BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev 2007;21:2271-6. [PMID: 17875664 DOI: 10.1101/gad.1586107] [Cited by in Crossref: 180] [Cited by in F6Publishing: 145] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhou P, Cai S, Liu Z, Chen L, Wang R. Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems. Chaos, Solitons & Fractals 2013;50:115-26. [DOI: 10.1016/j.chaos.2012.11.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Tan C, Marguet P, You L. Emergent bistability by a growth-modulating positive feedback circuit. Nat Chem Biol 2009;5:842-8. [PMID: 19801994 DOI: 10.1038/nchembio.218] [Cited by in Crossref: 242] [Cited by in F6Publishing: 190] [Article Influence: 18.6] [Reference Citation Analysis]
3 Balleza E, López-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI, Encarnación S, Collado-Vides J. Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 2009;33:133-51. [PMID: 19076632 DOI: 10.1111/j.1574-6976.2008.00145.x] [Cited by in Crossref: 125] [Cited by in F6Publishing: 101] [Article Influence: 9.6] [Reference Citation Analysis]
4 Wu M, Su RQ, Li X, Ellis T, Lai YC, Wang X. Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci U S A 2013;110:10610-5. [PMID: 23754391 DOI: 10.1073/pnas.1305423110] [Cited by in Crossref: 71] [Cited by in F6Publishing: 56] [Article Influence: 7.9] [Reference Citation Analysis]
5 Bradley RW, Wang B. Designer cell signal processing circuits for biotechnology. N Biotechnol 2015;32:635-43. [PMID: 25579192 DOI: 10.1016/j.nbt.2014.12.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 4.1] [Reference Citation Analysis]
6 Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioengineering 2022;6:010903. [DOI: 10.1063/5.0076635] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chakraborty D, Rengaswamy R, Raman K. Designing Biological Circuits: From Principles to Applications. ACS Synth Biol 2022;11:1377-88. [PMID: 35320676 DOI: 10.1021/acssynbio.1c00557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Schyfter P. Technological biology? Things and kinds in synthetic biology. Biol Philos 2012;27:29-48. [DOI: 10.1007/s10539-011-9288-9] [Cited by in Crossref: 11] [Article Influence: 1.0] [Reference Citation Analysis]
9 Urrios A, Macia J, Manzoni R, Conde N, Bonforti A, de Nadal E, Posas F, Solé R. A Synthetic Multicellular Memory Device. ACS Synth Biol 2016;5:862-73. [PMID: 27439436 DOI: 10.1021/acssynbio.5b00252] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 5.7] [Reference Citation Analysis]
10 Marchisio MA. Parts & pools: a framework for modular design of synthetic gene circuits. Front Bioeng Biotechnol 2014;2:42. [PMID: 25340051 DOI: 10.3389/fbioe.2014.00042] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
11 Burrill DR, Inniss MC, Boyle PM, Silver PA. Synthetic memory circuits for tracking human cell fate. Genes Dev 2012;26:1486-97. [PMID: 22751502 DOI: 10.1101/gad.189035.112] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
12 Bagh S, Mandal M, McMillen DR. Minimal genetic device with multiple tunable functions. Phys Rev E Stat Nonlin Soft Matter Phys 2010;82:021911. [PMID: 20866841 DOI: 10.1103/PhysRevE.82.021911] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
13 Noman N, Inniss M, Iba H, Way JC. Pulse Detecting Genetic Circuit - A New Design Approach. PLoS One 2016;11:e0167162. [PMID: 27907045 DOI: 10.1371/journal.pone.0167162] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
14 Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018;45:599-614. [PMID: 29552703 DOI: 10.1007/s10295-018-2027-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
15 Kulkarni VV, Kareenhalli V, Viswananthan GA, Riedel M. Characterizing the memory of the GAL regulatory network in Saccharomyces cerevisiae. Syst Synth Biol 2011;5:97-104. [PMID: 23205153 DOI: 10.1007/s11693-011-9086-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
16 Carvalho A, Menendez DB, Senthivel VR, Zimmermann T, Diambra L, Isalan M. Genetically encoded sender-receiver system in 3D mammalian cell culture. ACS Synth Biol 2014;3:264-72. [PMID: 24313393 DOI: 10.1021/sb400053b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
17 MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016;105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
18 Steinacher A, Bates DG, Akman OE, Soyer OS. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels. PLoS One 2016;11:e0153295. [PMID: 27082741 DOI: 10.1371/journal.pone.0153295] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
19 Ham TS, Lee SK, Keasling JD, Arkin AP. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS One 2008;3:e2815. [PMID: 18665232 DOI: 10.1371/journal.pone.0002815] [Cited by in Crossref: 108] [Cited by in F6Publishing: 89] [Article Influence: 7.7] [Reference Citation Analysis]
20 Igoshin OA, Alves R, Savageau MA. Hysteretic and graded responses in bacterial two-component signal transduction. Mol Microbiol 2008;68:1196-215. [PMID: 18363790 DOI: 10.1111/j.1365-2958.2008.06221.x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 3.8] [Reference Citation Analysis]
21 Ye L, Xie W, Zhou P, Yu H. Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts. ChemBioEng Reviews 2015;2:107-17. [DOI: 10.1002/cben.201400023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
