BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med. 2012;2:a009563. [PMID: 22675668 DOI: 10.1101/cshperspect.a009563] [Cited by in Crossref: 135] [Cited by in F6Publishing: 132] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Novak I, Praetorius J. Fundamentals of Bicarbonate Secretion in Epithelia. In: Hamilton KL, Devor DC, editors. Ion Channels and Transporters of Epithelia in Health and Disease. New York: Springer; 2016. pp. 187-263. [DOI: 10.1007/978-1-4939-3366-2_5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 De Lisle RC, Borowitz D. The cystic fibrosis intestine. Cold Spring Harb Perspect Med. 2013;3:a009753. [PMID: 23788646 DOI: 10.1101/cshperspect.a009753] [Cited by in Crossref: 95] [Cited by in F6Publishing: 90] [Article Influence: 10.6] [Reference Citation Analysis]
3 Vera-Sigüenza E, Catalán MA, Peña-Münzenmayer G, Melvin JE, Sneyd J. A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion. Bull Math Biol 2018;80:255-82. [PMID: 29209914 DOI: 10.1007/s11538-017-0370-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
4 O'grady SM. CFTR Involvement in Cell Migration and Epithelial Restitution. In: Sriramulu D, editor. Progress in Understanding Cystic Fibrosis. InTech; 2017. [DOI: 10.5772/66309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
5 Liu J, Bihler H, Farinha CM, Awatade NT, Romão AM, Mercadante D, Cheng Y, Musisi I, Jantarajit W, Wang Y, Cai Z, Amaral MD, Mense M, Sheppard DN. Partial rescue of F508del-cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dual-acting small molecule. Br J Pharmacol 2018;175:1017-38. [PMID: 29318594 DOI: 10.1111/bph.14141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
6 Numata T, Sato-Numata K, Okada Y, Inoue R. Cellular mechanism for herbal medicine Junchoto to facilitate intestinal Cl-/water secretion that involves cAMP-dependent activation of CFTR. J Nat Med 2018;72:694-705. [PMID: 29569221 DOI: 10.1007/s11418-018-1207-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 Simon S, Aissat A, Degrugillier F, Simonneau B, Fanen P, Arrigo AP. Small Hsps as Therapeutic Targets of Cystic Fibrosis Transmembrane Conductance Regulator Protein. Int J Mol Sci 2021;22:4252. [PMID: 33923911 DOI: 10.3390/ijms22084252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Fiorotto R, Amenduni M, Mariotti V, Cadamuro M, Fabris L, Spirli C, Strazzabosco M. Animal models for cystic fibrosis liver disease (CFLD). Biochim Biophys Acta Mol Basis Dis 2019;1865:965-9. [PMID: 30071276 DOI: 10.1016/j.bbadis.2018.07.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
9 Hoijman E, Rubbini D, Colombelli J, Alsina B. Mitotic cell rounding and epithelial thinning regulate lumen growth and shape. Nat Commun 2015;6:7355. [PMID: 26077034 DOI: 10.1038/ncomms8355] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
10 Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation in epithelial physiology and cancer. Front Physiol 2013;4:233. [PMID: 24009588 DOI: 10.3389/fphys.2013.00233] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 5.7] [Reference Citation Analysis]
11 Zhang BL, Gao DY, Zhang XX, Shi S, Shum W. Whole-cell Patch-clamp Recordings of Isolated Primary Epithelial Cells from the Epididymis. J Vis Exp 2017. [PMID: 28809845 DOI: 10.3791/55700] [Reference Citation Analysis]
12 Yang YM, Park S, Ji H, Kim TI, Kim EK, Kang KK, Shin DM. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells. Korean J Physiol Pharmacol 2014;18:89-94. [PMID: 24757369 DOI: 10.4196/kjpp.2014.18.2.89] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
13 Shah VS, Ernst S, Tang XX, Karp PH, Parker CP, Ostedgaard LS, Welsh MJ. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci U S A 2016;113:5382-7. [PMID: 27114540 DOI: 10.1073/pnas.1604905113] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
14 Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017;74:67-83. [PMID: 27699452 DOI: 10.1007/s00018-016-2389-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
15 Rocchetti TT, Silbert S, Gostnell A, Kubasek C, Jerris R, Vong J, Widen R. Rapid detection of four non-fermenting Gram-negative bacteria directly from cystic fibrosis patient's respiratory samples on the BD MAX™ system. Pract Lab Med 2018;12:e00102. [PMID: 30009245 DOI: 10.1016/j.plabm.2018.e00102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Tawfik D, Zaccagnino A, Bernt A, Szczepanowski M, Klapper W, Schwab A, Kalthoff H, Trauzold A. The A818-6 system as an in-vitro model for studying the role of the transportome in pancreatic cancer. BMC Cancer 2020;20:264. [PMID: 32228510 DOI: 10.1186/s12885-020-06773-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Favia M, de Bari L, Bobba A, Atlante A. An Intriguing Involvement of Mitochondria in Cystic Fibrosis. J Clin Med 2019;8:E1890. [PMID: 31698802 DOI: 10.3390/jcm8111890] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
