BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology (Reading) 2013;159:833-47. [PMID: 23519157 DOI: 10.1099/mic.0.051839-0] [Cited by in Crossref: 111] [Cited by in F6Publishing: 104] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Singh G, Arya SK. Antifungal and insecticidal potential of chitinases: A credible choice for the eco-friendly farming. Biocatalysis and Agricultural Biotechnology 2019;20:101289. [DOI: 10.1016/j.bcab.2019.101289] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
2 Bhattacharjee A, Velickovic D, Wietsma TW, Bell SL, Jansson JK, Hofmockel KS, Anderton CR. Visualizing Microbial Community Dynamics via a Controllable Soil Environment. mSystems 2020;5:e00645-19. [PMID: 32047062 DOI: 10.1128/mSystems.00645-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
3 Ambas I, Buller N, Fotedar R. Isolation and screening of probiotic candidates from marron, Cherax cainii (Austin, 2002) gastrointestinal tract (GIT) and commercial probiotic products for the use in marron culture. J Fish Dis 2015;38:467-76. [DOI: 10.1111/jfd.12257] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
4 Frandsen KE, Lo Leggio L. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes. IUCrJ 2016;3:448-67. [PMID: 27840684 DOI: 10.1107/S2052252516014147] [Cited by in Crossref: 49] [Cited by in F6Publishing: 19] [Article Influence: 8.2] [Reference Citation Analysis]
5 Jagadeeswaran G, Veale L, Mort AJ. Do Lytic Polysaccharide Monooxygenases Aid in Plant Pathogenesis and Herbivory? Trends in Plant Science 2021;26:142-55. [DOI: 10.1016/j.tplants.2020.09.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
6 Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020;16:e1008342. [PMID: 32365117 DOI: 10.1371/journal.ppat.1008342] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
7 Kottom TJ, Hebrink DM, Jenson PE, Ramirez-Prado JH, Limper AH. Characterization of N-Acetylglucosamine Biosynthesis in Pneumocystis species. A New Potential Target for Therapy. Am J Respir Cell Mol Biol 2017;56:213-22. [PMID: 27632412 DOI: 10.1165/rcmb.2016-0155OC] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
8 Keffeler EC, Parthasarathy S, Abdullahi ZH, Hancock LE. Metabolism of Poly-β1,4-N-Acetylglucosamine Substrates and Importation of N-Acetylglucosamine and Glucosamine by Enterococcus faecalis. J Bacteriol 2021;203:e0037121. [PMID: 34424034 DOI: 10.1128/JB.00371-21] [Reference Citation Analysis]
9 Kaulfürst-Soboll H, Mertens-Beer M, Brehler R, Albert M, von Schaewen A. Complex N-Glycans Are Important for Normal Fruit Ripening and Seed Development in Tomato. Front Plant Sci 2021;12:635962. [PMID: 33767719 DOI: 10.3389/fpls.2021.635962] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Gaber Y, Mekasha S, Vaaje-kolstad G, Eijsink VG, Fraaije MW. Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016;1864:1253-9. [DOI: 10.1016/j.bbapap.2016.04.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
11 Tao SQ, Cao B, Tian CM, Liang YM. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). BMC Genomics 2017;18:651. [PMID: 28830353 DOI: 10.1186/s12864-017-4059-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
12 Keller A, Brandel A, Becker MC, Balles R, Abdelmohsen UR, Ankenbrand MJ, Sickel W. Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome 2018;6:229. [PMID: 30579360 DOI: 10.1186/s40168-018-0614-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
13 Knipe H, Temperton B, Lange A, Bass D, Tyler CR. Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Rev Aquacult 2021;13:324-52. [DOI: 10.1111/raq.12477] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
