Cancer Treat Res 2004;119:175-87. [PMID: 15164878 DOI: 10.1007/1-4020-7847-1_9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 1.1] [Reference Citation Analysis]
692 Galic V, Willner J, Wollan M, Garg R, Garcia R, Goff BA, Gray HJ, Swisher EM. Common polymorphisms inTP53 andMDM2 and the relationship toTP53 mutations and clinical outcomes in women with ovarian and peritoneal carcinomas. Genes Chromosom Cancer 2007;46:239-47. [DOI: 10.1002/gcc.20407] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 2.2] [Reference Citation Analysis]
693 Yang C, Wang S. Chapter 11 Recent Advances in Design of Small-Molecule Ligands to Target Protein–Protein Interactions. Annual Reports in Computational Chemistry 2006. [DOI: 10.1016/s1574-1400(06)02011-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
694 Figge JJ, Kartel NA, Yarmolinsky D, Ermak G. Molecular Pathogenesis of Thyroid Cancer. Thyroid Cancer 2006. [DOI: 10.1007/978-1-59259-995-0_3] [Reference Citation Analysis]
695 Bishop A, Kosaras B, Hollander M, Fornace A, Sidman R, Schiestl R. p21 controls patterning but not homologous recombination in RPE development. DNA Repair 2006;5:111-20. [DOI: 10.1016/j.dnarep.2005.08.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
696 Okamoto K, Kashima K, Pereg Y, Ishida M, Yamazaki S, Nota A, Teunisse A, Migliorini D, Kitabayashi I, Marine JC. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol Cell Biol. 2005;25:9608-9620. [PMID: 16227609 DOI: 10.1128/mcb.25.21.9608-9620.2005] [Cited by in Crossref: 91] [Cited by in F6Publishing: 99] [Article Influence: 5.1] [Reference Citation Analysis]
697 Christman SA, Kong BW, Landry MM, Kim H, Foster DN. Modulation of p53 expression and its role in the conversion to a fully immortalized chicken embryo fibroblast line. FEBS Lett 2005;579:6705-15. [PMID: 16313905 DOI: 10.1016/j.febslet.2005.10.066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
698 Loregian A, Palù G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005;204:750-62. [PMID: 15880642 DOI: 10.1002/jcp.20356] [Cited by in Crossref: 76] [Cited by in F6Publishing: 80] [Article Influence: 4.2] [Reference Citation Analysis]
699 Lerdrup M, Holmberg C, Dietrich N, Shaulian E, Herdegen T, Jäättelä M, Kallunki T. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis. Biochim Biophys Acta 2005;1745:29-37. [PMID: 16026868 DOI: 10.1016/j.bbamcr.2005.06.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
700 Castillo JP, Frame FM, Rogoff HA, Pickering MT, Yurochko AD, Kowalik TF. Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol 2005;79:11467-75. [PMID: 16103197 DOI: 10.1128/JVI.79.17.11467-11475.2005] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 3.0] [Reference Citation Analysis]
701 Cannon M, Cesarman E, Boshoff C. KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 2006;107:277-84. [PMID: 16150942 DOI: 10.1182/blood-2005-06-2350] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 1.9] [Reference Citation Analysis]
702 Steele RJ, Lane DP. P53 in cancer: a paradigm for modern management of cancer. Surgeon 2005;3:197-205. [PMID: 16076005 DOI: 10.1016/s1479-666x(05)80041-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.1] [Reference Citation Analysis]
703 Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genetics and Cytogenetics 2005;161:1-19. [DOI: 10.1016/j.cancergencyto.2004.11.009] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 3.1] [Reference Citation Analysis]
704 Amatya VJ, Naumann U, Weller M, Ohgaki H. TP53 promoter methylation in human gliomas. Acta Neuropathol 2005;110:178-84. [PMID: 16025287 DOI: 10.1007/s00401-005-1041-5] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 3.6] [Reference Citation Analysis]
705 Ford KK, Mack JA, O'Neill RJ. Multiple independent pseudogene derivations indicate increased instability of the Mdm2 locus in Mus caroli. Mol Biol Rep 2005;32:95-101. [PMID: 16022282 DOI: 10.1007/s11033-005-0752-y] [Reference Citation Analysis]
706 Mayo LD, Seo YR, Jackson MW, Smith ML, Guzman JR, Korgaonkar CK, Donner DB. Phosphorylation of Human p53 at Serine 46 Determines Promoter Selection and whether Apoptosis Is Attenuated or Amplified. Journal of Biological Chemistry 2005;280:25953-9. [DOI: 10.1074/jbc.m503026200] [Cited by in Crossref: 107] [Cited by in F6Publishing: 113] [Article Influence: 5.9] [Reference Citation Analysis]
707 Golubovskaya VM, Finch R, Cance WG. Direct Interaction of the N-terminal Domain of Focal Adhesion Kinase with the N-terminal Transactivation Domain of p53. Journal of Biological Chemistry 2005;280:25008-21. [DOI: 10.1074/jbc.m414172200] [Cited by in Crossref: 123] [Cited by in F6Publishing: 134] [Article Influence: 6.8] [Reference Citation Analysis]