18 Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015;25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
19 Marquez Loza LI, Cooney AL, Dong Q, Randak CO, Rivella S, Sinn PL, McCray PB Jr. Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis gene therapy. Mol Ther Methods Clin Dev 2021;21:94-106. [PMID: 33768133 DOI: 10.1016/j.omtm.2021.02.020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Simhaev L, Mccarty NA, Ford RC, Senderowitz H. Molecular Dynamics Flexible Fitting Simulations Identify New Models of the Closed State of the Cystic Fibrosis Transmembrane Conductance Regulator Protein. J Chem Inf Model 2017;57:1932-46. [DOI: 10.1021/acs.jcim.7b00091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
21 Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019;9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
22 Wang L, Yule DI. Differential regulation of ion channels function by proteolysis. Biochim Biophys Acta Mol Cell Res 2018;1865:1698-706. [PMID: 30009861 DOI: 10.1016/j.bbamcr.2018.07.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
23 Widdicombe JH, Wine JJ. Airway Gland Structure and Function. Physiol Rev. 2015;95:1241-1319. [PMID: 26336032 DOI: 10.1152/physrev.00039.2014] [Cited by in Crossref: 103] [Cited by in F6Publishing: 90] [Article Influence: 14.7] [Reference Citation Analysis]
24 Wang HC, Lin CC, Cheung R, Zhang-Hooks Y, Agarwal A, Ellis-Davies G, Rock J, Bergles DE. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 2015;163:1348-59. [PMID: 26627734 DOI: 10.1016/j.cell.2015.10.070] [Cited by in Crossref: 76] [Cited by in F6Publishing: 65] [Article Influence: 10.9] [Reference Citation Analysis]
25 Gong X, Liao Y, Ahner A, Larsen MB, Wang X, Bertrand CA, Frizzell RA. Different SUMO paralogues determine the fate of wild-type and mutant CFTRs: biogenesis versus degradation. Mol Biol Cell 2019;30:4-16. [PMID: 30403549 DOI: 10.1091/mbc.E18-04-0252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Bahia MS, Khazanov N, Zhou Q, Yang Z, Wang C, Hong JS, Rab A, Sorscher EJ, Brouillette CG, Hunt JF, Senderowitz H. Stability Prediction for Mutations in the Cytosolic Domains of Cystic Fibrosis Transmembrane Conductance Regulator. J Chem Inf Model 2021;61:1762-77. [PMID: 33720715 DOI: 10.1021/acs.jcim.0c01207] [Reference Citation Analysis]
27 Nakajima KI, Zhu K, Sun YH, Hegyi B, Zeng Q, Murphy CJ, Small JV, Chen-Izu Y, Izumiya Y, Penninger JM, Zhao M. KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat Commun 2015;6:8532. [PMID: 26449415 DOI: 10.1038/ncomms9532] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 7.4] [Reference Citation Analysis]
28 Brindani N, Gianotti A, Giovani S, Giacomina F, Di Fruscia P, Sorana F, Bertozzi SM, Ottonello G, Goldoni L, Penna I, Russo D, Summa M, Bertorelli R, Ferrera L, Pesce E, Sondo E, Galietta LJV, Bandiera T, Pedemonte N, Bertozzi F. Identification, Structure-Activity Relationship, and Biological Characterization of 2,3,4,5-Tetrahydro-1H-pyrido[4,3-b]indoles as a Novel Class of CFTR Potentiators. J Med Chem 2020;63:11169-94. [PMID: 32946228 DOI: 10.1021/acs.jmedchem.0c01050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Rodrat M, Jantarajit W, Ng DRS, Harvey BSJ, Liu J, Wilkinson WJ, Charoenphandhu N, Sheppard DN. Carbon monoxide-releasing molecules inhibit the cystic fibrosis transmembrane conductance regulator Cl- channel. Am J Physiol Lung Cell Mol Physiol 2020;319:L997-L1009. [PMID: 32936026 DOI: 10.1152/ajplung.00440.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Kis A, Krick S, Baumlin N, Salathe M. Airway Hydration, Apical K(+) Secretion, and the Large-Conductance, Ca(2+)-activated and Voltage-dependent Potassium (BK) Channel. Ann Am Thorac Soc 2016;13 Suppl 2:S163-8. [PMID: 27115952 DOI: 10.1513/AnnalsATS.201507-405KV] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
31 Hatano R, Akiyama K, Tamura A, Hosogi S, Marunaka Y, Caplan MJ, Ueno Y, Tsukita S, Asano S. Knockdown of ezrin causes intrahepatic cholestasis by the dysregulation of bile fluidity in the bile duct epithelium in mice. Hepatology 2015;61:1660-71. [PMID: 25311759 DOI: 10.1002/hep.27565] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