14 Halder SK, Mondal KC. Microbial Valorization of Chitinous Bioresources for Chitin Extraction and Production of Chito-Oligomers and N-Acetylglucosamine: Trends, Perspectives and Prospects. In: Patra JK, Das G, Shin H, editors. Microbial Biotechnology. Singapore: Springer; 2018. pp. 69-107. [DOI: 10.1007/978-981-10-7140-9_4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
15 Halbedel S, Prager R, Banerji S, Kleta S, Trost E, Nishanth G, Alles G, Hölzel C, Schlesiger F, Pietzka A, Schlüter D, Flieger A. A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerg Microbes Infect 2019;8:17-28. [PMID: 30866756 DOI: 10.1080/22221751.2018.1558960] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
16 Bohr S, Patel SJ, Vasko R, Shen K, Golberg A, Berthiaume F, Yarmush ML. The Role of CHI3L1 (Chitinase-3-Like-1) in the Pathogenesis of Infections in Burns in a Mouse Model. PLoS One 2015;10:e0140440. [PMID: 26528713 DOI: 10.1371/journal.pone.0140440] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
17 Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 2016;62:243-54. [PMID: 26527115 DOI: 10.1007/s00294-015-0530-x] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 11.0] [Reference Citation Analysis]
18 Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS One 2014;9:e103119. [PMID: 25244128 DOI: 10.1371/journal.pone.0103119] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
19 Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z. Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. FEBS Lett 2018;592:2562-71. [PMID: 29993123 DOI: 10.1002/1873-3468.13189] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
20 Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol 2015;6:469. [PMID: 26042105 DOI: 10.3389/fmicb.2015.00469] [Cited by in Crossref: 83] [Cited by in F6Publishing: 61] [Article Influence: 11.9] [Reference Citation Analysis]
21 Friel AD, Neiswenter SA, Seymour CO, Bali LR, McNamara G, Leija F, Jewell J, Hedlund BP. Microbiome Shifts Associated With the Introduction of Wild Atlantic Horseshoe Crabs (Limulus polyphemus) Into a Touch-Tank Exhibit. Front Microbiol 2020;11:1398. [PMID: 32765431 DOI: 10.3389/fmicb.2020.01398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Honda S, Kunii T, Nohara K, Wakita S, Sugahara Y, Kawakita M, Oyama F, Sakaguchi M. Characterization of a Bacillus thuringiensis chitinase that binds to cellulose and chitin. AMB Express 2017;7:51. [PMID: 28244030 DOI: 10.1186/s13568-017-0352-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
23 Paspaliari DK, Mollerup MS, Kallipolitis BH, Ingmer H, Larsen MH. Chitinase expression in Listeria monocytogenes is positively regulated by the Agr system. PLoS One 2014;9:e95385. [PMID: 24752234 DOI: 10.1371/journal.pone.0095385] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
24 Parsa Yeganeh L, Azarbaijani R, Mousavi H, Shahzadeh Fazeli SA, Amoozgar MA, Salekdeh GH. Genome-Wide Analysis of Oceanimonas sp. GK1 Isolated from Gavkhouni Wetland (Iran) Demonstrates Presence of Genes for Virulence and Pathogenicity. Cell J 2015;17:451-60. [PMID: 26464816 DOI: 10.22074/cellj.2015.6] [Reference Citation Analysis]
25 Loose JS, Forsberg Z, Fraaije MW, Eijsink VG, Vaaje-kolstad G. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Letters 2014;588:3435-40. [DOI: 10.1016/j.febslet.2014.07.036] [Cited by in Crossref: 99] [Cited by in F6Publishing: 84] [Article Influence: 12.4] [Reference Citation Analysis]
26 Chang TC, Stergiopoulos I. Inter- and intra-domain horizontal gene transfer, gain-loss asymmetry and positive selection mark the evolutionary history of the CBM14 family. FEBS J 2015;282:2014-28. [PMID: 25754577 DOI: 10.1111/febs.13256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