22 Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015;10:293-302. [PMID: 25830651 DOI: 10.1080/15592294.2015.1017200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
23 Chen Y, Zhang S, Young EM, Jones TS, Densmore D, Voigt CA. Genetic circuit design automation for yeast. Nat Microbiol 2020;5:1349-60. [DOI: 10.1038/s41564-020-0757-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
24 Shopera T, Henson WR, Ng A, Lee YJ, Ng K, Moon TS. Robust, tunable genetic memory from protein sequestration combined with positive feedback. Nucleic Acids Res 2015;43:9086-94. [PMID: 26384562 DOI: 10.1093/nar/gkv936] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 3.9] [Reference Citation Analysis]
25 Manzoni R, Urrios A, Velazquez-garcia S, de Nadal E, Posas F. Synthetic biology: insights into biological computation. Integr Biol 2016;8:518-32. [DOI: 10.1039/c5ib00274e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
26 Cuba Samaniego C, Franco E. A Robust Molecular Network Motif for Period-Doubling Devices. ACS Synth Biol 2018;7:75-85. [PMID: 29227103 DOI: 10.1021/acssynbio.7b00222] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
27 Blount BA, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast. FEBS Letters 2012;586:2112-21. [DOI: 10.1016/j.febslet.2012.01.053] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
28 Ghosh D, Banerjee T. Transitions among the diverse oscillation quenching states induced by the interplay of direct and indirect coupling. Phys Rev E 2014;90. [DOI: 10.1103/physreve.90.062908] [Cited by in Crossref: 35] [Article Influence: 4.4] [Reference Citation Analysis]
29 Benenson Y. Biocomputers: from test tubes to live cells. Mol Biosyst 2009;5:675-85. [PMID: 19562106 DOI: 10.1039/b902484k] [Cited by in Crossref: 123] [Cited by in F6Publishing: 84] [Article Influence: 9.5] [Reference Citation Analysis]
30 Lu TK, Khalil AS, Collins JJ. Next-generation synthetic gene networks. Nat Biotechnol 2009;27:1139-50. [PMID: 20010597 DOI: 10.1038/nbt.1591] [Cited by in Crossref: 261] [Cited by in F6Publishing: 217] [Article Influence: 21.8] [Reference Citation Analysis]
31 Perez-Carrasco R, Barnes CP, Schaerli Y, Isalan M, Briscoe J, Page KM. Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Syst 2018;6:521-530.e3. [PMID: 29574056 DOI: 10.1016/j.cels.2018.02.008] [Cited by in Crossref: 42] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
32 Yang CY, Bialecka-Fornal M, Weatherwax C, Larkin JW, Prindle A, Liu J, Garcia-Ojalvo J, Süel GM. Encoding Membrane-Potential-Based Memory within a Microbial Community. Cell Syst 2020;10:417-423.e3. [PMID: 32343961 DOI: 10.1016/j.cels.2020.04.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
33 Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition. Science 2016;353:aaf1175. [PMID: 27284167 DOI: 10.1126/science.aaf1175] [Cited by in Crossref: 117] [Cited by in F6Publishing: 87] [Article Influence: 19.5] [Reference Citation Analysis]
34 Guiziou S, Sauveplane V, Chang HJ, Clerté C, Declerck N, Jules M, Bonnet J. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res 2016;44:7495-508. [PMID: 27402159 DOI: 10.1093/nar/gkw624] [Cited by in Crossref: 49] [Cited by in F6Publishing: 62] [Article Influence: 8.2] [Reference Citation Analysis]
35 Nistala GJ, Wu K, Rao CV, Bhalerao KD. A modular positive feedback-based gene amplifier. J Biol Eng 2010;4:4. [PMID: 20187959 DOI: 10.1186/1754-1611-4-4] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
36 Waks Z, Silver PA. Engineering a synthetic dual-organism system for hydrogen production. Appl Environ Microbiol 2009;75:1867-75. [PMID: 19201964 DOI: 10.1128/AEM.02009-08] [Cited by in Crossref: 36] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
37 Payen C, Thompson D. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast 2019;36:685-700. [DOI: 10.1002/yea.3439] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
38 Yadav VG, Stephanopoulos G. Reevaluating synthesis by biology. Curr Opin Microbiol 2010;13:371-6. [PMID: 20447859 DOI: 10.1016/j.mib.2010.04.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
39 Abramson CI, Levin M. Behaviorist approaches to investigating memory and learning: A primer for synthetic biology and bioengineering. Commun Integr Biol 2021;14:230-47. [PMID: 34925687 DOI: 10.1080/19420889.2021.2005863] [Reference Citation Analysis]
40 Purcell O, Lu TK. Synthetic analog and digital circuits for cellular computation and memory. Curr Opin Biotechnol 2014;29:146-55. [PMID: 24794536 DOI: 10.1016/j.copbio.2014.04.009] [Cited by in Crossref: 67] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
41 Marchisio MA, Rudolf F. Synthetic biosensing systems. The International Journal of Biochemistry & Cell Biology 2011;43:310-9. [DOI: 10.1016/j.biocel.2010.11.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
42 Zhang Y, Smolen P, Baxter DA, Byrne JH. The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: computational analysis. Learn Mem 2010;17:428-39. [PMID: 20736337 DOI: 10.1101/lm.1844010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
43 Guan Q, Haroon S, Bravo DG, Will JL, Gasch AP. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics 2012;192:495-505. [PMID: 22851651 DOI: 10.1534/genetics.112.143016] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 8.4] [Reference Citation Analysis]
