BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015;7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Cited by in Crossref: 187] [Cited by in F6Publishing: 163] [Article Influence: 26.7] [Reference Citation Analysis]
Number Citing Articles
1 Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020;12:E1409. [PMID: 33302437 DOI: 10.3390/v12121409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Zappacosta F, Wagner CD, Della Pietra A 3rd, Gerhart SV, Keenan K, Korenchuck S, Quinn CJ, Barbash O, McCabe MT, Annan RS. A Chemical Acetylation-Based Mass Spectrometry Platform for Histone Methylation Profiling. Mol Cell Proteomics 2021;20:100067. [PMID: 33775892 DOI: 10.1016/j.mcpro.2021.100067] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lund PJ, Kori Y, Zhao X, Sidoli S, Yuan ZF, Garcia BA. Isotopic Labeling and Quantitative Proteomics of Acetylation on Histones and Beyond. Methods Mol Biol 2019;1977:43-70. [PMID: 30980322 DOI: 10.1007/978-1-4939-9232-4_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Fursova NA, Turberfield AH, Blackledge NP, Findlater EL, Lastuvkova A, Huseyin MK, Dobrinić P, Klose RJ. BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes Dev 2021;35:749-70. [PMID: 33888563 DOI: 10.1101/gad.347005.120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Broche J, Kungulovski G, Bashtrykov P, Rathert P, Jeltsch A. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res 2021;49:158-76. [PMID: 33300025 DOI: 10.1093/nar/gkaa1169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bhanu NV, Sidoli S, Garcia BA. A Workflow for Ultra-rapid Analysis of Histone Post-translational Modifications with Direct-injection Mass Spectrometry. Bio Protoc 2020;10:e3756. [PMID: 33659415 DOI: 10.21769/BioProtoc.3756] [Reference Citation Analysis]
7 Neeli I, Radic M. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones. Front Immunol 2016;7:528. [PMID: 27933065 DOI: 10.3389/fimmu.2016.00528] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
8 McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017;6:350-65. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
9 Separovich RJ, Wong MWM, Chapman TR, Slavich E, Hamey JJ, Wilkins MR. Post-translational modification analysis of Saccharomyces cerevisiae histone methylation enzymes reveals phosphorylation sites of regulatory potential. J Biol Chem 2021;296:100192. [PMID: 33334889 DOI: 10.1074/jbc.RA120.015995] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Hu Y, Jiang H, Zhao B, Yang K, Liang Z, Zhang L, Zhang Y. Quantitative proteomics of epigenetic histone modifications in MCF-7 cells under estradiol stimulation. Anal Methods 2021;13:469-76. [PMID: 33458731 DOI: 10.1039/d0ay02146f] [Reference Citation Analysis]
11 Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021;10:1074. [PMID: 33946533 DOI: 10.3390/cells10051074] [Reference Citation Analysis]
12 Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021;49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Reference Citation Analysis]
13 Sato Y, Kimura H. Dynamic Behavior of Inactive X Chromosome Territory During the Cell Cycle as Revealed by H3K27me3-Specific Intracellular Antibody. Methods Mol Biol 2021;2329:237-47. [PMID: 34085227 DOI: 10.1007/978-1-0716-1538-6_17] [Reference Citation Analysis]
14 Liu L, Chen Y, Song D, Huang D. BMP9 is a potential therapeutic agent for use in oral and maxillofacial bone tissue engineering. Biochemical Society Transactions 2020;48:1269-85. [DOI: 10.1042/bst20200376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Arnal J, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiological Reviews 2017;97:1045-87. [DOI: 10.1152/physrev.00024.2016] [Cited by in Crossref: 152] [Cited by in F6Publishing: 129] [Article Influence: 30.4] [Reference Citation Analysis]
16 Wu WS, Tu HP, Chu YH, Nordling TEM, Tseng YY, Liaw HJ. YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast. Database (Oxford) 2018;2018. [PMID: 30371756 DOI: 10.1093/database/bay116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Hillyar CR, Kanabar SS, Rallis KS, Varghese JS. Complex cross-talk between EZH2 and miRNAs confers hallmark characteristics and shapes the tumor microenvironment. Epigenomics 2022. [PMID: 35574589 DOI: 10.2217/epi-2021-0534] [Reference Citation Analysis]
18 Bueschbell B, Caniceiro AB, Suzano PM, Machuqueiro M, Rosário-ferreira N, Moreira IS. Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resistance Updates 2022. [DOI: 10.1016/j.drup.2022.100811] [Reference Citation Analysis]
19 Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. Mutat Res Rev Mutat Res 2021;787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021;29:1249-1265.e9. [PMID: 34289377 DOI: 10.1016/j.chom.2021.06.014] [Reference Citation Analysis]
21 Scacchetti A, Schauer T, Reim A, Apostolou Z, Campos Sparr A, Krause S, Heun P, Wierer M, Becker PB. Drosophila SWR1 and NuA4 complexes are defined by DOMINO isoforms. Elife 2020;9:e56325. [PMID: 32432549 DOI: 10.7554/eLife.56325] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Mirzadeh Azad F, Polignano IL, Proserpio V, Oliviero S. Long Noncoding RNAs in Human Stemness and Differentiation. Trends Cell Biol 2021;31:542-55. [PMID: 33663944 DOI: 10.1016/j.tcb.2021.02.002] [Reference Citation Analysis]
23 Zoghbi HY, Beaudet AL. Epigenetics and Human Disease. Cold Spring Harb Perspect Biol 2016;8:a019497. [PMID: 26834142 DOI: 10.1101/cshperspect.a019497] [Cited by in Crossref: 83] [Cited by in F6Publishing: 75] [Article Influence: 13.8] [Reference Citation Analysis]
24 Ideraabdullah FY, Zeisel SH. Dietary Modulation of the Epigenome. Physiol Rev 2018;98:667-95. [PMID: 29442595 DOI: 10.1152/physrev.00010.2017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