27 Allievi MC, Palomino MM, Prado Acosta M, Lanati L, Ruzal SM, Sánchez-Rivas C. Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus. PLoS One 2014;9:e111114. [PMID: 25354162 DOI: 10.1371/journal.pone.0111114] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
28 Khan F, Jeong MC, Park SK, Kim SK, Kim YM. Contribution of chitooligosaccharides to biofilm formation, antibiotics resistance and disinfectants tolerance of Listeria monocytogenes. Microb Pathog 2019;136:103673. [PMID: 31437576 DOI: 10.1016/j.micpath.2019.103673] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
29 Yaghi J, Fattouh N, Akkawi C, El Chamy L, Maroun RG, Khalil G. Unusually High Prevalence of Cosecretion of Ambler Class A and B Carbapenemases and Nonenzymatic Mechanisms in Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa in Lebanon. Microb Drug Resist 2020;26:150-9. [PMID: 31424353 DOI: 10.1089/mdr.2019.0040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
30 Owen RA, Fyfe PK, Lodge A, Biboy J, Vollmer W, Hunter WN, Sargent F. Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by Serratia marcescens. Biochem J 2018;475:415-28. [PMID: 29229757 DOI: 10.1042/BCJ20170633] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Bielecki P, Muthukumarasamy U, Eckweiler D, Bielecka A, Pohl S, Schanz A, Niemeyer U, Oumeraci T, von Neuhoff N, Ghigo JM, Häussler S. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. mBio 2014;5:e01075-14. [PMID: 25096872 DOI: 10.1128/mBio.01075-14] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 5.3] [Reference Citation Analysis]
32 Dean SN, Chung MC, van Hoek ML. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production. Appl Environ Microbiol 2015;81:7057-66. [PMID: 26231649 DOI: 10.1128/AEM.02165-15] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
33 Calderaro F, Bevers LE, van den Berg MA. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Biomolecules 2021;11:1098. [PMID: 34439765 DOI: 10.3390/biom11081098] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Alenezi FN, Rekik I, Bełka M, Ibrahim AF, Luptakova L, Jaspars M, Woodward S, Belbahri L. Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus. Microbiol Res 2016;182:116-24. [PMID: 26686620 DOI: 10.1016/j.micres.2015.10.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
35 Gimza BD, Jackson JK, Frey AM, Budny BG, Chaput D, Rizzo DN, Shaw LN. Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus. mBio 2021;12:e03288-20. [PMID: 33622717 DOI: 10.1128/mBio.03288-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Franco M, D'haeseleer PM, Branda SS, Liou MJ, Haider Y, Segelke BW, El-Etr SH. Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Front Cell Infect Microbiol 2018;8:370. [PMID: 30406044 DOI: 10.3389/fcimb.2018.00370] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
37 Machado H, Sonnenschein EC, Melchiorsen J, Gram L. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics 2015;16:158. [PMID: 25879706 DOI: 10.1186/s12864-015-1365-z] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 9.1] [Reference Citation Analysis]
38 Vaaje‐kolstad G, Tuveng TR, Mekasha S, Eijsink VG. Enzymes for Modification of Chitin and Chitosan. In: Broek LA, Boeriu CG, editors. Chitin and Chitosan. Wiley; 2019. pp. 189-228. [DOI: 10.1002/9781119450467.ch8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
39 Minniti G, Rød Sandve S, Padra JT, Heldal Hagen L, Lindén S, Pope PB, Ø Arntzen M, Vaaje-Kolstad G. The Farmed Atlantic Salmon (Salmo salar) Skin-Mucus Proteome and Its Nutrient Potential for the Resident Bacterial Community. Genes (Basel) 2019;10:E515. [PMID: 31284681 DOI: 10.3390/genes10070515] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
40 Shams MV, Nazarian-Firouzabadi F, Ismaili A, Shirzadian-Khorramabad R. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Mol Biotechnol 2019;61:241-52. [PMID: 30649664 DOI: 10.1007/s12033-019-00153-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