44 Afroz T, Beisel CL. Understanding and exploiting feedback in synthetic biology. Chemical Engineering Science 2013;103:79-90. [DOI: 10.1016/j.ces.2013.02.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
45 Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD. A synthetic genetic edge detection program. Cell 2009;137:1272-81. [PMID: 19563759 DOI: 10.1016/j.cell.2009.04.048] [Cited by in Crossref: 362] [Cited by in F6Publishing: 289] [Article Influence: 27.8] [Reference Citation Analysis]
46 González C, Ray JC, Manhart M, Adams RM, Nevozhay D, Morozov AV, Balázsi G. Stress-response balance drives the evolution of a network module and its host genome. Mol Syst Biol 2015;11:827. [PMID: 26324468 DOI: 10.15252/msb.20156185] [Cited by in Crossref: 69] [Cited by in F6Publishing: 51] [Article Influence: 9.9] [Reference Citation Analysis]
47 Coudreuse D. Insights from synthetic yeasts. Yeast 2016;33:483-92. [PMID: 27145443 DOI: 10.1002/yea.3169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
48 Blount BA, Weenink T, Vasylechko S, Ellis T. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One 2012;7:e33279. [PMID: 22442681 DOI: 10.1371/journal.pone.0033279] [Cited by in Crossref: 118] [Cited by in F6Publishing: 106] [Article Influence: 11.8] [Reference Citation Analysis]
49 Ede C, Chen X, Lin MY, Chen YY. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells. ACS Synth Biol 2016;5:395-404. [PMID: 26883397 DOI: 10.1021/acssynbio.5b00266] [Cited by in Crossref: 52] [Cited by in F6Publishing: 38] [Article Influence: 8.7] [Reference Citation Analysis]
50 Gordley RM, Williams RE, Bashor CJ, Toettcher JE, Yan S, Lim WA. Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Proc Natl Acad Sci U S A 2016;113:13528-33. [PMID: 27821768 DOI: 10.1073/pnas.1610973113] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
51 Miller-Jensen K, Dey SS, Schaffer DV, Arkin AP. Varying virulence: epigenetic control of expression noise and disease processes. Trends Biotechnol 2011;29:517-25. [PMID: 21700350 DOI: 10.1016/j.tibtech.2011.05.004] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 4.4] [Reference Citation Analysis]
52 Burrill DR, Silver PA. Synthetic circuit identifies subpopulations with sustained memory of DNA damage. Genes Dev 2011;25:434-9. [PMID: 21363961 DOI: 10.1101/gad.1994911] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
53 Deans TL. Parallel Networks: Synthetic Biology and Artificial Intelligence. J Emerg Technol Comput Syst 2014;11:1-22. [DOI: 10.1145/2667229] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
54 Moe-Behrens GH. The biological microprocessor, or how to build a computer with biological parts. Comput Struct Biotechnol J 2013;7:e201304003. [PMID: 24688733 DOI: 10.5936/csbj.201304003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
55 Smolke CD. It's the DNA That Counts. Science 2009;324:1156-7. [DOI: 10.1126/science.1174843] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
56 Das S, Barik D. Pulsatile signaling of bistable switches reveal the distinct nature of pulse processing by mutual activation and mutual inhibition loop. Journal of Theoretical Biology 2022. [DOI: 10.1016/j.jtbi.2022.111075] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Andres J, Blomeier T, Zurbriggen MD. Synthetic Switches and Regulatory Circuits in Plants. Plant Physiol 2019;179:862-84. [PMID: 30692218 DOI: 10.1104/pp.18.01362] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
58 Mahajan T, Rai K. A novel optogenetically tunable frequency modulating oscillator. PLoS One 2018;13:e0183242. [PMID: 29389936 DOI: 10.1371/journal.pone.0183242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
59 Boyle PM, Silver PA. Harnessing nature's toolbox: regulatory elements for synthetic biology. J R Soc Interface 2009;6 Suppl 4:S535-46. [PMID: 19324675 DOI: 10.1098/rsif.2008.0521.focus] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
60 Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D. Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 2009;3:4. [PMID: 19298678 DOI: 10.1186/1754-1611-3-4] [Cited by in Crossref: 255] [Cited by in F6Publishing: 221] [Article Influence: 19.6] [Reference Citation Analysis]
61 Tabor JJ, Groban ES, Voigt CA. Performance Characteristics for Sensors and Circuits Used to Program E. coli. In: Lee SY, editor. Systems Biology and Biotechnology of Escherichia coli. Dordrecht: Springer Netherlands; 2009. pp. 401-39. [DOI: 10.1007/978-1-4020-9394-4_19] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
62 Rantasalo A, Kuivanen J, Penttilä M, Jäntti J, Mojzita D. Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae. ACS Synth Biol 2018;7:1573-87. [PMID: 29750501 DOI: 10.1021/acssynbio.8b00076] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
63 Krivoruchko A, Siewers V, Nielsen J. Opportunities for yeast metabolic engineering: Lessons from synthetic biology. Biotechnology Journal 2011;6:262-76. [DOI: 10.1002/biot.201000308] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 7.6] [Reference Citation Analysis]
64 Schyfter P. Standing Reserves of Function: A Heideggerian Reading of Synthetic Biology. Philos Technol 2012;25:199-219. [DOI: 10.1007/s13347-011-0053-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
65 Roquet N, Lu TK. Digital and analog gene circuits for biotechnology. Biotechnol J 2014;9:597-608. [PMID: 24677719 DOI: 10.1002/biot.201300258] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
