BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vilaboa N, Boré A, Martin-Saavedra F, Bayford M, Winfield N, Firth-Clark S, Kirton SB, Voellmy R. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. Nucleic Acids Res 2017;45:5797-817. [PMID: 28369544 DOI: 10.1093/nar/gkx194] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Kose S, Imai K, Watanabe A, Nakai A, Suzuki Y, Imamoto N. Lack of Hikeshi activates HSF1 activity under normal conditions and disturbs the heat-shock response. Life Sci Alliance 2022;5:e202101241. [PMID: 35580988 DOI: 10.26508/lsa.202101241] [Reference Citation Analysis]
2 Isermann T, Şener ÖÇ, Stender A, Klemke L, Winkler N, Neesse A, Li J, Wegwitz F, Moll UM, Schulz-Heddergott R. Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity. Nat Commun 2021;12:4019. [PMID: 34188043 DOI: 10.1038/s41467-021-24064-1] [Reference Citation Analysis]
3 Polidano J, Vankadari N, Price JT, Wilce JA. Detailed protocol for optimised expression and purification of functional monomeric human Heat Shock Factor 1. Protein Expr Purif 2020;176:105722. [PMID: 32768454 DOI: 10.1016/j.pep.2020.105722] [Reference Citation Analysis]
4 Xiong J, Li Y, Tan X, Fu L. Small Heat Shock Proteins in Cancers: Functions and Therapeutic Potential for Cancer Therapy. Int J Mol Sci 2020;21:E6611. [PMID: 32927696 DOI: 10.3390/ijms21186611] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
5 Zhang Z, Xue ST, Gao Y, Li Y, Zhou Z, Wang J, Li Z, Liu Z. Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer. Cell Death Discov 2022;8:280. [PMID: 35680842 DOI: 10.1038/s41420-022-01070-w] [Reference Citation Analysis]
6 Sharma C, Seo YH. Small Molecule Inhibitors of HSF1-Activated Pathways as Potential Next-Generation Anticancer Therapeutics. Molecules 2018;23:E2757. [PMID: 30356024 DOI: 10.3390/molecules23112757] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
7 Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021;1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Muñoz JM, Ackerman A, Calderwood SK. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells 2020;9:E1046. [PMID: 32331382 DOI: 10.3390/cells9041046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
9 Scutigliani EM, Liang Y, Crezee H, Kanaar R, Krawczyk PM. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021;13:1243. [PMID: 33808973 DOI: 10.3390/cancers13061243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Li N, Wang T, Li Z, Ye X, Deng B, Zhuo S, Yao P, Yang M, Mei H, Chen X, Zhu T, Chen S, Wang H, Wang J, Le Y. Dorsomorphin induces cancer cell apoptosis and sensitizes cancer cells to HSP90 and proteasome inhibitors by reducing nuclear heat shock factor 1 levels. Cancer Biol Med 2019;16:220-33. [PMID: 31516744 DOI: 10.20892/j.issn.2095-3941.2018.0235] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Voellmy R, Bloom DC, Vilaboa N. Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines. Vaccines (Basel) 2020;8:E230. [PMID: 32443425 DOI: 10.3390/vaccines8020230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022;12:860320. [PMID: 35311075 DOI: 10.3389/fonc.2022.860320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Velayutham M, Cardounel AJ, Liu Z, Ilangovan G. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists. Front Oncol 2018;8:97. [PMID: 29682483 DOI: 10.3389/fonc.2018.00097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
14 Nikotina AD, Koludarova L, Komarova EY, Mikhaylova ER, Aksenov ND, Suezov R, Kartzev VG, Margulis BA, Guzhova IV. Discovery and optimization of cardenolides inhibiting HSF1 activation in human colon HCT-116 cancer cells. Oncotarget 2018;9:27268-79. [PMID: 29930764 DOI: 10.18632/oncotarget.25545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
15 Sebastian RM, Shoulders MD. Chemical Biology Framework to Illuminate Proteostasis. Annu Rev Biochem 2020;89:529-55. [PMID: 32097570 DOI: 10.1146/annurev-biochem-013118-111552] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
16 Li H, Zhang W, Niu C, Lin C, Wu X, Jian Y, Li Y, Ye L, Dai Y, Ouyang Y, Chen J, Qiu J, Song L, Zhang Y. Nuclear orphan receptor NR2F6 confers cisplatin resistance in epithelial ovarian cancer cells by activating the Notch3 signaling pathway. Int J Cancer 2019;145:1921-34. [PMID: 30895619 DOI: 10.1002/ijc.32293] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
17 Shyu P Jr, Wong XFA, Crasta K, Thibault G. Dropping in on lipid droplets: insights into cellular stress and cancer.Biosci Rep. 2018;38. [PMID: 30111611 DOI: 10.1042/BSR20180764] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
