BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mészáros B, Erdős G, Szabó B, Schád É, Tantos Á, Abukhairan R, Horváth T, Murvai N, Kovács OP, Kovács M, Tosatto SCE, Tompa P, Dosztányi Z, Pancsa R. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res 2020;48:D360-7. [PMID: 31612960 DOI: 10.1093/nar/gkz848] [Cited by in Crossref: 23] [Cited by in F6Publishing: 31] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Mukherjee P, Panda P, Kasturi P. A comparative meta-analysis of membraneless organelle-associated proteins with age related proteome of C. elegans. Cell Stress Chaperones 2022. [PMID: 36169889 DOI: 10.1007/s12192-022-01299-5] [Reference Citation Analysis]
2 Cai H, Vernon RM, Forman-kay JD. An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions. Biomolecules 2022;12:1131. [DOI: 10.3390/biom12081131] [Reference Citation Analysis]
3 Badaczewska-dawid AE, Uversky VN, Potoyan DA. BIAPSS: A Comprehensive Physicochemical Analyzer of Proteins Undergoing Liquid–Liquid Phase Separation. IJMS 2022;23:6204. [DOI: 10.3390/ijms23116204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Huang Q, Wang Y, Liu Z, Lai L. The Regulatory Roles of Intrinsically Disordered Linker in VRN1-DNA Phase Separation. Int J Mol Sci 2022;23:4594. [PMID: 35562982 DOI: 10.3390/ijms23094594] [Reference Citation Analysis]
5 Chu X, Sun T, Li Q, Xu Y, Zhang Z, Lai L, Pei J. Prediction of liquid-liquid phase separating proteins using machine learning. BMC Bioinformatics 2022;23:72. [PMID: 35168563 DOI: 10.1186/s12859-022-04599-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 14.0] [Reference Citation Analysis]
6 Sołtys K, Ożyhar A. Transcription Regulators and Membraneless Organelles Challenges to Investigate Them. Int J Mol Sci 2021;22:12758. [PMID: 34884563 DOI: 10.3390/ijms222312758] [Reference Citation Analysis]
7 Currie SL, Rosen MK. Using quantitative reconstitution to investigate multicomponent condensates. RNA 2022;28:27-35. [PMID: 34772789 DOI: 10.1261/rna.079008.121] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Gao Z, Zhang W, Chang R, Zhang S, Yang G, Zhao G. Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells. Front Microbiol 2021;12:751880. [PMID: 34759902 DOI: 10.3389/fmicb.2021.751880] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Paiz EA, Allen JH, Correia JJ, Fitzkee NC, Hough LE, Whitten ST. Beta turn propensity and a model polymer scaling exponent identify intrinsically disordered phase-separating proteins. J Biol Chem 2021;297:101343. [PMID: 34710373 DOI: 10.1016/j.jbc.2021.101343] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Lichtinger SM, Garaizar A, Collepardo-Guevara R, Reinhardt A. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence. PLoS Comput Biol 2021;17:e1009328. [PMID: 34428231 DOI: 10.1371/journal.pcbi.1009328] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Orti F, Navarro AM, Rabinovich A, Wodak SJ, Marino-Buslje C. Insight into membraneless organelles and their associated proteins: Drivers, Clients and Regulators. Comput Struct Biotechnol J 2021;19:3964-77. [PMID: 34377363 DOI: 10.1016/j.csbj.2021.06.042] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
12 Nomoto A, Nishinami S, Shiraki K. Solubility Parameters of Amino Acids on Liquid-Liquid Phase Separation and Aggregation of Proteins. Front Cell Dev Biol 2021;9:691052. [PMID: 34222258 DOI: 10.3389/fcell.2021.691052] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Dettori LG, Torrejon D, Chakraborty A, Dutta A, Mohamed M, Papp C, Kuznetsov VA, Sung P, Feng W, Bah A. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Front Mol Biosci 2021;8:691694. [PMID: 34179096 DOI: 10.3389/fmolb.2021.691694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ahmed J, Meszaros A, Lazar T, Tompa P. DNA-binding domain as the minimal region driving RNA-dependent liquid-liquid phase separation of androgen receptor. Protein Sci 2021;30:1380-92. [PMID: 33938068 DOI: 10.1002/pro.4100] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
15 Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. Int J Mol Sci 2021;22:3017. [PMID: 33809541 DOI: 10.3390/ijms22063017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
16 Shen B, Chen Z, Yu C, Chen T, Shi M, Li T. Computational Screening of Phase-separating Proteins. Genomics Proteomics Bioinformatics 2021;19:13-24. [PMID: 33610793 DOI: 10.1016/j.gpb.2020.11.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 King JT, Shakya A. Phase separation of DNA: From past to present. Biophys J 2021;120:1139-49. [PMID: 33582138 DOI: 10.1016/j.bpj.2021.01.033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