66 Wang YH, Wei KY, Smolke CD. Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 2013;4:69-102. [PMID: 23413816 DOI: 10.1146/annurev-chembioeng-061312-103351] [Cited by in Crossref: 89] [Cited by in F6Publishing: 77] [Article Influence: 9.9] [Reference Citation Analysis]
67 Sneppen K, Micheelsen MA, Dodd IB. Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Mol Syst Biol 2008;4:182. [PMID: 18414483 DOI: 10.1038/msb.2008.21] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 3.1] [Reference Citation Analysis]
68 Pérez-García S, García-Navarrete M, Ruiz-Sanchis D, Prieto-Navarro C, Avdovic M, Pucciariello O, Wabnik K. Synchronization of gene expression across eukaryotic communities through chemical rhythms. Nat Commun 2021;12:4017. [PMID: 34188048 DOI: 10.1038/s41467-021-24325-z] [Reference Citation Analysis]
69 Lou C, Liu X, Ni M, Huang Y, Huang Q, Huang L, Jiang L, Lu D, Wang M, Liu C, Chen D, Chen C, Chen X, Yang L, Ma H, Chen J, Ouyang Q. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol 2010;6:350. [PMID: 20212522 DOI: 10.1038/msb.2010.2] [Cited by in Crossref: 98] [Cited by in F6Publishing: 82] [Article Influence: 8.2] [Reference Citation Analysis]
70 Schyfter P, Calvert J. Intentions, Expectations and Institutions: Engineering the Future of Synthetic Biology in the USA and the UK. Science as Culture 2015;24:359-83. [DOI: 10.1080/09505431.2015.1037827] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
71 Schyfter P. Propellers and promoters: emerging engineering knowledge in aeronautics and synthetic biology. Engineering Studies 2013;5:6-25. [DOI: 10.1080/19378629.2012.762651] [Cited by in Crossref: 9] [Article Influence: 1.0] [Reference Citation Analysis]
72 Lu TK. Engineering scalable biological systems. Bioeng Bugs 2010;1:378-84. [PMID: 21468204 DOI: 10.4161/bbug.1.6.13086] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
73 Xie Z, Wroblewska L, Weiss R. RNAi Synthetic Logic Circuits for Sensing, Information Processing, and Actuation. In: Meyers RA, editor. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. pp. 1-23. [DOI: 10.1002/3527600906.mcb.20130003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
74 Yang Y, Nemhauser JL, Klavins E. Synthetic Bistability and Differentiation in Yeast. ACS Synth Biol 2019;8:929-36. [PMID: 31021593 DOI: 10.1021/acssynbio.8b00524] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
75 Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 2014;111:4838-43. [PMID: 24639514 DOI: 10.1073/pnas.1321321111] [Cited by in Crossref: 223] [Cited by in F6Publishing: 173] [Article Influence: 27.9] [Reference Citation Analysis]
76 Agapakis CM, Silver PA. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway. Bioeng Bugs 2010;1:413-8. [PMID: 21468209 DOI: 10.4161/bbug.1.6.12462] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
77 Wang YH, McKeague M, Hsu TM, Smolke CD. Design and Construction of Generalizable RNA-Protein Hybrid Controllers by Level-Matched Genetic Signal Amplification. Cell Syst 2016;3:549-562.e7. [PMID: 27840078 DOI: 10.1016/j.cels.2016.10.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
78 Goodson HV, Gregoretti IV. Using Computational Modeling to Understand Microtubule Dynamics. Microtubules, in vitro. Elsevier; 2010. pp. 175-88. [DOI: 10.1016/s0091-679x(10)95010-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Agapakis CM, Silver PA. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol Biosyst 2009;5:704-13. [PMID: 19562109 DOI: 10.1039/b901484e] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
80 Hasan ABMSU, Kurata H. Mathematical comparison of memory functions between mutual activation and repression networks in a stochastic environment. J Theor Biol 2017;427:28-40. [PMID: 28587744 DOI: 10.1016/j.jtbi.2017.05.036] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
81 Farzadfard F, Lu TK. Synthetic biology. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 2014;346:1256272. [PMID: 25395541 DOI: 10.1126/science.1256272] [Cited by in Crossref: 180] [Cited by in F6Publishing: 140] [Article Influence: 22.5] [Reference Citation Analysis]
82 Qi H, Blanchard A, Lu T. Engineered genetic information processing circuits: Engineered genetic information processing circuits. WIREs Syst Biol Med 2013;5:273-87. [DOI: 10.1002/wsbm.1216] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
83 Leifer I, Morone F, Reis SDS, Andrade JS Jr, Sigman M, Makse HA. Circuits with broken fibration symmetries perform core logic computations in biological networks. PLoS Comput Biol 2020;16:e1007776. [PMID: 32555578 DOI: 10.1371/journal.pcbi.1007776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
84 Krzysztoń R, Wan Y, Petreczky J, Balázsi G. Gene-circuit therapy on the horizon: synthetic biology tools for engineered therapeutics. Acta Biochim Pol 2021;68:377-83. [PMID: 34460209 DOI: 10.18388/abp.2020_5744] [Reference Citation Analysis]
85 Schmidt F, Platt RJ. Applications of CRISPR-Cas for synthetic biology and genetic recording. Current Opinion in Systems Biology 2017;5:9-15. [DOI: 10.1016/j.coisb.2017.05.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