41 Paksanont S, Sintiprungrat K, Yimthin T, Pumirat P, Peacock SJ, Chantratita N. Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci Rep 2018;8:9167. [PMID: 29907803 DOI: 10.1038/s41598-018-27356-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
42 Zhou F, Zhou K, Huang J, Yang Q, Jiang S, Qiu L, Yang L, Jiang S. Characterization and expression analysis of a chitinase gene (PmChi-5) from black tiger shrimp (Penaeus monodon) under pathogens infection and ambient ammonia-N stress. Fish & Shellfish Immunology 2018;72:117-23. [DOI: 10.1016/j.fsi.2017.10.051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
43 Zingue D, Bouam A, Tian RBD, Drancourt M. Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2018;31:e00045-17. [PMID: 29237707 DOI: 10.1128/CMR.00045-17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
44 Span EA, Marletta MA. The framework of polysaccharide monooxygenase structure and chemistry. Curr Opin Struct Biol 2015;35:93-9. [PMID: 26615470 DOI: 10.1016/j.sbi.2015.10.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 6.9] [Reference Citation Analysis]
45 Tully BG, Huntley JF. A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens 2020;9:E1037. [PMID: 33321814 DOI: 10.3390/pathogens9121037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Prescott JF, Parreira VR, Mehdizadeh Gohari I, Lepp D, Gong J. The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathology 2016;45:288-94. [DOI: 10.1080/03079457.2016.1139688] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 12.3] [Reference Citation Analysis]
47 Pattnaik S, Ahmed T, Ranganathan SK, Ampasala DR, Sarma VV, Busi S. Aspergillus ochraceopetaliformis SSP13 modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. Biofouling 2018;34:410-25. [PMID: 29745728 DOI: 10.1080/08927014.2018.1460748] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
48 Mallakuntla MK, Vaikuntapu PR, Bhuvanachandra B, Das SN, Podile AR. Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep 2017;7:5113. [PMID: 28698589 DOI: 10.1038/s41598-017-05140-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
49 Hangasky JA, Detomasi TC, Lemon CM, Marletta MA. Glycosidic Bond Oxidation: The Structure, Function, and Mechanism of Polysaccharide Monooxygenases. Comprehensive Natural Products III. Elsevier; 2020. pp. 298-331. [DOI: 10.1016/b978-0-12-409547-2.14859-0] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Viana CA, Ramos MV, Filho JDBM, Lotufo LVC, Figueiredo IST, de Oliveira JS, Mastroeni P, Lima-filho JV, Alencar NMN. Cytotoxicity against tumor cell lines and anti-inflammatory properties of chitinases from Calotropis procera latex. Naunyn-Schmiedeberg's Arch Pharmacol 2017;390:1005-13. [DOI: 10.1007/s00210-017-1397-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
51 Frederiksen RF, Yoshimura Y, Storgaard BG, Paspaliari DK, Petersen BO, Chen K, Larsen T, Duus JØ, Ingmer H, Bovin NV, Westerlind U, Blixt O, Palcic MM, Leisner JJ. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells. J Biol Chem 2015;290:5354-66. [PMID: 25561735 DOI: 10.1074/jbc.M114.607291] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
52 Zhao GH, Xu MJ, Zhu XQ. Identification and characterization of microRNAs in Baylisascaris schroederi of the giant panda. Parasit Vectors 2013;6:216. [PMID: 23883822 DOI: 10.1186/1756-3305-6-216] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
53 Arabyan N, Huang BC, Weimer BC. Draft Genome Sequences of Salmonella enterica Serovar Typhimurium LT2 with Deleted Chitinases That Are Emerging Virulence Factors. Genome Announc 2017;5:e00659-17. [PMID: 28774970 DOI: 10.1128/genomeA.00659-17] [Reference Citation Analysis]
