BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bridges R, Correia S, Wegner F, Venturini C, Palser A, White RE, Kellam P, Breuer J, Farrell PJ. Essential role of inverted repeat in Epstein-Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos Trans R Soc Lond B Biol Sci 2019;374:20180299. [PMID: 30955492 DOI: 10.1098/rstb.2018.0299] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Romero-Masters JC, Huebner SM, Ohashi M, Bristol JA, Benner BE, Barlow EA, Turk GL, Nelson SE, Baiu DC, Van Sciver N, Ranheim EA, Gumperz J, Sherer NM, Farrell PJ, Johannsen EC, Kenney SC. B cells infected with Type 2 Epstein-Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection. PLoS Pathog 2020;16:e1008365. [PMID: 32059024 DOI: 10.1371/journal.ppat.1008365] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
2 Wongwiwat W, Fournier B, Bassano I, Bayoumy A, Elgueta Karstegl C, Styles C, Bridges R, Lenoir C, BoutBoul D, Moshous D, Neven B, Kanda T, Morgan RG, White RE, Latour S, Farrell PJ. Epstein-Barr Virus Genome Deletions in Epstein-Barr Virus-Positive T/NK Cell Lymphoproliferative Diseases. J Virol 2022;:e0039422. [PMID: 35612313 DOI: 10.1128/jvi.00394-22] [Reference Citation Analysis]
3 Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2021;111:135-47. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
4 Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1’s Love–Hate Relationship with the Kissing Virus. IJMS 2022;23:3079. [DOI: 10.3390/ijms23063079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Bartas M, Brázda V, Bohálová N, Cantara A, Volná A, Stachurová T, Malachová K, Jagelská EB, Porubiaková O, Červeň J, Pečinka P. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles. Front Microbiol 2020;11:1583. [PMID: 32719673 DOI: 10.3389/fmicb.2020.01583] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
6 Xue WQ, Wang TM, Huang JW, Zhang JB, He YQ, Wu ZY, Liao Y, Yuan LL, Mu J, Jia WH. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol 2021;7:veab010. [PMID: 34567789 DOI: 10.1093/ve/veab010] [Reference Citation Analysis]
7 Goswami P, Bartas M, Lexa M, Bohálová N, Volná A, Červeň J, Červeňová V, Pečinka P, Špunda V, Fojta M, Brázda V. SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Brief Bioinform 2021;22:1338-45. [PMID: 33341900 DOI: 10.1093/bib/bbaa385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Andrews RJ, O'Leary CA, Moss WN. A survey of RNA secondary structural propensity encoded within human herpesvirus genomes: global comparisons and local motifs. PeerJ 2020;8:e9882. [PMID: 32974099 DOI: 10.7717/peerj.9882] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yin C, Yau SS. Inverted repeats in coronavirus SARS-CoV-2 genome manifest the evolution events. J Theor Biol 2021;530:110885. [PMID: 34478743 DOI: 10.1016/j.jtbi.2021.110885] [Reference Citation Analysis]
10 Farrell PJ, White RE. Do Epstein–Barr Virus Mutations and Natural Genome Sequence Variations Contribute to Disease? Biomolecules 2022;12:17. [DOI: 10.3390/biom12010017] [Reference Citation Analysis]
11 Liao HM, Liu H, Chin PJ, Li B, Hung GC, Tsai S, Otim I, Legason ID, Ogwang MD, Reynolds SJ, Kerchan P, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Ayers LW, Pfeiffer RM, Bhatia K, Goedert JJ, Lo SC, Mbulaiteye SM. Epstein-Barr Virus in Burkitt Lymphoma in Africa Reveals a Limited Set of Whole Genome and LMP-1 Sequence Patterns: Analysis of Archival Datasets and Field Samples From Uganda, Tanzania, and Kenya. Front Oncol 2022;12:812224. [PMID: 35340265 DOI: 10.3389/fonc.2022.812224] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wegner F, Lassalle F, Depledge DP, Balloux F, Breuer J. Co-evolution of sites under immune selection shapes Epstein-Barr Virus population structure. Mol Biol Evol 2019:msz152. [PMID: 31273385 DOI: 10.1093/molbev/msz152] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
13 Alizon S, Bravo IG, Farrell PJ, Roberts S. Towards a multi-level and a multi-disciplinary approach to DNA oncovirus virulence. Philos Trans R Soc Lond B Biol Sci 2019;374:20190041. [PMID: 30955496 DOI: 10.1098/rstb.2019.0041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol 2021;61:180-202. [PMID: 33460172 DOI: 10.1002/jobm.202000537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
15 Blazquez AC, Berenstein AJ, Torres C, Izquierdo A, Lezama C, Moscatelli G, De Matteo EN, Lorenzetti MA, Preciado MV. Comprehensive Evolutionary Analysis of Complete Epstein-Barr Virus Genomes from Argentina and Other Geographies. Viruses 2021;13:1172. [PMID: 34207433 DOI: 10.3390/v13061172] [Reference Citation Analysis]