86 Macia J, Vidiella B, Solé RV. Synthetic associative learning in engineered multicellular consortia. J R Soc Interface 2017;14:20170158. [PMID: 28404872 DOI: 10.1098/rsif.2017.0158] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
87 Chen B, Lee HL, Heng YC, Chua N, Teo WS, Choi WJ, Leong SSJ, Foo JL, Chang MW. Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 2018;36:1870-81. [PMID: 30031049 DOI: 10.1016/j.biotechadv.2018.07.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
88 [DOI: 10.1101/053058] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
89 Zeng Y, Bhagyashree B, Zhao W, Nguyen T, Segatori L. Hysteretic Genetic Circuit for Detection of Proteasomal Degradation in Mammalian Cells. ACS Synth Biol 2019;8:2025-35. [PMID: 31415719 DOI: 10.1021/acssynbio.9b00074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet 2010;11:367-79. [PMID: 20395970 DOI: 10.1038/nrg2775] [Cited by in Crossref: 845] [Cited by in F6Publishing: 668] [Article Influence: 70.4] [Reference Citation Analysis]
91 Saritha M, Kumar P, Panwar NR, Burman U. Intelligent plant–microbe interactions. Archives of Agronomy and Soil Science 2022;68:1002-18. [DOI: 10.1080/03650340.2020.1870677] [Reference Citation Analysis]
92 Litovco P, Barger N, Li X, Daniel R. Topologies of synthetic gene circuit for optimal fold change activation. Nucleic Acids Res 2021;49:5393-406. [PMID: 34009384 DOI: 10.1093/nar/gkab253] [Reference Citation Analysis]
93 Kundu S, Peterson CL. Role of chromatin states in transcriptional memory. Biochim Biophys Acta 2009;1790:445-55. [PMID: 19236904 DOI: 10.1016/j.bbagen.2009.02.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
94 Bonnet J, Subsoontorn P, Endy D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc Natl Acad Sci U S A 2012;109:8884-9. [PMID: 22615351 DOI: 10.1073/pnas.1202344109] [Cited by in Crossref: 244] [Cited by in F6Publishing: 180] [Article Influence: 24.4] [Reference Citation Analysis]
95 Yang L, Nielsen AA, Fernandez-Rodriguez J, McClune CJ, Laub MT, Lu TK, Voigt CA. Permanent genetic memory with >1-byte capacity. Nat Methods 2014;11:1261-6. [PMID: 25344638 DOI: 10.1038/nmeth.3147] [Cited by in Crossref: 136] [Cited by in F6Publishing: 104] [Article Influence: 17.0] [Reference Citation Analysis]
96 Guo T, Allison JT. On the use of mathematical programs with complementarity constraints in combined topological and parametric design of biochemical enzyme networks. Engineering Optimization 2017;49:345-64. [DOI: 10.1080/0305215x.2016.1188091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Saltepe B, Kehribar EŞ, Su Yirmibeşoğlu SS, Şafak Şeker UÖ. Cellular Biosensors with Engineered Genetic Circuits. ACS Sens 2018;3:13-26. [PMID: 29168381 DOI: 10.1021/acssensors.7b00728] [Cited by in Crossref: 51] [Cited by in F6Publishing: 32] [Article Influence: 12.8] [Reference Citation Analysis]
98 Magdevska L, Pušnik Ž, Mraz M, Zimic N, Moškon M. Computational design of synchronous sequential structures in biological systems. Journal of Computational Science 2017;18:24-31. [DOI: 10.1016/j.jocs.2016.11.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
99 Hasan ABMSU, Kurata H, Pechmann S. Improvement of the memory function of a mutual repression network in a stochastic environment by negative autoregulation. BMC Bioinformatics 2019;20:734. [PMID: 31881978 DOI: 10.1186/s12859-019-3315-2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
100 Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP. Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS One 2008;3:e1700. [PMID: 18324309 DOI: 10.1371/journal.pone.0001700] [Cited by in Crossref: 74] [Cited by in F6Publishing: 54] [Article Influence: 5.3] [Reference Citation Analysis]
101 Innocentini GC, Guiziou S, Bonnet J, Radulescu O. Analytic framework for a stochastic binary biological switch. Phys Rev E 2016;94:062413. [PMID: 28085300 DOI: 10.1103/PhysRevE.94.062413] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
102 Danos V, Schumacher LJ. How liquid is biological signalling? Theoretical Computer Science 2009;410:1003-12. [DOI: 10.1016/j.tcs.2008.10.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
103 Rondon RE, Groseclose TM, Short AE, Wilson CJ. Transcriptional programming using engineered systems of transcription factors and genetic architectures. Nat Commun 2019;10:4784. [PMID: 31636266 DOI: 10.1038/s41467-019-12706-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
104 To TL, Maheshri N. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 2010;327:1142-5. [PMID: 20185727 DOI: 10.1126/science.1178962] [Cited by in Crossref: 202] [Cited by in F6Publishing: 167] [Article Influence: 16.8] [Reference Citation Analysis]
105 Jusiak B, Daniel R, Farzadfard F, Nissim L, Purcell O, Rubens J, Lu TK. Synthetic Gene Circuits. In: Meyers RA, editor. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. pp. 1-56. [DOI: 10.1002/3527600906.mcb.20120068] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
106 Dey A, Barik D. Emergent Bistable Switches from the Incoherent Feed-Forward Signaling of a Positive Feedback Loop. ACS Synth Biol 2021;10:3117-28. [PMID: 34694110 DOI: 10.1021/acssynbio.1c00373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Haynes KA. Chromatin research and biological engineering: an evolving relationship poised for new biomedical impacts. Current Opinion in Systems Biology 2019;14:73-81. [DOI: 10.1016/j.coisb.2019.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