25 Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019;11:E1251. [PMID: 31159371 DOI: 10.3390/nu11061251] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
26 Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020;147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Sueoka T, Koyama K, Hayashi G, Okamoto A. Chemistry-Driven Epigenetic Investigation of Histone and DNA Modifications. Chem Rec 2018;18:1727-44. [PMID: 30070422 DOI: 10.1002/tcr.201800040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
28 Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019;20:625-41. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Cited by in Crossref: 103] [Cited by in F6Publishing: 89] [Article Influence: 34.3] [Reference Citation Analysis]
29 García-Giménez JL, Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med 2021;170:6-18. [PMID: 33689846 DOI: 10.1016/j.freeradbiomed.2021.02.027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
30 Kojima S, Cimini D. Aneuploidy and gene expression: is there dosage compensation? Epigenomics 2019;11:1827-37. [PMID: 31755744 DOI: 10.2217/epi-2019-0135] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
31 Imeh-Nathaniel A, Orfanakos V, Wormack L, Huber R, Nathaniel TI. The crayfish model (Orconectes rusticus), epigenetics and drug addiction research. Pharmacol Biochem Behav 2019;183:38-45. [PMID: 31202808 DOI: 10.1016/j.pbb.2019.06.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Lu C, Coradin M, Janssen KA, Sidoli S, Garcia BA. Combinatorial Histone H3 Modifications Are Dynamically Altered in Distinct Cell Cycle Phases. J Am Soc Mass Spectrom 2021;32:1300-11. [PMID: 33818074 DOI: 10.1021/jasms.0c00451] [Reference Citation Analysis]
33 Strauss J, Cánovas D. Editorial SI FGB "Chromatin regulation and epigenetics". Fungal Genet Biol 2021;153:103569. [PMID: 34029709 DOI: 10.1016/j.fgb.2021.103569] [Reference Citation Analysis]
34 Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, Xue Y. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res 2017;45:D264-70. [PMID: 27789692 DOI: 10.1093/nar/gkw1011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
35 del Moral-morales A, Salgado-albarrán M, Ortiz-gutiérrez E, Pérez-hernández G, Soto-reyes E. Transcriptomic and Drug Discovery Analyses Reveal Natural Compounds Targeting the KDM4 Subfamily as Promising Adjuvant Treatments in Cancer. Front Genet 2022;13:860924. [DOI: 10.3389/fgene.2022.860924] [Reference Citation Analysis]
36 Schon SB, Luense LJ, Wang X, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet 2019;36:267-75. [PMID: 30397898 DOI: 10.1007/s10815-018-1354-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
37 Espejo I, Di Croce L, Aranda S. The changing chromatome as a driver of disease: A panoramic view from different methodologies. Bioessays 2020;42:e2000203. [PMID: 33169398 DOI: 10.1002/bies.202000203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Armeev GA, Kniazeva AS, Komarova GA, Kirpichnikov MP, Shaytan AK. Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nat Commun 2021;12:2387. [PMID: 33888707 DOI: 10.1038/s41467-021-22636-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Karch KR, Langelier MF, Pascal JM, Garcia BA. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage. Mol Biosyst 2017;13:2660-71. [PMID: 29058739 DOI: 10.1039/c7mb00498b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
40 Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021;12:1596. [PMID: 34680990 DOI: 10.3390/genes12101596] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Hu Y, Zhang L, Chen J, Yao J, Jin H, Yang P. Outer Membrane Protease OmpT-Based Strategy for Simplified Analysis of Histone Post-Translational Modifications by Mass Spectrometry. Anal Chem 2020;92:732-9. [PMID: 31775502 DOI: 10.1021/acs.analchem.9b02766] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Xie Y, Ge J, Lei H, Peng B, Zhang H, Wang D, Pan S, Chen G, Chen L, Wang Y, Hao Q, Yao SQ, Sun H. Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases. J Am Chem Soc 2016;138:15596-604. [DOI: 10.1021/jacs.6b07334] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 7.3] [Reference Citation Analysis]
43 Wirth M, Schick M, Keller U, Krönke J. Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers (Basel) 2020;12:E3764. [PMID: 33327527 DOI: 10.3390/cancers12123764] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Vonk PJ, Ohm RA. H3K4me2 ChIP-Seq reveals the epigenetic landscape during mushroom formation and novel developmental regulators of Schizophyllum commune. Sci Rep 2021;11:8178. [PMID: 33854169 DOI: 10.1038/s41598-021-87635-8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Yu B, Yu X, Xiong J, Ma M. Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation. Biomed Res Int 2021;2021:4061525. [PMID: 34660788 DOI: 10.1155/2021/4061525] [Reference Citation Analysis]
46 Campos-Sanchez E, Martínez-Cano J, Del Pino Molina L, López-Granados E, Cobaleda C. Epigenetic Deregulation in Human Primary Immunodeficiencies. Trends Immunol 2019;40:49-65. [PMID: 30509895 DOI: 10.1016/j.it.2018.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
47 Weaver IC, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017;11:41. [PMID: 28360846 DOI: 10.3389/fnbeh.2017.00041] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
48 Méhul B, Perrin A, Grisendi K, Galindo AN, Dayon L, Ménigot C, Rival Y, Voegel JJ. Mass spectrometry and DigiWest technology emphasize protein acetylation profile from Quisinostat-treated HuT78 CTCL cell line. J Proteomics 2018;187:126-43. [PMID: 30012418 DOI: 10.1016/j.jprot.2018.07.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hamajima W, Fujimura A, Fujiwara Y, Yamatsugu K, Kawashima SA, Kanai M. Site-Selective Synthetic Acylation of a Target Protein in Living Cells Promoted by a Chemical Catalyst/Donor System. ACS Chem Biol 2019;14:1102-9. [PMID: 31117394 DOI: 10.1021/acschembio.9b00102] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