54 Baarda BI, Zielke RA, Le Van A, Jerse AE, Sikora AE. Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production. PLoS Pathog 2019;15:e1007385. [PMID: 30845186 DOI: 10.1371/journal.ppat.1007385] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
55 Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021;22:400. [PMID: 34058984 DOI: 10.1186/s12864-021-07729-5] [Reference Citation Analysis]
56 Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, Pöntinen A, Korkeala H, Dos Santos NMS, Morais-Cabral JH, Sousa S, Cabanes D. MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Res 2018;46:9338-52. [PMID: 30011022 DOI: 10.1093/nar/gky624] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
57 Rojas-pinzón PA, Dussán J. Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J Microbiol Biotechnol 2017;33. [DOI: 10.1007/s11274-017-2348-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
58 Paspaliari DK, Loose JSM, Larsen MH, Vaaje-kolstad G. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. FEBS J 2015;282:921-36. [DOI: 10.1111/febs.13191] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
59 Liew SM, Puthucheary SD, Rajasekaram G, Chai HC, Chua KH. Proteomic profiling of clinical and environmental strains of Pseudomonas aeruginosa. Mol Biol Rep 2021;48:2325-33. [PMID: 33728559 DOI: 10.1007/s11033-021-06262-8] [Reference Citation Analysis]
60 Drewnowska J, Fiodor A, Barboza-corona J, Swiecicka I. Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments. Systematic and Applied Microbiology 2020;43:126075. [DOI: 10.1016/j.syapm.2020.126075] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
61 Pérez‐izquierdo L, Zabal‐aguirre M, González‐martínez SC, Buée M, Verdú M, Rincón A, Goberna M, Shefferson R. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. J Ecol 2019;107:1594-605. [DOI: 10.1111/1365-2745.13202] [Cited by in Crossref: 31] [Cited by in F6Publishing: 9] [Article Influence: 10.3] [Reference Citation Analysis]
62 Bakuła Z, Siedlecki P, Gromadka R, Gawor J, Gromadka A, Pomorski JJ, Panagiotopoulou H, Jagielski T. A first insight into the genome of Prototheca wickerhamii, a major causative agent of human protothecosis. BMC Genomics 2021;22:168. [PMID: 33750287 DOI: 10.1186/s12864-021-07491-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Liu JJ, Sturrock RN, Sniezko RA, Williams H, Benton R, Zamany A. Transcriptome analysis of the white pine blister rust pathogen Cronartium ribicola: de novo assembly, expression profiling, and identification of candidate effectors. BMC Genomics 2015;16:678. [PMID: 26338692 DOI: 10.1186/s12864-015-1861-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 4.9] [Reference Citation Analysis]
64 Erken M, Lutz C, McDougald D. Interactions of Vibrio spp. with Zooplankton. Microbiol Spectr 2015;3. [PMID: 26185068 DOI: 10.1128/microbiolspec.VE-0003-2014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
65 Rojas-Pinzón PA, Dussán J. Efficacy of the vegetative cells of Lysinibacillus sphaericus for biological control of insecticide-resistant Aedes aegypti. Parasit Vectors 2017;10:231. [PMID: 28490350 DOI: 10.1186/s13071-017-2171-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
66 Piper SJ, Brillault L, Rothnagel R, Croll TI, Box JK, Chassagnon I, Scherer S, Goldie KN, Jones SA, Schepers F, Hartley-Tassell L, Ve T, Busby JN, Dalziel JE, Lott JS, Hankamer B, Stahlberg H, Hurst MRH, Landsberg MJ. Cryo-EM structures of the pore-forming A subunit from the Yersinia entomophaga ABC toxin. Nat Commun 2019;10:1952. [PMID: 31028251 DOI: 10.1038/s41467-019-09890-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