708 Rassidakis GZ, Thomaides A, Wang S, Jiang Y, Fourtouna A, Lai R, Medeiros LJ. p53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma. Leukemia 2005;19:1663-9. [DOI: 10.1038/sj.leu.2403840] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 2.3] [Reference Citation Analysis]
709 Marine JC, Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 2005;331:750-60. [PMID: 15865931 DOI: 10.1016/j.bbrc.2005.03.151] [Cited by in Crossref: 126] [Cited by in F6Publishing: 116] [Article Influence: 7.0] [Reference Citation Analysis]
710 Oberst A, Rossi M, Salomoni P, Pandolfi PP, Oren M, Melino G, Bernassola F. Regulation of the p73 protein stability and degradation. Biochemical and Biophysical Research Communications 2005;331:707-12. [DOI: 10.1016/j.bbrc.2005.03.158] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 2.7] [Reference Citation Analysis]
711 Nakano M, Taura Y, Inoue M. Protein expression of Mdm2 and p53 in hyperplastic and neoplastic lesions of the canine circumanal gland. J Comp Pathol 2005;132:27-32. [PMID: 15629477 DOI: 10.1016/j.jcpa.2004.06.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
712 Jaworski M, Hailfinger S, Buchmann A, Hergenhahn M, Hollstein M, Ittrich C, Schwarz M. Human p53 knock-in (hupki) mice do not differ in liver tumor response from their counterparts with murine p53. Carcinogenesis 2005;26:1829-34. [PMID: 15917304 DOI: 10.1093/carcin/bgi142] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.2] [Reference Citation Analysis]
713 Li WD, Wang MJ, Ding F, Yin DL, Liu ZH. Cytotoxic effect of a non-peptidic small molecular inhibitor of the p53-HDM2 interaction on tumor cells. World J Gastroenterol 2005; 11(19): 2927-2931 [PMID: 15902730 DOI: 10.3748/wjg.v11.i19.2927] [Cited by in CrossRef: 12] [Cited by in F6Publishing: 13] [Article Influence: 0.7] [Reference Citation Analysis]
714 Martinez JC, Palomino JC, Cabello A, Sepulveda JM, de la Camara AG, Ricoy JR. HDM2 overexpression and focal loss of p14/ARF expression may deregulate the P53 tumour suppressor pathway in meningeal haemangiopericytomas. Histopathology. 2005;46:184-194. [PMID: 15693891 DOI: 10.1111/j.1365-2559.2005.02074.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
715 Brady M, Vlatkovic N, Boyd MT. Regulation of p53 and MDM2 activity by MTBP. Mol Cell Biol 2005;25:545-53. [PMID: 15632057 DOI: 10.1128/MCB.25.2.545-553.2005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 2.7] [Reference Citation Analysis]
716 Khan S, Guevara C, Fujii G, Parry D. p14ARF is a component of the p53 response following ionizing irradiation of normal human fibroblasts. Oncogene 2004;23:6040-6. [PMID: 15195142 DOI: 10.1038/sj.onc.1207824] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 1.7] [Reference Citation Analysis]
717 Cho-chung YS. Antisense and therapeutic oligonucleotides: toward a gene-targeting cancer clinic. Expert Opinion on Therapeutic Patents 2005;10:1711-24. [DOI: 10.1517/13543776.10.11.1711] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
718 Wiman KG. p53 as a target for improved cancer therapy. Emerging Therapeutic Targets 2005;3:347-53. [DOI: 10.1517/14728222.3.2.347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
719 Meek DW. The p53 response to DNA damage. DNA Repair (Amst). 2004;3:1049-1056. [PMID: 15279792 DOI: 10.1016/j.dnarep.2004.03.027] [Cited by in Crossref: 260] [Cited by in F6Publishing: 268] [Article Influence: 14.4] [Reference Citation Analysis]
720 Müller P, Ceskova P, Vojtesek B. Hsp90 Is Essential for Restoring Cellular Functions of Temperature-sensitive p53 Mutant Protein but Not for Stabilization and Activation of Wild-type p53. Journal of Biological Chemistry 2005;280:6682-91. [DOI: 10.1074/jbc.m412767200] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 2.7] [Reference Citation Analysis]
721 Meijerink JP, Van Lieshout EM, Beverloo HB, Van Drunen E, Mensink EJ, Macville M, Pieters R. Novel murine B-cell lymphoma/leukemia model to study BCL2-driven oncogenesis. Int J Cancer 2005;114:917-25. [DOI: 10.1002/ijc.20822] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
722 Hossain MMI, Uzzaman MA, Nishioka M, Sakamoto K, Esguerra RL, Yamaguchi A, Takagi M. Expression of p53, mdm2 and p21 Proteins in Betal Quid and Tobacco Associated Oral Squamous Cell Carcinoma in Bangladeshi Population. Oral Med Pathol 2005;10:23-31. [DOI: 10.3353/omp.10.23] [Reference Citation Analysis]
723 Lozano G, Zambetti GP. What have animal models taught us about the p53 pathway? J Pathol 2005;205:206-20. [DOI: 10.1002/path.1704] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 3.1] [Reference Citation Analysis]