50 Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019;129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
51 Kang JS. Dietary restriction of amino acids for Cancer therapy. Nutr Metab (Lond) 2020;17:20. [PMID: 32190097 DOI: 10.1186/s12986-020-00439-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
52 El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C, Panchenko AR, Landsman D, Pflieger D, Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics Chromatin 2017;10:2. [PMID: 28096900 DOI: 10.1186/s13072-016-0109-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
53 Lubin E, Bryant L, Aicher J, Li D, Bhoj E. Analysis of histone variant constraint and tissue expression suggests five potential novel human disease genes: H2AFY2, H2AFZ, H2AFY, H2AFV, H1F0. Hum Genet. [DOI: 10.1007/s00439-022-02432-1] [Reference Citation Analysis]
54 Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021;19:77-94. [PMID: 32968241 DOI: 10.1038/s41579-020-0438-4] [Cited by in Crossref: 45] [Cited by in F6Publishing: 55] [Article Influence: 22.5] [Reference Citation Analysis]
55 Audia JE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol 2016;8:a019521. [PMID: 27037415 DOI: 10.1101/cshperspect.a019521] [Cited by in Crossref: 217] [Cited by in F6Publishing: 217] [Article Influence: 36.2] [Reference Citation Analysis]
56 Jaiswal D, Turniansky R, Green EM. Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2017;429:1946-57. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
57 de Wit H, Vallet A, Brutscher B, Koorsen G. NMR assignments of human linker histone H1x N-terminal domain and globular domain in the presence and absence of perchlorate. Biomol NMR Assign 2019;13:249-54. [PMID: 30868366 DOI: 10.1007/s12104-019-09886-x] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
58 Liu T, Ma C, Yuan B, Feng Y. Modificaomics: deciphering the functions of biomolecule modifications. Sci China Chem 2018;61:381-92. [DOI: 10.1007/s11426-017-9186-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
59 Anderson CJ, Baird MR, Hsu A, Barbour EH, Koyama Y, Borgnia MJ, McGinty RK. Structural Basis for Recognition of Ubiquitylated Nucleosome by Dot1L Methyltransferase. Cell Rep 2019;26:1681-1690.e5. [PMID: 30759380 DOI: 10.1016/j.celrep.2019.01.058] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 26.0] [Reference Citation Analysis]
60 Leutert M, Entwisle SW, Villén J. Decoding post translational modification crosstalk with proteomics. Mol Cell Proteomics 2021;:100129. [PMID: 34339852 DOI: 10.1016/j.mcpro.2021.100129] [Reference Citation Analysis]
61 Nie L, Shuai L, Zhu M, Liu P, Xie ZF, Jiang S, Jiang HW, Li J, Zhao Y, Li JY, Tan M. The Landscape of Histone Modifications in a High-Fat Diet-Induced Obese (DIO) Mouse Model. Mol Cell Proteomics 2017;16:1324-34. [PMID: 28450421 DOI: 10.1074/mcp.M117.067553] [Cited by in Crossref: 48] [Cited by in F6Publishing: 20] [Article Influence: 9.6] [Reference Citation Analysis]
62 Li Y, Ai S, Yu X, Li C, Li X, Yue Y, Wei Y, Li CY, He A. Replication-Independent Histone Turnover Underlines the Epigenetic Homeostasis in Adult Heart. Circ Res 2019;125:198-208. [PMID: 31104571 DOI: 10.1161/CIRCRESAHA.118.314366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
63 Zheng Y, Huang X, Kelleher NL. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol 2016;33:142-50. [PMID: 27371874 DOI: 10.1016/j.cbpa.2016.06.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
64 Shen Z, Huang L, Jin S, Zheng Y. Cloning and Expression Analysis of Two Kdm Lysine Demethylases in the Testes of Mature Yaks and Their Sterile Hybrids. Animals (Basel) 2020;10:E521. [PMID: 32244964 DOI: 10.3390/ani10030521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Simithy J, Sidoli S, Garcia BA. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 2018;18:e1700309. [PMID: 29512899 DOI: 10.1002/pmic.201700309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
66 Wojcik J, Cooper K. Epigenetic Alterations in Bone and Soft Tissue Tumors. Adv Anat Pathol 2017;24:362-71. [PMID: 28885261 DOI: 10.1097/PAP.0000000000000167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Wagner RN, Piñón Hofbauer J, Wally V, Kofler B, Schmuth M, De Rosa L, De Luca M, Bauer JW. Epigenetic and metabolic regulation of epidermal homeostasis. Exp Dermatol 2021;30:1009-22. [PMID: 33600038 DOI: 10.1111/exd.14305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Cavalieri V. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front Cell Dev Biol 2020;8:456. [PMID: 32582716 DOI: 10.3389/fcell.2020.00456] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
69 Ishiguro T, Tanabe K, Kobayashi Y, Mizumoto S, Kanai M, Kawashima SA. Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins. Sci Rep 2018;8:7671. [PMID: 29769606 DOI: 10.1038/s41598-018-26114-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
70 Church MC, Workman JL, Suganuma T. Macrophages, Metabolites, and Nucleosomes: Chromatin at the Intersection between Aging and Inflammation. Int J Mol Sci 2021;22:10274. [PMID: 34638614 DOI: 10.3390/ijms221910274] [Reference Citation Analysis]
71 Liu XF, Hummel M, Abecassis M. Epigenetic regulation of cellular and cytomegalovirus genes during myeloid cell development. Intern Med Rev (Wash D C) 2017;3. [PMID: 28707002 DOI: 10.18103/imr.v3i3.385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