108 Haynes KA, Silver PA. Eukaryotic systems broaden the scope of synthetic biology. J Cell Biol 2009;187:589-96. [PMID: 19948487 DOI: 10.1083/jcb.200908138] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
109 Kong W, Celik V, Liao C, Hua Q, Lu T. Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour Bioprocess 2014;1. [DOI: 10.1186/s40643-014-0024-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
110 Feng X, Marchisio MA. Saccharomyces cerevisiae Promoter Engineering before and during the Synthetic Biology Era. Biology (Basel) 2021;10:504. [PMID: 34204069 DOI: 10.3390/biology10060504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
111 Schyfter P. Knowing Use: An Analysis of Epistemic Functionality in Synthetic Biology. Social Epistemology 2021;35:475-89. [DOI: 10.1080/02691728.2020.1843198] [Reference Citation Analysis]
112 Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. Journal of Molecular Biology 2016;428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
113 Burrill DR, Silver PA. Making cellular memories. Cell 2010;140:13-8. [PMID: 20085698 DOI: 10.1016/j.cell.2009.12.034] [Cited by in Crossref: 94] [Cited by in F6Publishing: 76] [Article Influence: 7.8] [Reference Citation Analysis]
114 Inniss MC, Silver PA. Building synthetic memory. Curr Biol 2013;23:R812-6. [PMID: 24028965 DOI: 10.1016/j.cub.2013.06.047] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
115 Verbič A, Praznik A, Jerala R. A guide to the design of synthetic gene networks in mammalian cells. FEBS J 2020. [PMID: 33289352 DOI: 10.1111/febs.15652] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
116 Gübeli RJ, Burger K, Weber W. Synthetic biology for mammalian cell technology and materials sciences. Biotechnology Advances 2013;31:68-78. [DOI: 10.1016/j.biotechadv.2012.01.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
117 Miller RA, Brown G, Barron E, Luther JL, Lieberman M, Goodson HV. Development of a paper-immobilized yeast biosensor for the detection of physiological concentrations of doxycycline in technology-limited settings. Anal Methods 2020;12:2123-32. [DOI: 10.1039/d0ay00001a] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
118 Míguez DG. Network nonlinearities in drug treatment. Interdiscip Sci 2013;5:85-94. [PMID: 23740389 DOI: 10.1007/s12539-013-0165-x] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
119 Schyfter P. How a 'drive to make' shapes synthetic biology. Stud Hist Philos Biol Biomed Sci 2013;44:632-40. [PMID: 23777680 DOI: 10.1016/j.shpsc.2013.05.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
120 Angelici B, Mailand E, Haefliger B, Benenson Y. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells. Cell Rep 2016;16:2525-37. [PMID: 27545896 DOI: 10.1016/j.celrep.2016.07.061] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
121 Chen YY, Galloway KE, Smolke CD. Synthetic biology: advancing biological frontiers by building synthetic systems. Genome Biol 2012;13:240. [PMID: 22348749 DOI: 10.1186/gb-2012-13-2-240] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
122 Lee YJ, Hoynes-O'Connor A, Leong MC, Moon TS. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res 2016;44:2462-73. [PMID: 26837577 DOI: 10.1093/nar/gkw056] [Cited by in Crossref: 68] [Cited by in F6Publishing: 58] [Article Influence: 11.3] [Reference Citation Analysis]
123 Boyle PM, Silver PA. Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 2012;14:223-32. [PMID: 22037345 DOI: 10.1016/j.ymben.2011.10.003] [Cited by in Crossref: 95] [Cited by in F6Publishing: 85] [Article Influence: 8.6] [Reference Citation Analysis]
124 Perli SD, Cui CH, Lu TK. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 2016;353:aag0511. [PMID: 27540006 DOI: 10.1126/science.aag0511] [Cited by in Crossref: 123] [Cited by in F6Publishing: 103] [Article Influence: 20.5] [Reference Citation Analysis]
125 Sleator RD. The synthetic biology future. Bioengineered 2014;5:69-72. [PMID: 24561910 DOI: 10.4161/bioe.28317] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
126 Axelrod K, Sanchez A, Gore J. Phenotypic states become increasingly sensitive to perturbations near a bifurcation in a synthetic gene network. Elife 2015;4. [PMID: 26302311 DOI: 10.7554/eLife.07935] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
127 Buchler NE, Cross FR. Protein sequestration generates a flexible ultrasensitive response in a genetic network. Mol Syst Biol 2009;5:272. [PMID: 19455136 DOI: 10.1038/msb.2009.30] [Cited by in Crossref: 160] [Cited by in F6Publishing: 146] [Article Influence: 12.3] [Reference Citation Analysis]
128 Olivera BC, Ugalde E, Martínez-Antonio A. Regulatory dynamics of standard two-component systems in bacteria. J Theor Biol 2010;264:560-9. [PMID: 20219478 DOI: 10.1016/j.jtbi.2010.02.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
129 Bayer TS. Using synthetic biology to understand the evolution of gene expression. Curr Biol 2010;20:R772-9. [PMID: 20833322 DOI: 10.1016/j.cub.2010.06.049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
130 Zhao C, Bin A, Ye W, Fan Y, Di Z. Motif for controllable toggle switch in gene regulatory networks. Physica A: Statistical Mechanics and its Applications 2015;419:498-505. [DOI: 10.1016/j.physa.2014.10.028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