32 Slifer ZM, Blikslager AT. The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. Int J Mol Sci 2020;21:E972. [PMID: 32024112 DOI: 10.3390/ijms21030972] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
33 Julio-Kalajzić F, Villanueva S, Burgos J, Ojeda M, Cid LP, Jentsch TJ, Sepúlveda FV. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion. J Physiol 2018;596:393-407. [PMID: 29143340 DOI: 10.1113/JP275178] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
34 Gong X, Ahner A, Roldan A, Lukacs GL, Thibodeau PH, Frizzell RA. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation. J Biol Chem 2016;291:2004-17. [PMID: 26627832 DOI: 10.1074/jbc.M115.685628] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
35 Torres-Sánchez A, Winter MK, Salbreux G. Tissue hydraulics: Physics of lumen formation and interaction. Cells Dev 2021;:203724. [PMID: 34339904 DOI: 10.1016/j.cdev.2021.203724] [Reference Citation Analysis]
36 Schnúr A, Premchandar A, Bagdany M, Lukacs GL. Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Sci Rep 2019;9:12706. [PMID: 31481727 DOI: 10.1038/s41598-019-48971-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Kuan SP, Liao YJ, Davis KM, Messer JG, Zubcevic J, Aguirre JI, Reznikov LR. Attenuated Amiloride-Sensitive Current and Augmented Calcium-Activated Chloride Current in Marsh Rice Rat (Oryzomys palustris) Airways. iScience 2019;19:737-48. [PMID: 31491720 DOI: 10.1016/j.isci.2019.08.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
38 Bose SJ, Scott-Ward TS, Cai Z, Sheppard DN. Exploiting species differences to understand the CFTR Cl- channel. Biochem Soc Trans 2015;43:975-82. [PMID: 26517912 DOI: 10.1042/BST20150129] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
39 Jantarajit W, Wongdee K, Lertsuwan K, Teerapornpuntakit J, Aeimlapa R, Thongbunchoo J, Harvey BS, Sheppard DN, Charoenphandhu N. Parathyroid hormone increases CFTR expression and function in Caco-2 intestinal epithelial cells. Biochemical and Biophysical Research Communications 2020;523:816-21. [DOI: 10.1016/j.bbrc.2019.12.106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Sinkala M, Mulder N, Martin D. Machine Learning and Network Analyses Reveal Disease Subtypes of Pancreatic Cancer and their Molecular Characteristics. Sci Rep. 2020;10:1212. [PMID: 31988390 DOI: 10.1038/s41598-020-58290-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
41 Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020;11:634. [PMID: 32676036 DOI: 10.3389/fphys.2020.00634] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020;31:524-37. [PMID: 32138545 DOI: 10.1089/hum.2020.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
43 Yao C, Xie C, Lin P, Yan F, Huang P, Hsing I. Organic Electrochemical Transistor Array for Recording Transepithelial Ion Transport of Human Airway Epithelial Cells. Adv Mater 2013;25:6575-80. [DOI: 10.1002/adma.201302615] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
44 Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. Membranes (Basel) 2021;11:804. [PMID: 34832033 DOI: 10.3390/membranes11110804] [Reference Citation Analysis]
45 Cid LP, Jentsch TJ, Sepúlveda FV. Reply from L. P. Cid, T. J. Jentsch and F. V. Sepúlveda: intestinal electrolyte and fluid secretion - a model in trouble? J Physiol 2018;596:2465-6. [PMID: 29663391 DOI: 10.1113/JP276139] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Cottrill KA, Giacalone VD, Margaroli C, Bridges RJ, Koval M, Tirouvanziam R, McCarty NA. Mechanistic analysis and significance of sphingomyelinase-mediated decreases in transepithelial CFTR currents in nHBEs. Physiol Rep 2021;9:e15023. [PMID: 34514718 DOI: 10.14814/phy2.15023] [Reference Citation Analysis]
47 Hayashi M, Inagaki A, Novak I, Matsuda H. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells. Pflugers Arch 2016;468:1171-81. [PMID: 26965147 DOI: 10.1007/s00424-016-1806-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
48 Zinn VZ, Khatri A, Mednieks MI, Hand AR. Localization of cystic fibrosis transmembrane conductance regulator signaling complexes in human salivary gland striated duct cells. Eur J Oral Sci 2015;123:140-8. [PMID: 25903037 DOI: 10.1111/eos.12184] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
49 Schreiber R, Faria D, Skryabin BV, Wanitchakool P, Rock JR, Kunzelmann K. Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch. 2015;467:1203-1213. [PMID: 24974903 DOI: 10.1007/s00424-014-1559-2] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 6.5] [Reference Citation Analysis]