72 von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022;:100199. [PMID: 35051657 DOI: 10.1016/j.mcpro.2022.100199] [Reference Citation Analysis]
73 Washburn MP, Zhao Y, Garcia BA. Reshaping the Chromatin and Epigenetic Landscapes with Quantitative Mass Spectrometry. Mol Cell Proteomics 2016;15:753-4. [PMID: 26814188 DOI: 10.1074/mcp.E116.058602] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
74 Pikaard CS, Mittelsten Scheid O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 2014;6:a019315. [PMID: 25452385 DOI: 10.1101/cshperspect.a019315] [Cited by in Crossref: 175] [Cited by in F6Publishing: 150] [Article Influence: 21.9] [Reference Citation Analysis]
75 Li QQ, Hao JJ, Zhang Z, Krane LS, Hammerich KH, Sanford T, Trepel JB, Neckers L, Agarwal PK. Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci Rep 2017;7:201. [PMID: 28298630 DOI: 10.1038/s41598-017-00143-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
76 Amamoto Y, Aoi Y, Nagashima N, Suto H, Yoshidome D, Arimura Y, Osakabe A, Kato D, Kurumizaka H, Kawashima SA, Yamatsugu K, Kanai M. Synthetic Posttranslational Modifications: Chemical Catalyst-Driven Regioselective Histone Acylation of Native Chromatin. J Am Chem Soc 2017;139:7568-76. [DOI: 10.1021/jacs.7b02138] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
77 Emery-Corbin SJ, Hamey JJ, Balan B, Rojas-López L, Svärd SG, Jex AR. Eukaryote-conserved histone post-translational modification landscape in Giardia duodenalis revealed by mass spectrometry. Int J Parasitol 2021;51:225-39. [PMID: 33275945 DOI: 10.1016/j.ijpara.2020.09.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Amatullah H, Jeffrey KL. Epigenome-metabolome-microbiome axis in health and IBD. Curr Opin Microbiol 2020;56:97-108. [PMID: 32920333 DOI: 10.1016/j.mib.2020.08.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
79 Millan-Ariño L, Yuan ZF, Oomen ME, Brandenburg S, Chernobrovkin A, Salignon J, Körner L, Zubarev RA, Garcia BA, Riedel CG. Histone Purification Combined with High-Resolution Mass Spectrometry to Examine Histone Post-Translational Modifications and Histone Variants in Caenorhabditis elegans. Curr Protoc Protein Sci 2020;102:e114. [PMID: 32997895 DOI: 10.1002/cpps.114] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Meller A, Shalgi R. The aging proteostasis decline: From nematode to human. Exp Cell Res 2021;399:112474. [PMID: 33434530 DOI: 10.1016/j.yexcr.2021.112474] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
81 Varner EL, Trefely S, Bartee D, von Krusenstiern E, Izzo L, Bekeova C, O'Connor RS, Seifert EL, Wellen KE, Meier JL, Snyder NW. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol 2020;10:200187. [PMID: 32961073 DOI: 10.1098/rsob.200187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
82 Khan KA, Ng MK, Cheung P. The Use of Mononucleosome Immunoprecipitation for Analysis of Combinatorial Histone Post-translational Modifications and Purification of Nucleosome-Interacting Proteins. Front Cell Dev Biol 2020;8:331. [PMID: 32457909 DOI: 10.3389/fcell.2020.00331] [Reference Citation Analysis]
83 Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018;24:556-76. [PMID: 29992283 DOI: 10.1093/humupd/dmy021] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 14.7] [Reference Citation Analysis]
84 Ji Y, Ren C, Miao H, Pang Z, Xiao R, Yang X, Xuan W. Genetically encoding ε- N -benzoyllysine in proteins. Chem Commun 2021;57:1798-801. [DOI: 10.1039/d0cc07954e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Cornett EM, Dickson BM, Vaughan RM, Krishnan S, Trievel RC, Strahl BD, Rothbart SB. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray. Methods Enzymol 2016;574:31-52. [PMID: 27423856 DOI: 10.1016/bs.mie.2016.01.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
86 Camilleri-Carter TL, Dowling DK, L Robker R, Piper MDW. Transgenerational Obesity and Healthy Aging in Drosophila. J Gerontol A Biol Sci Med Sci 2019;74:1582-9. [PMID: 31231757 DOI: 10.1093/gerona/glz154] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
87 Krautkramer KA, Dhillon RS, Denu JM, Carey HV. Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Transl Res 2017;189:30-50. [PMID: 28919341 DOI: 10.1016/j.trsl.2017.08.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
88 Liu CF, Tang WHW. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic Transl Sci 2019;4:976-93. [PMID: 31909304 DOI: 10.1016/j.jacbts.2019.05.011] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 10.7] [Reference Citation Analysis]
89 Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021;9:654344. [PMID: 33869213 DOI: 10.3389/fcell.2021.654344] [Reference Citation Analysis]
90 Torres ES, Deal RB. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. Plant J 2019;99:144-62. [PMID: 30742338 DOI: 10.1111/tpj.14281] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
91 Schwämmle V, Sidoli S, Ruminowicz C, Wu X, Lee CF, Helin K, Jensen ON. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Mol Cell Proteomics 2016;15:2715-29. [PMID: 27302890 DOI: 10.1074/mcp.M115.054460] [Cited by in Crossref: 51] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
92 Chan JC, Maze I. Nothing Is Yet Set in (Hi)stone: Novel Post-Translational Modifications Regulating Chromatin Function. Trends Biochem Sci 2020;45:829-44. [PMID: 32498971 DOI: 10.1016/j.tibs.2020.05.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
93 Corujo D, Buschbeck M. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers (Basel) 2018;10:E59. [PMID: 29495465 DOI: 10.3390/cancers10030059] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