724 Matsumoto K, Suzuki SO, Fukui M, Iwaki T. Accumulation of MDM2 in pleomorphic xanthoastrocytomas. Pathol Int 2004;54:387-91. [PMID: 15144396 DOI: 10.1111/j.1440-1827.2004.01637.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
725 Yoon SY, Lee Y, Kim JH, Chung A, Joo JH, Kim C, Kim N, Choe IS, Kim JW. Over-expression of human UREB1 in colorectal cancer: HECT domain of human UREB1 inhibits the activity of tumor suppressor p53 protein. Biochemical and Biophysical Research Communications 2004;326:7-17. [DOI: 10.1016/j.bbrc.2004.11.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 1.8] [Reference Citation Analysis]
726 Oh SH, Lee BH, Lim SC. Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 2004;68:1845-55. [PMID: 15450950 DOI: 10.1016/j.bcp.2004.06.021] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 3.8] [Reference Citation Analysis]
727 Lin JY, Ohshima T, Shimotohno K. Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS Lett 2004;573:15-8. [PMID: 15327968 DOI: 10.1016/j.febslet.2004.07.059] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 1.8] [Reference Citation Analysis]
728 Jin A, Itahana K, O'Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol. 2004;24:7669-7680. [PMID: 15314174 DOI: 10.1128/mcb.24.17.7669-7680.2004] [Cited by in Crossref: 267] [Cited by in F6Publishing: 290] [Article Influence: 14.1] [Reference Citation Analysis]
729 Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol. 2004;24:7654-7668. [PMID: 15314173 DOI: 10.1128/mcb.24.17.7654-7668.2004] [Cited by in Crossref: 357] [Cited by in F6Publishing: 388] [Article Influence: 18.8] [Reference Citation Analysis]
730 Eischen CM, Alt JR, Wang P. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development. Oncogene 2004;23:8931-40. [DOI: 10.1038/sj.onc.1208052] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 1.4] [Reference Citation Analysis]
731 Jõers A, Jaks V, Kase J, Maimets T. p53-dependent transcription can exhibit both on/off and graded response after genotoxic stress. Oncogene 2004;23:6175-85. [PMID: 15208667 DOI: 10.1038/sj.onc.1207864] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 1.3] [Reference Citation Analysis]
732 Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 2004;279:44475-44482. [PMID: 15308643 DOI: 10.1074/jbc.m403722200] [Cited by in Crossref: 392] [Cited by in F6Publishing: 418] [Article Influence: 20.6] [Reference Citation Analysis]
733 Di Stefano V, Blandino G, Sacchi A, Soddu S, D'Orazi G. HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene 2004;23:5185-92. [PMID: 15122315 DOI: 10.1038/sj.onc.1207656] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 2.6] [Reference Citation Analysis]
734 Chang C, Freeman DJ, Wu H. PTEN Regulates Mdm2 Expression through the P1 Promoter. Journal of Biological Chemistry 2004;279:29841-8. [DOI: 10.1074/jbc.m401488200] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 3.7] [Reference Citation Analysis]
735 Norton PA, Reis HM, Prince S, Larkin J, Pan J, Liu J, Gong Q, Zhu M, Feitelson MA. Activation of fibronectin gene expression by hepatitis B virus x antigen. J Viral Hepat 2004;11:332-41. [PMID: 15230856 DOI: 10.1111/j.1365-2893.2004.00555.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 1.4] [Reference Citation Analysis]
736 Amini S, Khalili K, Sawaya BE. Effect of HIV-1 Vpr on cell cycle regulators. DNA Cell Biol 2004;23:249-60. [PMID: 15142382 DOI: 10.1089/104454904773819833] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 1.8] [Reference Citation Analysis]
737 Bhat KP, Itahana K, Jin A, Zhang Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 2004;23:2402-2412. [PMID: 15152193 DOI: 10.1038/sj.emboj.7600247] [Cited by in Crossref: 189] [Cited by in F6Publishing: 202] [Article Influence: 9.9] [Reference Citation Analysis]
738 Jin Y, Zeng SX, Lee H, Lu H. MDM2 Mediates p300/CREB-binding Protein-associated Factor Ubiquitination and Degradation. Journal of Biological Chemistry 2004;279:20035-43. [DOI: 10.1074/jbc.m309916200] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 2.0] [Reference Citation Analysis]
739 Pan Y, Oprysko PR, Asham AM, Koch CJ, Simon MC. p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 2004;23:4975-83. [DOI: 10.1038/sj.onc.1207657] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 3.9] [Reference Citation Analysis]
740 O'hagan HM, Ljungman M. Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2. Oncogene 2004;23:5505-12. [DOI: 10.1038/sj.onc.1207709] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33]