50 Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020;11:855. [PMID: 32765303 DOI: 10.3389/fphys.2020.00855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Wine JJ. Letting go of mucus. Science 2014;345:730-1. [DOI: 10.1126/science.1258493] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
52 de Jonge HR, Ardelean MC, Bijvelds MJC, Vergani P. Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas. FEBS Lett 2020;594:4085-108. [PMID: 33113586 DOI: 10.1002/1873-3468.13971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Zhang J, Halm ST, Halm DR. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2012;303:G1322-34. [PMID: 23064759 DOI: 10.1152/ajpgi.00325.2012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
54 Widdicombe JH. Development of Salt and Water Transport across Airway and Alveolar Epithelia. The Lung. Elsevier; 2014. pp. 137-55. [DOI: 10.1016/b978-0-12-799941-8.00007-9] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
55 Cottrill KA, Peterson RJ, Lewallen CF, Koval M, Bridges RJ, McCarty NA. Sphingomyelinase decreases transepithelial anion secretion in airway epithelial cells in part by inhibiting CFTR-mediated apical conductance. Physiol Rep 2021;9:e14928. [PMID: 34382377 DOI: 10.14814/phy2.14928] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Chinigarzadeh A, Kassim NM, Muniandy S, Salleh N. Genistein-induced fluid accumulation in ovariectomised rats' uteri is associated with increased cystic fibrosis transmembrane regulator expression. Clinics (Sao Paulo) 2014;69:111-9. [PMID: 24519202 DOI: 10.6061/clinics/2014(02)07] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
57 Pawlaczyk-Kamieńska T, Borysewicz-Lewicka M, Batura-Gabryel H. Salivary Biomarkers and Oral Microbial Load in Relation to the Dental Status of Adults with Cystic Fibrosis. Microorganisms 2019;7:E692. [PMID: 31847106 DOI: 10.3390/microorganisms7120692] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
58 Shen Y, Guan D, Serien D, Takeuchi S, Tong P, Yobas L, Huang P. Mechanical Characterization of Microengineered Epithelial Cysts by Using Atomic Force Microscopy. Biophys J 2017;112:398-409. [PMID: 28122225 DOI: 10.1016/j.bpj.2016.12.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
59 Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R, Morales-Lázaro SL, Hiriart M, Morales-Buenrostro LE, Torres-Quiroz F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int J Mol Sci 2020;21:E3837. [PMID: 32481620 DOI: 10.3390/ijms21113837] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
60 Moran O. On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol 2014;52:7-14. [PMID: 24513531 DOI: 10.1016/j.biocel.2014.01.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
61 Arnhold J. Heme Peroxidases at Unperturbed and Inflamed Mucous Surfaces. Antioxidants (Basel) 2021;10:1805. [PMID: 34829676 DOI: 10.3390/antiox10111805] [Reference Citation Analysis]
62 Solomon GM, Raju SV, Dransfield MT, Rowe SM. Therapeutic Approaches to Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis. Ann Am Thorac Soc 2016;13 Suppl 2:S169-76. [PMID: 27115953 DOI: 10.1513/AnnalsATS.201509-601KV] [Cited by in F6Publishing: 19] [Reference Citation Analysis]
63 MacVicar BA. Driving the Early Auditory Network the Old-Fashioned Way. Cell 2015;163:1307-8. [PMID: 26638064 DOI: 10.1016/j.cell.2015.11.039] [Reference Citation Analysis]
64 Droebner K, Sandner P. Modification of the salivary secretion assay in F508del mice--the murine equivalent of the human sweat test. J Cyst Fibros 2013;12:630-7. [PMID: 23768658 DOI: 10.1016/j.jcf.2013.05.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
65 Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 2019;316:C525-44. [PMID: 30576237 DOI: 10.1152/ajpcell.00026.2018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
66 Yuan D, Ma Z, Tuo B, Li T, Liu X. Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer. Evid Based Complement Alternat Med. 2020;2020:2869138. [PMID: 32104192 DOI: 10.1155/2020/2869138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
67 Lu X, Zhang S, Yang C, Wang Z, Zhao L, Wu Z, Xie J. Effect of TongXie-YaoFang on Cl(-) and HCO3 (-) Transport in Diarrhea-Predominant Irritable Bowel Syndrome Rats. Evid Based Complement Alternat Med. 2016;2016:7954982. [PMID: 27403199 DOI: 10.1155/2016/7954982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