94 Lund PJ, Lopes M, Sidoli S, Coradin M, Vitorino FNL, da Cunha JPC, Garcia BA. FGF-2 induces a failure of cell cycle progression in cells harboring amplified K-Ras, revealing new insights into oncogene-induced senescence. Mol Omics 2021;17:725-39. [PMID: 34636387 DOI: 10.1039/d1mo00019e] [Reference Citation Analysis]
95 Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487-500. [PMID: 27346641 DOI: 10.1038/nrg.2016.59] [Cited by in Crossref: 1082] [Cited by in F6Publishing: 910] [Article Influence: 180.3] [Reference Citation Analysis]
96 Verhelst S, De Clerck L, Willems S, Van Puyvelde B, Daled S, Deforce D, Dhaenens M. Comprehensive histone epigenetics: A mass spectrometry based screening assay to measure epigenetic toxicity. MethodsX 2020;7:101055. [PMID: 32995308 DOI: 10.1016/j.mex.2020.101055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Boukas L, Havrilla JM, Hickey PF, Quinlan AR, Bjornsson HT, Hansen KD. Coexpression patterns define epigenetic regulators associated with neurological dysfunction. Genome Res 2019;29:532-42. [PMID: 30858344 DOI: 10.1101/gr.239442.118] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
98 Lu C, Coradin M, Porter EG, Garcia BA. Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry-Based Approaches. Mol Cell Proteomics 2020;20:100006. [PMID: 33203747 DOI: 10.1074/mcp.R120.002257] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
99 Ding N, Chen Y, Chu Y, Zhong C, Huang L, Zhang Z. Lysine Methylation Modulates the Interaction of Archaeal Chromatin Protein Cren7 With DNA. Front Microbiol 2022;13:837737. [DOI: 10.3389/fmicb.2022.837737] [Reference Citation Analysis]
100 Henneman B, van Emmerik C, van Ingen H, Dame RT. Structure and function of archaeal histones. PLoS Genet 2018;14:e1007582. [PMID: 30212449 DOI: 10.1371/journal.pgen.1007582] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
101 de Lima LP, Poubel SB, Yuan Z, Rosón JN, Vitorino FNDL, Holetz FB, Garcia BA, da Cunha JPC. Improvements on the quantitative analysis of Trypanosoma cruzi histone post translational modifications: Study of changes in epigenetic marks through the parasite's metacyclogenesis and life cycle. Journal of Proteomics 2020;225:103847. [DOI: 10.1016/j.jprot.2020.103847] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
102 Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022;10:848797. [DOI: 10.3389/fcell.2022.848797] [Reference Citation Analysis]
103 Zeisel SH. A Conceptual Framework for Studying and Investing in Precision Nutrition. Front Genet 2019;10:200. [PMID: 30936893 DOI: 10.3389/fgene.2019.00200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
104 Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2020;36:118-31. [PMID: 31818514 DOI: 10.1016/j.tig.2019.11.004] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
105 Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019;15:e1007932. [PMID: 30699116 DOI: 10.1371/journal.pgen.1007932] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
106 Garay PM, Wallner MA, Iwase S. Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016;8:1689-708. [PMID: 27855486 DOI: 10.2217/epi-2016-0090] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
107 Zhao S, Yang M, Zhou W, Zhang B, Cheng Z, Huang J, Zhang M, Wang Z, Wang R, Chen Z, Zhu J, Li H. Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. Proc Natl Acad Sci U S A 2017;114:E7245-54. [PMID: 28808021 DOI: 10.1073/pnas.1704155114] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
108 Edwards MM, Zuccaro MV, Sagi I, Ding Q, Vershkov D, Benvenisty N, Egli D, Koren A. Delayed DNA replication in haploid human embryonic stem cells. Genome Res 2021. [PMID: 34810218 DOI: 10.1101/gr.275953.121] [Reference Citation Analysis]
109 Li C, Hou S, Ma X, Li J, Huo L, Zhang P, Hao X, Zhu X. Epigenetic regulation of virulence and the transcription of ribosomal protein genes involves a YEATS family protein in Cryptococcus deneoformans. FEMS Yeast Res 2021;21:foab001. [PMID: 33440003 DOI: 10.1093/femsyr/foab001] [Reference Citation Analysis]
110 Bochyńska A, Lüscher-Firzlaff J, Lüscher B. Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018;7:E17. [PMID: 29498679 DOI: 10.3390/cells7030017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
111 Hu Q, Greene CS, Heller EA. Specific histone modifications associate with alternative exon selection during mammalian development. Nucleic Acids Res 2020;48:4709-24. [PMID: 32319526 DOI: 10.1093/nar/gkaa248] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
112 Cain JA, Montibus B, Oakey RJ. Intragenic CpG Islands and Their Impact on Gene Regulation. Front Cell Dev Biol 2022;10:832348. [DOI: 10.3389/fcell.2022.832348] [Reference Citation Analysis]
113 Mojica EA, Kültz D. Physiological mechanisms of stress-induced evolution. J Exp Biol 2022;225:jeb243264. [PMID: 35258607 DOI: 10.1242/jeb.243264] [Reference Citation Analysis]
114 Chang Z, Yadav V, Lee SC, Heitman J. Epigenetic mechanisms of drug resistance in fungi. Fungal Genet Biol 2019;132:103253. [PMID: 31325489 DOI: 10.1016/j.fgb.2019.103253] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
115 Roche B, Arcangioli B, Martienssen R. Transcriptional reprogramming in cellular quiescence. RNA Biol 2017;14:843-53. [PMID: 28497998 DOI: 10.1080/15476286.2017.1327510] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 6.2] [Reference Citation Analysis]
116 Yokoyama A, Katsura S, Sugawara A. Biochemical Analysis of Histone Succinylation. Biochem Res Int 2017;2017:8529404. [PMID: 29225971 DOI: 10.1155/2017/8529404] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
117 Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, Roeder RG, Shi X, Allis CD, Li H. Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Mol Cell 2016;62:181-93. [PMID: 27105114 DOI: 10.1016/j.molcel.2016.03.028] [Cited by in Crossref: 165] [Cited by in F6Publishing: 151] [Article Influence: 33.0] [Reference Citation Analysis]
