BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV. Peptidyl–Prolyl Isomerase Activity in Chloroplast Thylakoid Lumen is a Dispensable Function of Immunophilins in Arabidopsis thaliana. Plant and Cell Physiology 2009;50:1801-14. [DOI: 10.1093/pcp/pcp122] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Gollan PJ, Bhave M, Aro EM. The FKBP families of higher plants: Exploring the structures and functions of protein interaction specialists. FEBS Lett 2012;586:3539-47. [PMID: 22982859 DOI: 10.1016/j.febslet.2012.09.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
2 Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. Front Plant Sci 2016;7:168. [PMID: 26909098 DOI: 10.3389/fpls.2016.00168] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 9.0] [Reference Citation Analysis]
3 Gollan PJ, Ziemann M, Bhave M. PPIase activities and interaction partners of FK506-binding proteins in the wheat thylakoid. Physiologia Plantarum 2011;143:385-95. [DOI: 10.1111/j.1399-3054.2011.01503.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
4 Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F, Rochaix JD, Vener AV, Goldschmidt-Clermont M. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc Natl Acad Sci U S A 2010;107:4782-7. [PMID: 20176943 DOI: 10.1073/pnas.0913810107] [Cited by in Crossref: 170] [Cited by in F6Publishing: 170] [Article Influence: 14.2] [Reference Citation Analysis]
5 Hall M, Mishra Y, Schröder WP. Preparation of stroma, thylakoid membrane, and lumen fractions from Arabidopsis thaliana chloroplasts for proteomic analysis. Methods Mol Biol 2011;775:207-22. [PMID: 21863445 DOI: 10.1007/978-1-61779-237-3_11] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
6 Tomašić Paić A, Fulgosi H. Chloroplast immunophilins. Protoplasma 2016;253:249-58. [PMID: 25963286 DOI: 10.1007/s00709-015-0828-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
7 Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J Exp Bot 2015;66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 5.8] [Reference Citation Analysis]
8 Ingelsson B, Vener AV. Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16. FEBS Letters 2012;586:1265-71. [DOI: 10.1016/j.febslet.2012.03.061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
9 Kim SK, You YN, Park JC, Joung Y, Kim BG, Ahn JC, Cho HS. The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Rep 2012;31:417-26. [PMID: 22041789 DOI: 10.1007/s00299-011-1176-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
10 Vasudevan D, Gopalan G, Kumar A, Garcia VJ, Luan S, Swaminathan K. Plant immunophilins: a review of their structure-function relationship. Biochim Biophys Acta 2015;1850:2145-58. [PMID: 25529299 DOI: 10.1016/j.bbagen.2014.12.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
11 Skagia A, Vezyri E, Grados K, Venieraki A, Karpusas M, Katinakis P, Dimou M. Structure-Function Analysis of the Periplasmic Escherichia coli Cyclophilin PpiA in Relation to Biofilm Formation. J Mol Microbiol Biotechnol 2017;27:228-36. [PMID: 28889121 DOI: 10.1159/000478858] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
12 Di Carli M, Villani ME, Bianco L, Lombardi R, Perrotta G, Benvenuto E, Donini M. Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. J Proteome Res 2010;9:5684-97. [PMID: 20815412 DOI: 10.1021/pr100487x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
13 Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. In: Biswal B, Krupinska K, Biswal UC, editors. Plastid Development in Leaves during Growth and Senescence. Dordrecht: Springer Netherlands; 2013. pp. 73-100. [DOI: 10.1007/978-94-007-5724-0_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
14 Kang ZH, Wang GX. Redox regulation in the thylakoid lumen. J Plant Physiol 2016;192:28-37. [PMID: 26812087 DOI: 10.1016/j.jplph.2015.12.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gregory JA, Mayfield SP. Developing inexpensive malaria vaccines from plants and algae. Appl Microbiol Biotechnol 2014;98:1983-90. [DOI: 10.1007/s00253-013-5477-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
16 Vasudevan D, Fu A, Luan S, Swaminathan K. Crystal structure of Arabidopsis cyclophilin38 reveals a previously uncharacterized immunophilin fold and a possible autoinhibitory mechanism. Plant Cell 2012;24:2666-74. [PMID: 22706283 DOI: 10.1105/tpc.111.093781] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
17 Gollan PJ, Bhave M. A thylakoid-localised FK506-binding protein in wheat may be linked to chloroplast biogenesis. Plant Physiology and Biochemistry 2010;48:655-62. [DOI: 10.1016/j.plaphy.2010.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
18 Rowland JG, Simon WJ, Prakash JSS, Slabas AR. Proteomics Reveals a Role for the RNA Helicase crhR in the Modulation of Multiple Metabolic Pathways during Cold Acclimation of Synechocystis sp. PCC6803. J Proteome Res 2011;10:3674-89. [DOI: 10.1021/pr200299t] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
19 Shapiguzov A, Chai X, Fucile G, Longoni P, Zhang L, Rochaix JD. Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex. Plant Physiol 2016;171:82-92. [PMID: 26941194 DOI: 10.1104/pp.15.01893] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
20 Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 2010;10:253. [PMID: 21087465 DOI: 10.1186/1471-2229-10-253] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 4.5] [Reference Citation Analysis]
21 Parsons HT, Drakakaki G, Heazlewood JL. Proteomic dissection of the Arabidopsis Golgi and trans-Golgi network. Front Plant Sci 2012;3:298. [PMID: 23316206 DOI: 10.3389/fpls.2012.00298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
22 Heinnickel ML, Grossman AR. The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions. Photosynth Res 2013;116:427-36. [DOI: 10.1007/s11120-013-9882-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
23 Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J. Bioinformatic and expression analysis of the Brassica napus L. cyclophilins. Sci Rep 2017;7:1514. [PMID: 28473712 DOI: 10.1038/s41598-017-01596-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
24 Shi L, Du L, Wen J, Zong X, Zhao W, Wang J, Xu M, Wang Y, Fu A. Conserved Residues in the C-Terminal Domain Affect the Structure and Function of CYP38 in Arabidopsis. Front Plant Sci 2021;12:630644. [PMID: 33732275 DOI: 10.3389/fpls.2021.630644] [Reference Citation Analysis]
25 Hao Y, Chu J, Shi L, Ma C, Hui L, Cao X, Wang Y, Xu M, Fu A. Identification of interacting proteins of Arabidopsis cyclophilin38 (AtCYP38) via multiple screening approaches reveals its possible broad functions in chloroplasts. J Plant Physiol 2021;264:153487. [PMID: 34358944 DOI: 10.1016/j.jplph.2021.153487] [Reference Citation Analysis]
26 Jung H, Jo SH, Park HJ, Lee A, Kim HS, Lee HJ, Cho HS. Golgi-localized cyclophilin 21 proteins negatively regulate ABA signalling via the peptidyl prolyl isomerase activity during early seedling development. Plant Mol Biol 2020;102:19-38. [PMID: 31786704 DOI: 10.1007/s11103-019-00928-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Seok MS, You YN, Park HJ, Lee SS, Aigen F, Luan S, Ahn JC, Cho HS. AtFKBP16-1, a chloroplast lumenal immunophilin, mediates response to photosynthetic stress by regulating PsaL stability. Physiol Plant 2014;150:620-31. [PMID: 24124981 DOI: 10.1111/ppl.12116] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]