68 Wang Y, Cai Z, Gosling M, Sheppard DN. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl channel by ivacaftor is temperature independent. American Journal of Physiology-Lung Cellular and Molecular Physiology 2018;315:L846-57. [DOI: 10.1152/ajplung.00235.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
69 Jin Y, Ibrahim D, Magness ST, Blikslager AT. Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity. Am J Physiol Gastrointest Liver Physiol 2018;315:G966-79. [PMID: 30285466 DOI: 10.1152/ajpgi.00087.2018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
70 Chen L, Yu B, Zhang Y, Gao X, Zhu L, Ma T, Yang H. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator. PLoS One 2015;10:e0119122. [PMID: 25747701 DOI: 10.1371/journal.pone.0119122] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
71 Zajac M, Chakraborty K, Saha S, Mahadevan V, Infield DT, Accardi A, Qiu Z, Krishnan Y. What biologists want from their chloride reporters – a conversation between chemists and biologists. Journal of Cell Science 2020;133:jcs240390. [DOI: 10.1242/jcs.240390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
72 Dasgupta A, Merkel M, Clark MJ, Jacob AE, Dawson JE, Manning ML, Amack JD. Cell volume changes contribute to epithelial morphogenesis in zebrafish Kupffer's vesicle. Elife 2018;7:e30963. [PMID: 29376824 DOI: 10.7554/eLife.30963] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
73 Reddy MM, Stutts MJ. Status of fluid and electrolyte absorption in cystic fibrosis. Cold Spring Harb Perspect Med 2013;3:a009555. [PMID: 23284077 DOI: 10.1101/cshperspect.a009555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
74 Abu-Arish A, Pandzic E, Goepp J, Matthes E, Hanrahan JW, Wiseman PW. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells. Biophys J 2015;109:85-94. [PMID: 26153705 DOI: 10.1016/j.bpj.2015.04.042] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
75 Randak CO, Ver Heul AR, Welsh MJ. Demonstration of phosphoryl group transfer indicates that the ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) exhibits adenylate kinase activity. J Biol Chem 2012;287:36105-10. [PMID: 22948143 DOI: 10.1074/jbc.M112.408450] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
76 Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021;320:F378-403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Koumangoye R, Omer S, Delpire E. A dileucine motif in the COOH-terminal domain of NKCC1 targets the cotransporter to the plasma membrane. Am J Physiol Cell Physiol 2019;316:C545-58. [PMID: 30865516 DOI: 10.1152/ajpcell.00023.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
78 Sun Y, Birnbaumer L, Singh BB. TRPC1 regulates calcium-activated chloride channels in salivary gland cells. J Cell Physiol 2015;230:2848-56. [PMID: 25899321 DOI: 10.1002/jcp.25017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
79 Navis A, Bagnat M. Developing pressures: fluid forces driving morphogenesis. Curr Opin Genet Dev 2015;32:24-30. [PMID: 25698116 DOI: 10.1016/j.gde.2015.01.010] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
80 Rehman S, Narayanan K, Nickerson AJ, Coon SD, Hoque KM, Sandle GI, Rajendran VM. Parallel intermediate conductance K+ and Cl- channel activity mediates electroneutral K+ exit across basolateral membranes in rat distal colon. Am J Physiol Gastrointest Liver Physiol 2020;319:G142-50. [PMID: 32567323 DOI: 10.1152/ajpgi.00011.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Wong FH, AbuArish A, Matthes E, Turner MJ, Greene LE, Cloutier A, Robert R, Thomas DY, Cosa G, Cantin AM, Hanrahan JW. Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells. Am J Physiol Cell Physiol 2018;314:C118-34. [PMID: 28978522 DOI: 10.1152/ajpcell.00099.2017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
82 Procianoy EDFA, de Abreu E Silva FA, Maróstica PJC, Quinton PM. Chloride Conductance, Nasal Potential Difference and Cystic Fibrosis Pathophysiology. Lung 2020;198:151-6. [PMID: 31734731 DOI: 10.1007/s00408-019-00293-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
83 Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki S, Kuwahara A, Suzuki Y. Luminal trypsin induces enteric nerve-mediated anion secretion in the mouse cecum. J Physiol Sci 2014;64:119-28. [PMID: 24421180 DOI: 10.1007/s12576-013-0302-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
84 Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 301-42. [DOI: 10.1002/cphy.c180024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