118 Gensous N, Franceschi C, Santoro A, Milazzo M, Garagnani P, Bacalini MG. The Impact of Caloric Restriction on the Epigenetic Signatures of Aging.Int J Mol Sci. 2019;20. [PMID: 31022953 DOI: 10.3390/ijms20082022] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 10.3] [Reference Citation Analysis]
119 Martínez-Cano J, Campos-Sánchez E, Cobaleda C. Epigenetic Priming in Immunodeficiencies. Front Cell Dev Biol 2019;7:125. [PMID: 31355198 DOI: 10.3389/fcell.2019.00125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
120 Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2019;32:65-81. [PMID: 32188559 DOI: 10.1071/RD19276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Reference Citation Analysis]
122 Zhao Y, Dong Y, Hong W, Jiang C, Yao K, Cheng C. Computational modeling of chromatin accessibility identified important epigenomic regulators. BMC Genomics 2022;23:19. [PMID: 34996354 DOI: 10.1186/s12864-021-08234-5] [Reference Citation Analysis]
123 Govin J, Barral S, Morozumi Y, Hoghoughi N, Buchou T, Rousseaux S, Khochbin S. Characterization of Post-Meiotic Male Germ Cell Genome Organizational States. Methods Mol Biol 2018;1832:293-307. [PMID: 30073534 DOI: 10.1007/978-1-4939-8663-7_16] [Reference Citation Analysis]
124 Scott WA, Campos EI. Interactions With Histone H3 & Tools to Study Them. Front Cell Dev Biol 2020;8:701. [PMID: 32850821 DOI: 10.3389/fcell.2020.00701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
125 Manning AJ, Lee J, Wolfgeher DJ, Kron SJ, Greenberg JT. Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2018;1866:224-9. [DOI: 10.1016/j.bbapap.2017.10.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
126 Kraus AJ, Vanselow JT, Lamer S, Brink BG, Schlosser A, Siegel TN. Distinct roles for H4 and H2A.Z acetylation in RNA transcription in African trypanosomes. Nat Commun 2020;11:1498. [PMID: 32198348 DOI: 10.1038/s41467-020-15274-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
127 Tanabe K, Liu J, Kato D, Kurumizaka H, Yamatsugu K, Kanai M, Kawashima SA. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes. Sci Rep 2018;8:2656. [PMID: 29422688 DOI: 10.1038/s41598-018-21060-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
128 Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina.Prog Retin Eye Res. 2018;65:1-27. [PMID: 29544768 DOI: 10.1016/j.preteyeres.2018.03.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
129 López AJ, Siciliano CA, Calipari ES. Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. Handb Exp Pharmacol 2020;258:231-63. [PMID: 31628597 DOI: 10.1007/164_2019_257] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
130 Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 2019;21:152-61. [PMID: 30602726 DOI: 10.1038/s41556-018-0258-1] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 19.3] [Reference Citation Analysis]
131 Obri A, Claret M. The role of epigenetics in hypothalamic energy balance control: implications for obesity. Cell Stress 2019;3:208-20. [PMID: 31309172 DOI: 10.15698/cst2019.07.191] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
132 Sidoli S, Garcia BA. Middle-down proteomics: a still unexploited resource for chromatin biology. Expert Rev Proteomics 2017;14:617-26. [PMID: 28649883 DOI: 10.1080/14789450.2017.1345632] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 9.6] [Reference Citation Analysis]
133 Das P, Taube JH. Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers (Basel) 2020;12:E2792. [PMID: 33003334 DOI: 10.3390/cancers12102792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
134 Patil NY, Tang H, Rus I, Zhang K, Joshi AD. Decoding Cinnabarinic Acid-Specific Stanniocalcin 2 Induction by Aryl Hydrocarbon Receptor. Mol Pharmacol 2022;101:45-55. [PMID: 34764210 DOI: 10.1124/molpharm.121.000376] [Reference Citation Analysis]
135 Lahiri S, Sun N, Buck A, Imhof A, Walch A. MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Review of Proteomics 2016;13:275-84. [DOI: 10.1586/14789450.2016.1146598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
136 Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics Chromatin 2016;9:24. [PMID: 27330565 DOI: 10.1186/s13072-016-0072-6] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 10.3] [Reference Citation Analysis]
137 Lloyd JPB, Lister R. Epigenome plasticity in plants. Nat Rev Genet 2021. [PMID: 34526697 DOI: 10.1038/s41576-021-00407-y] [Reference Citation Analysis]
138 Gao J, Wang B, Yu H, Wu G, Wan C, Liu W, Liao S, Cheng L, Zhu Z. Structural insight into HEMK2-TRMT112-mediated glutamine methylation. Biochem J 2020;477:3833-8. [PMID: 32969463 DOI: 10.1042/BCJ20200594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Chen D, Yang Z, Shen X, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry As an Alternative to Liquid Chromatography-Tandem Mass Spectrometry for Top-down Proteomics of Histones. Anal Chem 2021;93:4417-24. [PMID: 33650845 DOI: 10.1021/acs.analchem.0c04237] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
140 Ishiguro T, Amamoto Y, Tanabe K, Liu J, Kajino H, Fujimura A, Aoi Y, Osakabe A, Horikoshi N, Kurumizaka H, Yamatsugu K, Kawashima SA, Kanai M. Synthetic Chromatin Acylation by an Artificial Catalyst System. Chem 2017;2:840-59. [DOI: 10.1016/j.chempr.2017.04.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
141 Hewitson TD, Holt SG, Samuel CS, Wigg B, Smith ER. Profiling histone modifications in the normal mouse kidney and after unilateral ureteric obstruction. American Journal of Physiology-Renal Physiology 2019;317:F606-15. [DOI: 10.1152/ajprenal.00262.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