67 Pattnaik SS, Ranganathan S, Ampasala DR, Syed A, Ameen F, Busi S. Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microb Pathog 2018;118:177-89. [PMID: 29571725 DOI: 10.1016/j.micpath.2018.03.031] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
68 Frederiksen RF, Leisner JJ. Effects of Listeria monocytogenes EGD-e and Salmonella enterica ser. Typhimurium LT2 chitinases on intracellular survival in Dictyostelium discoideum and mammalian cell lines. FEMS Microbiol Lett 2015;362:fnv067. [PMID: 25908871 DOI: 10.1093/femsle/fnv067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
69 Parreira VR, Russell K, Athanasiadou S, Prescott JF. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions. BMC Microbiol 2016;16:186. [PMID: 27520106 DOI: 10.1186/s12866-016-0792-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
70 Burtnick MN, Brett PJ, DeShazer D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 2014;82:3214-26. [PMID: 24866793 DOI: 10.1128/IAI.01739-14] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
71 Agostoni M, Hangasky JA, Marletta MA. Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiol Mol Biol Rev 2017;81:e00015-17. [PMID: 28659491 DOI: 10.1128/MMBR.00015-17] [Cited by in Crossref: 38] [Cited by in F6Publishing: 7] [Article Influence: 7.6] [Reference Citation Analysis]
72 Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen MØ, Schmidt B, Zurich RH, van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 2021;12:1230. [PMID: 33623002 DOI: 10.1038/s41467-021-21473-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
73 Das S, Chourashi R, Mukherjee P, Gope A, Koley H, Dutta M, Mukhopadhyay AK, Okamoto K, Chatterjee NS. Multifunctional transcription factor CytR of Vibrio cholerae is important for pathogenesis. Microbiology (Reading) 2020;166:1136-48. [PMID: 33150864 DOI: 10.1099/mic.0.000949] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
74 Tiruvayipati S, Bhassu S. Host, pathogen and environment: a bacterial gbpA gene expression study in response to magnesium environment and presence of prawn carapace and commercial chitin. Gut Pathog 2016;8:23. [PMID: 27231485 DOI: 10.1186/s13099-016-0105-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
75 Irvine S, Bunk B, Bayes HK, Spröer C, Connolly JPR, Six A, Evans TJ, Roe AJ, Overmann J, Walker D. Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model. Microb Genom 2019;5. [PMID: 30920365 DOI: 10.1099/mgen.0.000262] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P. Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 2014;9:e108522. [PMID: 25268993 DOI: 10.1371/journal.pone.0108522] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 5.1] [Reference Citation Analysis]
77 Morales-Ruiz E, Priego-Rivera R, Figueroa-López AM, Cazares-Álvarez JE, Maldonado-Mendoza IE. Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03. FEMS Microbiol Lett 2021;368:fnaa218. [PMID: 33351136 DOI: 10.1093/femsle/fnaa218] [Reference Citation Analysis]
78 Yadav SK, Archana, Singh R, Singh PK, Vasudev PG. Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase. Planta 2019;249:1987-96. [DOI: 10.1007/s00425-019-03135-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
79 Zingue D, Panda A, Drancourt M. A protocol for culturing environmental strains of the Buruli ulcer agent, Mycobacterium ulcerans. Sci Rep 2018;8:6778. [PMID: 29712992 DOI: 10.1038/s41598-018-25278-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
80 Li QM, Zhou YL, Wei ZF, Wang Y. Phylogenomic Insights into Distribution and Adaptation of Bdellovibrionota in Marine Waters. Microorganisms 2021;9:757. [PMID: 33916768 DOI: 10.3390/microorganisms9040757] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Brothers KM, Stella NA, Romanowski EG, Kowalski RP, Shanks RM. EepR Mediates Secreted-Protein Production, Desiccation Survival, and Proliferation in a Corneal Infection Model. Infect Immun 2015;83:4373-82. [PMID: 26324535 DOI: 10.1128/IAI.00466-15] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