131 Chatterjee A, Kaznessis YN, Hu WS. Tweaking biological switches through a better understanding of bistability behavior. Curr Opin Biotechnol 2008;19:475-81. [PMID: 18804166 DOI: 10.1016/j.copbio.2008.08.010] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 2.6] [Reference Citation Analysis]
132 Kempton HR, Love KS, Guo LY, Qi LS. Scalable biological signal recording in mammalian cells using Cas12a base editors. Nat Chem Biol. [DOI: 10.1038/s41589-022-01034-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Siuti P, Yazbek J, Lu TK. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 2013;31:448-52. [PMID: 23396014 DOI: 10.1038/nbt.2510] [Cited by in Crossref: 349] [Cited by in F6Publishing: 271] [Article Influence: 38.8] [Reference Citation Analysis]
134 Barger N, Litovco P, Li X, Habib M, Daniel R. Synthetic metabolic computation in a bioluminescence-sensing system. Nucleic Acids Res 2019;47:10464-74. [PMID: 31544939 DOI: 10.1093/nar/gkz807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
135 Lam CM, Godinho M, dos Santos VAM. An Introduction to Synthetic Biology. In: Schmidt M, Kelle A, Ganguli-mitra A, Vriend H, editors. Synthetic Biology. Dordrecht: Springer Netherlands; 2010. pp. 23-48. [DOI: 10.1007/978-90-481-2678-1_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
136 Enciso GA. Multisite Mechanisms for Ultrasensitivity in Signal Transduction. In: Kloeden PE, Pötzsche C, editors. Nonautonomous Dynamical Systems in the Life Sciences. Cham: Springer International Publishing; 2013. pp. 199-224. [DOI: 10.1007/978-3-319-03080-7_6] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
137 Zhu R, Del Rio-Salgado JM, Garcia-Ojalvo J, Elowitz MB. Synthetic multistability in mammalian cells. Science 2022;375:eabg9765. [PMID: 35050677 DOI: 10.1126/science.abg9765] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
138 Ball DA, Lux MW, Adames NR, Peccoud J. Adaptive imaging cytometry to estimate parameters of gene networks models in systems and synthetic biology. PLoS One 2014;9:e107087. [PMID: 25210731 DOI: 10.1371/journal.pone.0107087] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
139 Ghosh S, Banerjee S, Bose I. Emergent bistability: effects of additive and multiplicative noise. Eur Phys J E Soft Matter 2012;35:11. [PMID: 22354678 DOI: 10.1140/epje/i2012-12011-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
140 Widom A, Srivastava Y, Valenzi V. The biophysical basis of Benveniste experiments: Entropy, structure, and information in water: Biophysical Basis of Benveniste Experiments. Int J Quantum Chem 2010;110:252-6. [DOI: 10.1002/qua.22140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
141 Andrews LB, Nielsen AAK, Voigt CA. Cellular checkpoint control using programmable sequential logic. Science 2018;361:eaap8987. [PMID: 30237327 DOI: 10.1126/science.aap8987] [Cited by in Crossref: 55] [Cited by in F6Publishing: 29] [Article Influence: 13.8] [Reference Citation Analysis]
142 Grünberg R, Serrano L. Strategies for protein synthetic biology. Nucleic Acids Res 2010;38:2663-75. [PMID: 20385577 DOI: 10.1093/nar/gkq139] [Cited by in Crossref: 80] [Cited by in F6Publishing: 62] [Article Influence: 6.7] [Reference Citation Analysis]
143 Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balázsi G. Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol 2012;8:e1002480. [PMID: 22511863 DOI: 10.1371/journal.pcbi.1002480] [Cited by in Crossref: 100] [Cited by in F6Publishing: 80] [Article Influence: 10.0] [Reference Citation Analysis]
144 Chen D, Arkin AP. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol Syst Biol 2012;8:620. [PMID: 23089683 DOI: 10.1038/msb.2012.52] [Cited by in Crossref: 68] [Cited by in F6Publishing: 53] [Article Influence: 7.6] [Reference Citation Analysis]
145 Benenson Y. Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 2012;13:455-68. [PMID: 22688678 DOI: 10.1038/nrg3197] [Cited by in Crossref: 248] [Cited by in F6Publishing: 186] [Article Influence: 24.8] [Reference Citation Analysis]
146 Klingel V, Kirch J, Ullrich T, Weirich S, Jeltsch A, Radde NE. Model-based robustness and bistability analysis for methylation-based, epigenetic memory systems. FEBS J 2021;288:5692-707. [PMID: 33774905 DOI: 10.1111/febs.15838] [Reference Citation Analysis]
147 Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 2010;39:515-37. [PMID: 20192780 DOI: 10.1146/annurev.biophys.050708.133652] [Cited by in Crossref: 147] [Cited by in F6Publishing: 121] [Article Influence: 12.3] [Reference Citation Analysis]
148 Peccoud J, Blauvelt MF, Cai Y, Cooper KL, Crasta O, DeLalla EC, Evans C, Folkerts O, Lyons BM, Mane SP, Shelton R, Sweede MA, Waldon SA. Targeted development of registries of biological parts. PLoS One 2008;3:e2671. [PMID: 18628824 DOI: 10.1371/journal.pone.0002671] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 3.9] [Reference Citation Analysis]
149 Afonso B, Silver PA, Ajo-Franklin CM. A synthetic circuit for selectively arresting daughter cells to create aging populations. Nucleic Acids Res 2010;38:2727-35. [PMID: 20150416 DOI: 10.1093/nar/gkq075] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