142 Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes 2022;14:2022407. [PMID: 35000562 DOI: 10.1080/19490976.2021.2022407] [Reference Citation Analysis]
143 Gruppuso PA, Boylan JM, Zabala V, Neretti N, Abshiru NA, Sikora JW, Doud EH, Camarillo JM, Thomas PM, Kelleher NL, Sanders JA. Stability of histone post-translational modifications in samples derived from liver tissue and primary hepatic cells. PLoS One 2018;13:e0203351. [PMID: 30192817 DOI: 10.1371/journal.pone.0203351] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
144 Pflueger C, Swain T, Lister R. Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem 2019;63:813-25. [PMID: 31724704 DOI: 10.1042/EBC20190029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
145 Gowans GJ, Bridgers JB, Zhang J, Dronamraju R, Burnetti A, King DA, Thiengmany AV, Shinsky SA, Bhanu NV, Garcia BA, Buchler NE, Strahl BD, Morrison AJ. Recognition of Histone Crotonylation by Taf14 Links Metabolic State to Gene Expression. Mol Cell 2019;76:909-921.e3. [PMID: 31676231 DOI: 10.1016/j.molcel.2019.09.029] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
146 Rosa-Garrido M, Chapski DJ, Vondriska TM. Epigenomes in Cardiovascular Disease. Circ Res 2018;122:1586-607. [PMID: 29798902 DOI: 10.1161/CIRCRESAHA.118.311597] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 11.7] [Reference Citation Analysis]
147 Bagert JD, Muir TW. Molecular Epigenetics: Chemical Biology Tools Come of Age. Annu Rev Biochem 2021;90:287-320. [PMID: 34153213 DOI: 10.1146/annurev-biochem-080120-021109] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
148 Shaw PJ, Piriyapongsa J, Kaewprommal P, Wongsombat C, Chaosrikul C, Teeravajanadet K, Boonbangyang M, Uthaipibull C, Kamchonwongpaisan S, Tongsima S. Identifying transcript 5' capped ends in Plasmodium falciparum. PeerJ 2021;9:e11983. [PMID: 34527439 DOI: 10.7717/peerj.11983] [Reference Citation Analysis]
149 Nuccio AG, Bui M, Dalal Y, Nita-Lazar A. Mass Spectrometry-Based Methodology for Identification of Native Histone Variant Modifications From Mammalian Tissues and Solid Tumors. Methods Enzymol 2017;586:275-90. [PMID: 28137567 DOI: 10.1016/bs.mie.2016.09.035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
150 Zhu B, Hsieh YP, Murphy TW, Zhang Q, Naler LB, Lu C. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications. Nat Protoc 2019;14:3366-94. [PMID: 31666743 DOI: 10.1038/s41596-019-0223-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
151 Zhao W, Neyt P, Van Lijsebettens M, Shen WH, Berr A. Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development. New Phytol 2019;221:1101-16. [PMID: 30156703 DOI: 10.1111/nph.15418] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
152 Gibson MD, Gatchalian J, Slater A, Kutateladze TG, Poirier MG. PHF1 Tudor and N-terminal domains synergistically target partially unwrapped nucleosomes to increase DNA accessibility. Nucleic Acids Res 2017;45:3767-76. [PMID: 28082396 DOI: 10.1093/nar/gkw1320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 0.6] [Reference Citation Analysis]
153 Yang N, Sen P. The senescent cell epigenome. Aging (Albany NY) 2018;10:3590-609. [PMID: 30391936 DOI: 10.18632/aging.101617] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
154 Janssen KA, Sidoli S, Garcia BA. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology. Methods Enzymol 2017;586:359-78. [PMID: 28137571 DOI: 10.1016/bs.mie.2016.10.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 7.2] [Reference Citation Analysis]
155 Irwin C, Mienie LJ, Wevers RA, Mason S, Westerhuis JA, van Reenen M, Reinecke CJ. GC-MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Sci Rep 2018;8:5775. [PMID: 29636520 DOI: 10.1038/s41598-018-24128-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
156 El Kennani S, Crespo M, Govin J, Pflieger D. Proteomic Analysis of Histone Variants and Their PTMs: Strategies and Pitfalls. Proteomes 2018;6:E29. [PMID: 29933573 DOI: 10.3390/proteomes6030029] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
157 Tombline G, Gigas J, Macoretta N, Zacher M, Emmrich S, Zhao Y, Seluanov A, Gorbunova V. Proteomics of Long-Lived Mammals. Proteomics 2020;20:e1800416. [PMID: 31737995 DOI: 10.1002/pmic.201800416] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
158 Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol. 2019;12:215-229. [PMID: 30767757 DOI: 10.2174/1874467212666190215112915] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
159 Noh KM, Allis CD, Li H. Reading between the Lines: "ADD"-ing Histone and DNA Methylation Marks toward a New Epigenetic "Sum". ACS Chem Biol 2016;11:554-63. [PMID: 26596909 DOI: 10.1021/acschembio.5b00830] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
160 Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016;8:429-45. [DOI: 10.2217/epi.15.108] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
161 Vukic M, Wu H, Daxinger L. Making headway towards understanding how epigenetic mechanisms contribute to early-life effects. Philos Trans R Soc Lond B Biol Sci 2019;374:20180126. [PMID: 30966890 DOI: 10.1098/rstb.2018.0126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
162 Sidoli S, Trefely S, Garcia BA, Carrer A. Integrated Analysis of Acetyl-CoA and Histone Modification via Mass Spectrometry to Investigate Metabolically Driven Acetylation. Methods Mol Biol 2019;1928:125-47. [PMID: 30725455 DOI: 10.1007/978-1-4939-9027-6_9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
163 Crespo M, Luense LJ, Arlotto M, Hu J, Dorsey J, García-Oliver E, Shah PP, Pflieger D, Berger SL, Govin J. Systematic genetic and proteomic screens during gametogenesis identify H2BK34 methylation as an evolutionary conserved meiotic mark. Epigenetics Chromatin 2020;13:35. [PMID: 32933557 DOI: 10.1186/s13072-020-00349-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