82 Thomas P, Semmler T, Eichhorn I, Lübke-Becker A, Werckenthin C, Abdel-Glil MY, Wieler LH, Neubauer H, Seyboldt C. First report of two complete Clostridium chauvoei genome sequences and detailed in silico genome analysis. Infect Genet Evol 2017;54:287-98. [PMID: 28720440 DOI: 10.1016/j.meegid.2017.07.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
83 Podell S, Blanton JM, Neu A, Agarwal V, Biggs JS, Moore BS, Allen EE. Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME J 2019;13:468-81. [PMID: 30291328 DOI: 10.1038/s41396-018-0292-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
84 Larsen T, Yoshimura Y, Voldborg BG, Cazzamali G, Bovin NV, Westerlind U, Palcic MM, Leisner JJ. Human chitotriosidase CHIT1 cross reacts with mammalian-like substrates. FEBS Lett 2014;588:746-51. [PMID: 24462685 DOI: 10.1016/j.febslet.2013.12.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
85 Wang N, Gao K, Han N, Tian R, Zhang J, Yan X, Huang L. ChbB increases antifungal activity of Bacillus amyloliquefaciens against Valsa mali and shows synergistic action with bacterial chitinases. Biological Control 2020;142:104150. [DOI: 10.1016/j.biocontrol.2019.104150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
86 Silva PM, Silva JNO, Silva BR, Ferreira GRS, Gaião WDC, Recio MV, Gonçalves GGA, Rodrigues CG, Medeiros PL, Brayner FA, Alves LC, Larsen MH, Ingmer H, Napoleão TH, Paiva PMG. Antibacterial effects of the lectin from pomegranate sarcotesta (PgTeL) against Listeria monocytogenes. J Appl Microbiol 2021;131:671-81. [PMID: 33342053 DOI: 10.1111/jam.14978] [Reference Citation Analysis]
87 Solden LM, Hoyt DW, Collins WB, Plank JE, Daly RA, Hildebrand E, Beavers TJ, Wolfe R, Nicora CD, Purvine SO, Carstensen M, Lipton MS, Spalinger DE, Firkins JL, Wolfe BA, Wrighton KC. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11. ISME J 2017;11:691-703. [PMID: 27959345 DOI: 10.1038/ismej.2016.150] [Cited by in Crossref: 73] [Cited by in F6Publishing: 57] [Article Influence: 12.2] [Reference Citation Analysis]
88 Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, Aizel K, Oliéric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK, Bergoin M, Metcalf P, Coulibaly F. Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci U S A 2015;112:3973-8. [PMID: 25787255 DOI: 10.1073/pnas.1418798112] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 8.6] [Reference Citation Analysis]
89 Eckelt E, Meißner T, Meens J, Laarmann K, Nerlich A, Jarek M, Weiss S, Gerlach GF, Goethe R. FurA contributes to the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Front Microbiol 2015;6:16. [PMID: 25705205 DOI: 10.3389/fmicb.2015.00016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
90 Garbe J, Sjögren J, Cosgrave EF, Struwe WB, Bober M, Olin AI, Rudd PM, Collin M. EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PLoS One 2014;9:e91035. [PMID: 24608122 DOI: 10.1371/journal.pone.0091035] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
91 Labroussaa F, Ionescu M, Zeilinger AR, Lindow SE, Almeida RPP. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts. Microbiology (Reading) 2017;163:502-9. [PMID: 28141489 DOI: 10.1099/mic.0.000438] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
92 Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J 2014;8:1659-72. [PMID: 24599074 DOI: 10.1038/ismej.2014.23] [Cited by in Crossref: 178] [Cited by in F6Publishing: 161] [Article Influence: 22.3] [Reference Citation Analysis]