18 Miné-Hattab J, Heltberg M, Villemeur M, Guedj C, Mora T, Walczak AM, Dahan M, Taddei A. Single molecule microscopy reveals key physical features of repair foci in living cells. Elife 2021;10:e60577. [PMID: 33543712 DOI: 10.7554/eLife.60577] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
19 Piovesan D, Necci M, Escobedo N, Monzon AM, Hatos A, Mičetić I, Quaglia F, Paladin L, Ramasamy P, Dosztányi Z, Vranken WF, Davey NE, Parisi G, Fuxreiter M, Tosatto SCE. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res 2021;49:D361-7. [PMID: 33237329 DOI: 10.1093/nar/gkaa1058] [Cited by in Crossref: 15] [Cited by in F6Publishing: 54] [Article Influence: 15.0] [Reference Citation Analysis]
20 Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci U S A 2020;117:33254-62. [PMID: 33318217 DOI: 10.1073/pnas.2007670117] [Cited by in Crossref: 24] [Cited by in F6Publishing: 58] [Article Influence: 12.0] [Reference Citation Analysis]
21 Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020;21:E9045. [PMID: 33260713 DOI: 10.3390/ijms21239045] [Cited by in Crossref: 12] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
22 Harami GM, Kovács ZJ, Pancsa R, Pálinkás J, Baráth V, Tárnok K, Málnási-Csizmadia A, Kovács M. Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions. Proc Natl Acad Sci U S A 2020;117:26206-17. [PMID: 33020264 DOI: 10.1073/pnas.2000761117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
23 Li Q, Wang X, Dou Z, Yang W, Huang B, Lou J, Zhang Z. Protein Databases Related to Liquid-Liquid Phase Separation. Int J Mol Sci 2020;21:E6796. [PMID: 32947964 DOI: 10.3390/ijms21186796] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
24 Bianchi G, Longhi S, Grandori R, Brocca S. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci. 2020;21. [PMID: 32867340 DOI: 10.3390/ijms21176208] [Cited by in Crossref: 12] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
25 Monzon AM, Necci M, Quaglia F, Walsh I, Zanotti G, Piovesan D, Tosatto SCE. Experimentally Determined Long Intrinsically Disordered Protein Regions Are Now Abundant in the Protein Data Bank. Int J Mol Sci 2020;21:E4496. [PMID: 32599863 DOI: 10.3390/ijms21124496] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
26 Rigden DJ, Fernández XM. The 27th annual Nucleic Acids Research database issue and molecular biology database collection. Nucleic Acids Res 2020;48:D1-8. [PMID: 31906604 DOI: 10.1093/nar/gkz1161] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
27 Quiroz FG, Fiore VF, Levorse J, Polak L, Wong E, Pasolli HA, Fuchs E. Liquid-liquid phase separation drives skin barrier formation. Science 2020;367:eaax9554. [PMID: 32165560 DOI: 10.1126/science.aax9554] [Cited by in Crossref: 62] [Cited by in F6Publishing: 79] [Article Influence: 31.0] [Reference Citation Analysis]
28 Khramushin A, Marcu O, Alam N, Shimony O, Padhorny D, Brini E, Dill KA, Vajda S, Kozakov D, Schueler-Furman O. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45. Proteins 2020;88:1037-49. [PMID: 31891416 DOI: 10.1002/prot.25871] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
29 Shakya A, Park S, Rana N, King JT. Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization. Biophys J 2020;118:753-64. [PMID: 31952807 DOI: 10.1016/j.bpj.2019.12.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 48] [Article Influence: 11.3] [Reference Citation Analysis]
30 Mészáros B, Dobson L, Fichó E, Simon I. Sequence and Structure Properties Uncover the Natural Classification of Protein Complexes Formed by Intrinsically Disordered Proteins via Mutual Synergistic Folding. Int J Mol Sci 2019;20:E5460. [PMID: 31683980 DOI: 10.3390/ijms20215460] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Tarczewska A, Greb-Markiewicz B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int J Mol Sci 2019;20:E5306. [PMID: 31653121 DOI: 10.3390/ijms20215306] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
32 Kiss-Tóth A, Dobson L, Péterfia B, Ángyán AF, Ligeti B, Lukács G, Gáspári Z. Occurrence of Ordered and Disordered Structural Elements in Postsynaptic Proteins Supports Optimization for Interaction Diversity. Entropy (Basel) 2019;21:E761. [PMID: 33267475 DOI: 10.3390/e21080761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
33 [DOI: 10.1101/842336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
34 [DOI: 10.1101/2020.10.21.348532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]