85 Ye R, Onodera T, Blanchard PG, Kusminski CM, Esser V, Brekken RA, Scherer PE. β1 Syntrophin Supports Autophagy Initiation and Protects against Cerulein-Induced Acute Pancreatitis. Am J Pathol 2019;189:813-25. [PMID: 30653956 DOI: 10.1016/j.ajpath.2019.01.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
86 Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World J Biol Chem 2014; 5(1): 26-39 [PMID: 24600512 DOI: 10.4331/wjbc.v5.i1.26] [Cited by in CrossRef: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
87 Bhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L, Grover M, Linden DR, Akiba Y, Kandimalla KK, Zachos NC, Kaunitz JD, Sonnenburg JL, Fischbach MA, Farrugia G, Kashyap PC. Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host Microbe 2018; 23: 775-785. e5. [PMID: 29902441 DOI: 10.1016/j.chom.2018.05.004] [Cited by in Crossref: 91] [Cited by in F6Publishing: 93] [Article Influence: 30.3] [Reference Citation Analysis]
88 Sato Y, Thomas DY, Hanrahan JW. The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR. J Biol Chem 2019;294:18269-84. [PMID: 31645438 DOI: 10.1074/jbc.RA119.010192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
89 San Gabriel PT, Liu Y, Schroder AL, Zoellner H, Chami B. The Role of Thiocyanate in Modulating Myeloperoxidase Activity during Disease. Int J Mol Sci 2020;21:E6450. [PMID: 32899436 DOI: 10.3390/ijms21176450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Li H, Valkenier H, Thorne AG, Dias CM, Cooper JA, Kieffer M, Busschaert N, Gale PA, Sheppard DN, Davis AP. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem Sci 2019;10:9663-72. [PMID: 32055336 DOI: 10.1039/c9sc04242c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 3] [Article Influence: 9.3] [Reference Citation Analysis]
91 Moon C, Zhang W, Sundaram N, Yarlagadda S, Reddy VS, Arora K, Helmrath MA, Naren AP. Drug-induced secretory diarrhea: A role for CFTR. Pharmacol Res 2015;102:107-12. [PMID: 26429773 DOI: 10.1016/j.phrs.2015.08.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 3.1] [Reference Citation Analysis]
92 Pollock NL, Satriano L, Zegarra-moran O, Ford RC, Moran O. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein–detergent complexes. Journal of Structural Biology 2016;194:102-11. [DOI: 10.1016/j.jsb.2016.02.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
93 Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. Journal of Molecular Biology 2018;430:4481-95. [DOI: 10.1016/j.jmb.2018.07.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
94 Cui G, Cottrill KA, McCarty NA. Electrophysiological Approaches for the Study of Ion Channel Function. Methods Mol Biol 2021;2302:49-67. [PMID: 33877622 DOI: 10.1007/978-1-0716-1394-8_4] [Reference Citation Analysis]
95 Du K, Karp PH, Ackerley C, Zabner J, Keshavjee S, Cutz E, Yeger H. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations. J Cyst Fibros 2015;14:182-93. [PMID: 25453871 DOI: 10.1016/j.jcf.2014.09.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
96 La Count TD, Jajack A, Heikenfeld J, Kasting GB. Modeling Glucose Transport From Systemic Circulation to Sweat. Journal of Pharmaceutical Sciences 2019;108:364-71. [DOI: 10.1016/j.xphs.2018.09.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
97 Weidenfeld S, Kuebler WM. Cytokine-Regulation of Na+-K+-Cl- Cotransporter 1 and Cystic Fibrosis Transmembrane Conductance Regulator-Potential Role in Pulmonary Inflammation and Edema Formation. Front Immunol 2017;8:393. [PMID: 28439270 DOI: 10.3389/fimmu.2017.00393] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
98 Buddington RK, Wong T, Howard SC. Paracellular Filtration Secretion Driven by Mechanical Force Contributes to Small Intestinal Fluid Dynamics. Med Sci (Basel) 2021;9:9. [PMID: 33572202 DOI: 10.3390/medsci9010009] [Reference Citation Analysis]
99 Wang C, Aleksandrov AA, Yang Z, Forouhar F, Proctor EA, Kota P, An J, Kaplan A, Khazanov N, Boël G, Stockwell BR, Senderowitz H, Dokholyan NV, Riordan JR, Brouillette CG, Hunt JF. Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. J Biol Chem 2018;293:17685-704. [PMID: 29903914 DOI: 10.1074/jbc.RA117.000819] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
100 Halm DR. Physiologic Influences of Transepithelial K+ Secretion. In: Hamilton KL, Devor DC, editors. Ion Channels and Transporters of Epithelia in Health and Disease. New York: Springer; 2016. pp. 95-130. [DOI: 10.1007/978-1-4939-3366-2_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