93 Sisinthy S, Gundlapally SR. Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria, Roseateles and Pelomonas. Arch Microbiol 2020;202:1839-48. [PMID: 32447433 DOI: 10.1007/s00203-020-01905-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
94 Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, Cavalcante NS, Alegria MC, Barbosa LR, Salinas RK, Guzzo CR, Farah CS. Bacterial killing via a type IV secretion system. Nat Commun 2015;6:6453. [PMID: 25743609 DOI: 10.1038/ncomms7453] [Cited by in Crossref: 106] [Cited by in F6Publishing: 85] [Article Influence: 15.1] [Reference Citation Analysis]
95 Jessberger N, Dietrich R, Mohr AK, Da Riol C, Märtlbauer E. Porcine Gastric Mucin Triggers Toxin Production of Enteropathogenic Bacillus cereus. Infect Immun 2019;87:e00765-18. [PMID: 30745328 DOI: 10.1128/IAI.00765-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
96 Hnamte S, Subhaswaraj P, Kumar Ranganathan S, Rao Ampasala D, Muralitharan G, Siddhardha B. Methanolic Extract of Plectranthus tenuiflorus Attenuates Quorum Sensing Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa PAO1. J Pure Appl Microbiol 2018;12:1985-96. [DOI: 10.22207/jpam.12.4.35] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
97 Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen. ACS Chem Biol 2021;16:501-9. [PMID: 33595276 DOI: 10.1021/acschembio.0c00901] [Reference Citation Analysis]
98 Whittingham JL, Hanai S, Brannigan JA, Ferreira WT, Dodson EJ, Turkenburg JP, Cartwright J, Cutting SM, Wilkinson AJ. Crystal structures of the GH18 domain of the bifunctional peroxiredoxin-chitinase CotE from Clostridium difficile. Acta Crystallogr F Struct Biol Commun 2020;76:241-9. [PMID: 32510464 DOI: 10.1107/S2053230X20006147] [Reference Citation Analysis]
99 Paspaliari DK, Kastbjerg VG, Ingmer H, Popowska M, Larsen MH. Chitinase Expression in Listeria monocytogenes Is Influenced by lmo0327, Which Encodes an Internalin-Like Protein. Appl Environ Microbiol 2017;83:e01283-17. [PMID: 28887418 DOI: 10.1128/AEM.01283-17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
100 Hamilton JJ, Marlow VL, Owen RA, Costa Mde A, Guo M, Buchanan G, Chandra G, Trost M, Coulthurst SJ, Palmer T, Stanley-Wall NR, Sargent F. A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens. J Cell Biol 2014;207:615-26. [PMID: 25488919 DOI: 10.1083/jcb.201404127] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
101 Khasbiullina NR, Bovin NV. Hypotheses of the origin of natural antibodies: a glycobiologist's opinion. Biochemistry (Mosc) 2015;80:820-35. [PMID: 26541997 DOI: 10.1134/S0006297915070032] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
102 Keffeler EC, Iyer VS, Henderson AJ, Huck IL, Schwarting N, Cortez A, Hancock LE. Activity of CcpA-Regulated GH18 Family Glycosyl Hydrolases That Contributes to Nutrient Acquisition and Fitness in Enterococcus faecalis. Infect Immun 2021;89:e0034321. [PMID: 34424752 DOI: 10.1128/IAI.00343-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Subbanna A, Rajasekhara H, Stanley J, Mishra K, Pattanayak A. Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biology and Biochemistry 2018;116:52-66. [DOI: 10.1016/j.soilbio.2017.09.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 4.8] [Reference Citation Analysis]
104 Zhang D, Xu DH, Qiu J, Rasmussen-Ivey CR, Liles MR, Beck BH. Chitin degradation and utilization by virulent Aeromonas hydrophila strain ML10-51K. Arch Microbiol 2017;199:573-9. [PMID: 28032191 DOI: 10.1007/s00203-016-1326-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
105 Giubergia S, Phippen C, Gotfredsen CH, Nielsen KF, Gram L. Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae. Appl Environ Microbiol 2016;82:4035-44. [PMID: 27129958 DOI: 10.1128/AEM.00730-16] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]