150 Veening JW, Stewart EJ, Berngruber TW, Taddei F, Kuipers OP, Hamoen LW. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci U S A 2008;105:4393-8. [PMID: 18326026 DOI: 10.1073/pnas.0700463105] [Cited by in Crossref: 245] [Cited by in F6Publishing: 225] [Article Influence: 17.5] [Reference Citation Analysis]
151 Lyons D, Mahaffy JM, Wang S, Palacios A, In V. Geometry of Basins of Attraction and Heteroclinic Connections in Coupled Bistable Systems. Int J Bifurcation Chaos 2014;24:1430029. [DOI: 10.1142/s0218127414300298] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
152 Bowyer JE, Hsiao V, Wong WW, Bates DG. Mechanistic modelling of a recombinase‐based two‐input temporal logic gate. Eng biol 2017;1:40-50. [DOI: 10.1049/enb.2017.0006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
153 Redden H, Morse N, Alper HS. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 2014. [DOI: 10.1111/1567-1364.12188] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
154 Palani S, Sarkar CA. Synthetic conversion of a graded receptor signal into a tunable, reversible switch. Mol Syst Biol 2011;7:480. [PMID: 21451590 DOI: 10.1038/msb.2011.13] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
155 Marchisio MA, Huang Z. CRISPR-Cas type II-based Synthetic Biology applications in eukaryotic cells. RNA Biol 2017;14:1286-93. [PMID: 28136159 DOI: 10.1080/15476286.2017.1282024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
156 Marchisio MA. In silico implementation of synthetic gene networks. Methods Mol Biol 2012;813:3-21. [PMID: 22083733 DOI: 10.1007/978-1-61779-412-4_1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
157 Siuti P, Yazbek J, Lu TK. Engineering genetic circuits that compute and remember. Nat Protoc 2014;9:1292-300. [DOI: 10.1038/nprot.2014.089] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
158 Mitra T, Menon SN, Sinha S. Emergent memory in cell signaling: Persistent adaptive dynamics in cascades can arise from the diversity of relaxation time-scales. Sci Rep 2018;8:13230. [PMID: 30185923 DOI: 10.1038/s41598-018-31626-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
159 Chiesa G, Kiriakov S, Khalil AS. Protein assembly systems in natural and synthetic biology. BMC Biol 2020;18:35. [PMID: 32216777 DOI: 10.1186/s12915-020-0751-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
160 Sorek M, Balaban NQ, Loewenstein Y. Stochasticity, bistability and the wisdom of crowds: a model for associative learning in genetic regulatory networks. PLoS Comput Biol 2013;9:e1003179. [PMID: 23990765 DOI: 10.1371/journal.pcbi.1003179] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
161 Vogel AM, Persson KM, Seamons TR, Deans TL. Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerg Top Life Sci 2019;3:631-43. [PMID: 33523179 DOI: 10.1042/ETLS20190091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
162 Way JC, Collins JJ, Keasling JD, Silver PA. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 2014;157:151-61. [PMID: 24679533 DOI: 10.1016/j.cell.2014.02.039] [Cited by in Crossref: 172] [Cited by in F6Publishing: 142] [Article Influence: 21.5] [Reference Citation Analysis]
163 Dari A, Kia B, Wang X, Bulsara AR, Ditto W. Noise-aided computation within a synthetic gene network through morphable and robust logic gates. Phys Rev E 2011;83. [DOI: 10.1103/physreve.83.041909] [Cited by in Crossref: 32] [Cited by in F6Publishing: 4] [Article Influence: 2.9] [Reference Citation Analysis]
164 Kuwahara H, Arold ST, Gao X. Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression. Integrative Biology 2015;7:1622-32. [DOI: 10.1039/c5ib00107b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Van Hove B, Love AM, Ajikumar PK, De Mey M. Programming Biology: Expanding the Toolset for the Engineering of Transcription. In: Glieder A, Kubicek CP, Mattanovich D, Wiltschi B, Sauer M, editors. Synthetic Biology. Cham: Springer International Publishing; 2016. pp. 1-64. [DOI: 10.1007/978-3-319-22708-5_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
166 Nesbeth DN, Zaikin A, Saka Y, Romano MC, Giuraniuc CV, Kanakov O, Laptyeva T. Synthetic biology routes to bio-artificial intelligence. Essays Biochem 2016;60:381-91. [PMID: 27903825 DOI: 10.1042/EBC20160014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 3.2] [Reference Citation Analysis]
167 Shetty R, Lizarazo M, Rettberg R, Knight TF. Assembly of BioBrick Standard Biological Parts Using Three Antibiotic Assembly. Synthetic Biology, Part B - Computer Aided Design and DNA Assembly. Elsevier; 2011. pp. 311-26. [DOI: 10.1016/b978-0-12-385120-8.00013-9] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
168 Turner KH, Vallet-Gely I, Dove SL. Epigenetic control of virulence gene expression in Pseudomonas aeruginosa by a LysR-type transcription regulator. PLoS Genet 2009;5:e1000779. [PMID: 20041030 DOI: 10.1371/journal.pgen.1000779] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
169 Wu T, Kerbler SM, Fernie AR, Zhang Y. Plant cell cultures as heterologous bio-factories for secondary metabolite production. Plant Commun 2021;2:100235. [PMID: 34746764 DOI: 10.1016/j.xplc.2021.100235] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Sardanyés J, Bonforti A, Conde N, Solé R, Macia J. Computational implementation of a tunable multicellular memory circuit for engineered eukaryotic consortia. Front Physiol 2015;6:281. [PMID: 26500559 DOI: 10.3389/fphys.2015.00281] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]