101 Lu XF, Jia MD, Zhang SS, Zhao LQ. Effects of Hemp seed soft capsule on colonic ion transport in rats. World J Gastroenterol 2017; 23(42): 7563-7571 [PMID: 29204056 DOI: 10.3748/wjg.v23.i42.7563] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
102 Jang Y, Oh U. Anoctamin 1 in secretory epithelia. Cell Calcium 2014;55:355-61. [PMID: 24636668 DOI: 10.1016/j.ceca.2014.02.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
103 Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol 2020;10:248. [PMID: 32547962 DOI: 10.3389/fcimb.2020.00248] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
104 Wong MK, Pipil S, Kato A, Takei Y. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions. Comp Biochem Physiol A Mol Integr Physiol 2016;199:130-41. [PMID: 27322796 DOI: 10.1016/j.cbpa.2016.06.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
105 Zomer-van Ommen DD, de Poel E, Kruisselbrink E, Oppelaar H, Vonk AM, Janssens HM, van der Ent CK, Hagemeijer MC, Beekman JM. Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity. J Cyst Fibros 2018;17:316-24. [PMID: 29544685 DOI: 10.1016/j.jcf.2018.02.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
106 Meng X, Wang Y, Wang X, Wrennall JA, Rimington TL, Li H, Cai Z, Ford RC, Sheppard DN. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. J Biol Chem 2017;292:3706-19. [PMID: 28087700 DOI: 10.1074/jbc.M116.751537] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 6.6] [Reference Citation Analysis]
107 Prins S, Langron E, Hastings C, Hill EJ, Stefan AC, Griffin LD, Vergani P. Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity. J Biol Chem 2020;295:16529-44. [PMID: 32934006 DOI: 10.1074/jbc.RA120.014061] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
108 Zhang YL, Liu W, Xu JB, Sun Q, Qiu ZE, Chen L, Huang J, Zhu YX, Zhou WL. Prostaglandin E2 stimulates anion and fluid secretion triggered by lipopolysaccharide in rat vaginal epithelium. Mol Cell Endocrinol 2021;526:111219. [PMID: 33610642 DOI: 10.1016/j.mce.2021.111219] [Reference Citation Analysis]
109 M De la Fuente I, Malaina I, Pérez-Samartín A, Boyano MD, Pérez-Yarza G, Bringas C, Villarroel Á, Fedetz M, Arellano R, Cortes JM, Martínez L. Dynamic properties of calcium-activated chloride currents in Xenopus laevis oocytes. Sci Rep 2017;7:41791. [PMID: 28198817 DOI: 10.1038/srep41791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
110 Sharp K, Crampin E, Sneyd J. A spatial model of fluid recycling in the airways of the lung. J Theor Biol 2015;382:198-215. [PMID: 26169010 DOI: 10.1016/j.jtbi.2015.06.050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
111 Haziman AA, Ravinderan S, Thangavelu T, Thomas W. A novel role for estrogen-induced signaling in the colorectal cancer gender bias. Ir J Med Sci. 2019;188:389-395. [PMID: 30014247 DOI: 10.1007/s11845-018-1867-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
112 Gao da Y, Zhang BL, Leung MC, Au SC, Wong PY, Shum WW. Coupling of TRPV6 and TMEM16A in epithelial principal cells of the rat epididymis. J Gen Physiol 2016;148:161-82. [PMID: 27481714 DOI: 10.1085/jgp.201611626] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
113 Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019;4:126444. [PMID: 30668547 DOI: 10.1172/jci.insight.126444] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
114 Li H, Salomon JJ, Sheppard DN, Mall MA, Galietta LJ. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Curr Opin Pharmacol 2017;34:91-7. [PMID: 29065356 DOI: 10.1016/j.coph.2017.10.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
115 Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2020;318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
116 Koumangoye R, Omer S, Delpire E. Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells. Am J Physiol Cell Physiol 2018;315:C258-76. [PMID: 29719172 DOI: 10.1152/ajpcell.00130.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
117 Linsdell P. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. Adv Exp Med Biol 2017;925:13-32. [PMID: 27311317 DOI: 10.1007/5584_2016_33] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
118 Zhang Y, Yu B, Sui Y, Gao X, Yang H, Ma T. Identification of resveratrol oligomers as inhibitors of cystic fibrosis transmembrane conductance regulator by high-throughput screening of natural products from chinese medicinal plants. PLoS One 2014;9:e94302. [PMID: 24714160 DOI: 10.1371/journal.pone.0094302] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