164 Dubois M, Louvel S, Le Goff A, Guaspare C, Allard P. Epigenetics in the public sphere: interdisciplinary perspectives. Environ Epigenet 2019;5:dvz019. [PMID: 31660206 DOI: 10.1093/eep/dvz019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
165 Shue YT, Lee KT, Walters BW, Ong HB, Silvaraju S, Lam WJ, Lim CY. Dynamic shifts in chromatin states differentially mark the proliferative basal cells and terminally differentiated cells of the developing epidermis. Epigenetics 2020;15:932-48. [PMID: 32175801 DOI: 10.1080/15592294.2020.1738028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
166 Lukito Y, Lee K, Noorifar N, Green KA, Winter DJ, Ram A, Hale TK, Chujo T, Cox MP, Johnson LJ, Scott B. Regulation of host-infection ability in the grass-symbiotic fungus Epichloë festucae by histone H3K9 and H3K36 methyltransferases. Environ Microbiol 2021;23:2116-31. [PMID: 33350014 DOI: 10.1111/1462-2920.15370] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
167 Jamsheer K M, Jindal S, Sharma M, Awasthi P, S S, Sharma M, Mannully CT, Laxmi A. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. Cell Rep 2022;39:110631. [PMID: 35385724 DOI: 10.1016/j.celrep.2022.110631] [Reference Citation Analysis]
168 Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019;593:3551-70. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
169 Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020;11:585614. [PMID: 33329453 DOI: 10.3389/fmicb.2020.585614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
170 Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci 2018;19:323-37. [PMID: 29666508 DOI: 10.1038/s41583-018-0001-8] [Cited by in Crossref: 175] [Cited by in F6Publishing: 157] [Article Influence: 58.3] [Reference Citation Analysis]
171 Zhang XS, Li J, Krautkramer KA, Badri M, Battaglia T, Borbet TC, Koh H, Ng S, Sibley RA, Li Y, Pathmasiri W, Jindal S, Shields-Cutler RR, Hillmann B, Al-Ghalith GA, Ruiz VE, Livanos A, van 't Wout AB, Nagalingam N, Rogers AB, Sumner SJ, Knights D, Denu JM, Li H, Ruggles KV, Bonneau R, Williamson RA, Rauch M, Blaser MJ. Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. Elife 2018;7:e37816. [PMID: 30039798 DOI: 10.7554/eLife.37816] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 7.8] [Reference Citation Analysis]
172 Spolverini A, Fuchs G, Bublik DR, Oren M. let-7b and let-7c microRNAs promote histone H2B ubiquitylation and inhibit cell migration by targeting multiple components of the H2B deubiquitylation machinery. Oncogene 2017;36:5819-28. [PMID: 28604753 DOI: 10.1038/onc.2017.187] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
173 Krautkramer KA, Rey FE, Denu JM. Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? J Biol Chem 2017;292:8582-93. [PMID: 28389558 DOI: 10.1074/jbc.R116.761577] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
174 Meile L, Peter J, Puccetti G, Alassimone J, McDonald BA, Sánchez-Vallet A. Chromatin Dynamics Contribute to the Spatiotemporal Expression Pattern of Virulence Genes in a Fungal Plant Pathogen. mBio 2020;11:e02343-20. [PMID: 33024042 DOI: 10.1128/mBio.02343-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
175 Petronikolou N, Longbotham JE, Fujimori DG. Extended Recognition of the Histone H3 Tail by Histone Demethylase KDM5A. Biochemistry 2020;59:647-51. [PMID: 31985200 DOI: 10.1021/acs.biochem.9b01036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
176 Boukhaled GM, Corrado M, Guak H, Krawczyk CM. Chromatin Architecture as an Essential Determinant of Dendritic Cell Function. Front Immunol 2019;10:1119. [PMID: 31214161 DOI: 10.3389/fimmu.2019.01119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
177 Noberini R, Restellini C, Savoia EO, Bonaldi T. Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications. Methods 2020;184:19-28. [DOI: 10.1016/j.ymeth.2019.10.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
178 Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S, Leclercq J, Dobránszki J, Kaiserli E, Lieberman-lazarovich M, Sõmera M, Sarmiento C, Vettori C, Paffetti D, Poma AMG, Moschou PN, Gašparović M, Yousefi S, Vergata C, Berger MMJ, Gallusci P, Miladinović D, Martinelli F. An Epigenetic Alphabet of Crop Adaptation to Climate Change. Front Genet 2022;13:818727. [DOI: 10.3389/fgene.2022.818727] [Reference Citation Analysis]
179 Sartor GC. Epigenetic pharmacotherapy for substance use disorder. Biochem Pharmacol 2019;168:269-74. [PMID: 31306644 DOI: 10.1016/j.bcp.2019.07.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
180 Hoffmann MJ, Schulz WA. Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021;13:6040. [PMID: 34885146 DOI: 10.3390/cancers13236040] [Reference Citation Analysis]
181 Ferrari L, Pavanello S, Bollati V. Molecular and epigenetic markers as promising tools to quantify the effect of occupational exposures and the risk of developing non-communicable diseases. Med Lav 2019;110:168-90. [PMID: 31268425 DOI: 10.23749/mdl.v110i3.8538] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
182 Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016;8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 7.8] [Reference Citation Analysis]
183 Noberini R, Restellini C, Savoia EO, Raimondi F, Ghiani L, Jodice MG, Bertalot G, Bonizzi G, Capra M, Maffini FA, Tagliabue M, Ansarin M, Lupia M, Giordano M, Osti D, Pelicci G, Chiocca S, Bonaldi T. Profiling of Epigenetic Features in Clinical Samples Reveals Novel Widespread Changes in Cancer. Cancers (Basel) 2019;11:E723. [PMID: 31137727 DOI: 10.3390/cancers11050723] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]