119 Gosalia N, Yang R, Kerschner JL, Harris A. FOXA2 regulates a network of genes involved in critical functions of human intestinal epithelial cells. Physiol Genomics 2015;47:290-7. [PMID: 25921584 DOI: 10.1152/physiolgenomics.00024.2015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
120 Olivier AK, Gibson-Corley KN, Meyerholz DK. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2015;308:G459-71. [PMID: 25591863 DOI: 10.1152/ajpgi.00146.2014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
121 Klein H, Abu-Arish A, Trinh NT, Luo Y, Wiseman PW, Hanrahan JW, Brochiero E, Sauvé R. Investigating CFTR and KCa3.1 Protein/Protein Interactions. PLoS One 2016;11:e0153665. [PMID: 27092946 DOI: 10.1371/journal.pone.0153665] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
122 Skelin M, Bursa D, Kozina V, Winters T, Macan M, Urlin M. Key molecules in the GABA signalling pathway are present in mouse and human cervical tissue. Reprod Fertil Dev 2018;30:1267-75. [PMID: 29665953 DOI: 10.1071/RD17333] [Reference Citation Analysis]
123 Stauffer BB, Cui G, Cottrill KA, Infield DT, McCarty NA. Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Sci Rep 2017;7:2931. [PMID: 28592822 DOI: 10.1038/s41598-017-03103-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
124 Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol. 2017;313:L859-L872. [PMID: 29025712 DOI: 10.1152/ajplung.00285.2017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
125 Zhang Z, Chen J. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator. Cell 2016;167:1586-1597.e9. [PMID: 27912062 DOI: 10.1016/j.cell.2016.11.014] [Cited by in Crossref: 196] [Cited by in F6Publishing: 165] [Article Influence: 39.2] [Reference Citation Analysis]
126 Shan W, Hu Y, Ding J, Yang X, Lou J, Du Q, Liao Q, Luo L, Xu J, Xie R. Advances in Ca2+ modulation of gastrointestinal anion secretion and its dysregulation in digestive disorders (Review). Exp Ther Med 2020;20:8. [PMID: 32934673 DOI: 10.3892/etm.2020.9136] [Reference Citation Analysis]
127 Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca2+ entry. Cell Calcium 2017;63:53-9. [PMID: 28027799 DOI: 10.1016/j.ceca.2016.12.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
128 Kramer IM. Cholinergic Signaling and Muscle Contraction. Signal Transduction. Elsevier; 2016. pp. 263-327. [DOI: 10.1016/b978-0-12-394803-8.00004-8] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
129 Salomon JJ, Albrecht T, Graeber SY, Scheuermann H, Butz S, Schatterny J, Mairbäurl H, Baumann I, Mall MA. Chronic rhinosinusitis with nasal polyps is associated with impaired TMEM16A-mediated epithelial chloride secretion. J Allergy Clin Immunol 2021;147:2191-2201.e2. [PMID: 33609628 DOI: 10.1016/j.jaci.2021.02.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Schnúr A, Hegyi P, Rousseau S, Lukacs GL, Veit G. Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016;2016:7596531. [PMID: 27382190 DOI: 10.1155/2016/7596531] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
131 Qi W, Cong X, Zhang XM, Wang ZY, Yang NY, Ding C, Shan XF, Wu LL, Yu GY. Parasympathectomy increases resting salivary secretion in normal and irradiated submandibular glands of rats. Eur J Oral Sci 2017;125:110-8. [PMID: 28084660 DOI: 10.1111/eos.12330] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
132 Capra JP, Eskelinen SM. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment. Can J Physiol Pharmacol 2017;95:72-83. [DOI: 10.1139/cjpp-2016-0051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
133 Melnik LI, Guha S, Ghimire J, Smither AR, Beddingfield BJ, Hoffmann AR, Sun L, Ungerleider NA, Baddoo MC, Flemington EK, Gallaher WR, Wimley WC, Garry RF. Ebola virus delta peptide is an enterotoxin. Cell Rep 2022;38:110172. [PMID: 34986351 DOI: 10.1016/j.celrep.2021.110172] [Reference Citation Analysis]
134 Berg A, Hallowell S, Tibbetts M, Beasley C, Brown-Phillips T, Healy A, Pustilnik L, Doyonnas R, Pregel M. High-Throughput Surface Liquid Absorption and Secretion Assays to Identify F508del CFTR Correctors Using Patient Primary Airway Epithelial Cultures. SLAS Discov 2019;24:724-37. [PMID: 31107611 DOI: 10.1177/2472555219849375] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
135 Zhang Z, Baksh MM, Finn MG, Heidary DK, Richards CI. Direct Measurement of Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator to the Cell Surface and Binding to a Chemical Chaperone. Biochemistry 2017;56:240-9. [PMID: 28001373 DOI: 10.1021/acs.biochem.6b00853] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]