18 Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother 2021;142:112074. [PMID: 34426258 DOI: 10.1016/j.biopha.2021.112074] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Carpenter RL, Gökmen-Polar Y. HSF1 as a Cancer Biomarker and Therapeutic Target. Curr Cancer Drug Targets 2019;19:515-24. [PMID: 30338738 DOI: 10.2174/1568009618666181018162117] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
20 Kijima T, Prince T, Neckers L, Koga F, Fujii Y. Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress. Expert Opin Ther Targets 2019;23:369-77. [PMID: 30931649 DOI: 10.1080/14728222.2019.1602119] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
21 Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018;23:E1479. [PMID: 29921764 DOI: 10.3390/molecules23061479] [Cited by in Crossref: 110] [Cited by in F6Publishing: 89] [Article Influence: 27.5] [Reference Citation Analysis]
22 Fok JHL, Hedayat S, Zhang L, Aronson LI, Mirabella F, Pawlyn C, Bright MD, Wardell CP, Keats JJ, De Billy E, Rye CS, Chessum NEA, Jones K, Morgan GJ, Eccles SA, Workman P, Davies FE. HSF1 Is Essential for Myeloma Cell Survival and A Promising Therapeutic Target. Clin Cancer Res 2018;24:2395-407. [PMID: 29391353 DOI: 10.1158/1078-0432.CCR-17-1594] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
23 Xu B, Li X, Gao X, Jia Y, Liu J, Li F, Zhang Z. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data. Brief Bioinform 2021:bbab469. [PMID: 34875002 DOI: 10.1093/bib/bbab469] [Reference Citation Analysis]
24 Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2021. [PMID: 34478606 DOI: 10.1111/febs.16178] [Reference Citation Analysis]
25 Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019;9:E60. [PMID: 31878360 DOI: 10.3390/cells9010060] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
26 Forouzanfar F, Barreto G, Majeed M, Sahebkar A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. BioFactors 2019;45:631-40. [DOI: 10.1002/biof.1522] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
27 Merikhian P, Ghadirian R, Farahmand L, Mansouri S, Majidzadeh-a K. MUC1 induces tamoxifen resistance in estrogen receptor-positive breast cancer. Expert Review of Anticancer Therapy 2017;17:607-13. [DOI: 10.1080/14737140.2017.1340837] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
28 Wang G, Cao P, Fan Y, Tan K. Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochim Biophys Acta Rev Cancer 2020;1874:188390. [PMID: 32653364 DOI: 10.1016/j.bbcan.2020.188390] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Wang X, Ji C, Zhang H, Shan Y, Ren Y, Hu Y, Shi L, Guo L, Zhu W, Xia Y, Liu B, Rong Z, Wu B, Ming Z, Ren X, Song J, Yang J, Zhang Y. Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents. J Biol Chem 2019;294:10006-17. [PMID: 31101655 DOI: 10.1074/jbc.RA119.007664] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
30 Dong B, Jaeger AM, Thiele DJ. Inhibiting Heat Shock Factor 1 in Cancer: A Unique Therapeutic Opportunity. Trends Pharmacol Sci 2019;40:986-1005. [PMID: 31727393 DOI: 10.1016/j.tips.2019.10.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
31 Alasady MJ, Mendillo ML. The Multifaceted Role of HSF1 in Tumorigenesis. Adv Exp Med Biol 2020;1243:69-85. [PMID: 32297212 DOI: 10.1007/978-3-030-40204-4_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Hang K, Ye C, Chen E, Zhang W, Xue D, Pan Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones 2018;23:1153-64. [PMID: 30187197 DOI: 10.1007/s12192-018-0932-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
33 Chatterjee S, Burns TF. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci. 2017;18:E1978. [PMID: 28914774 DOI: 10.3390/ijms18091978] [Cited by in Crossref: 191] [Cited by in F6Publishing: 164] [Article Influence: 38.2] [Reference Citation Analysis]
34 Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021:S0968-0004(21)00230-9. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
35 Xu A, Zhang J, Zuo L, Yan H, Chen L, Zhao F, Fan F, Xu J, Zhang B, Zhang Y, Yin X, Cheng Q, Gao S, Deng J, Mei H, Huang Z, Sun C, Hu Y. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner. Mol Ther 2021:S1525-0016(21)00648-1. [PMID: 34915192 DOI: 10.1016/j.ymthe.2021.12.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Chen BC, Tu SL, Zheng BA, Dong QJ, Wan ZA, Dai QQ. Schizandrin A exhibits potent anticancer activity in colorectal cancer cells by inhibiting heat shock factor 1. Biosci Rep 2020;40:BSR20200203. [PMID: 32110802 DOI: 10.1042/BSR20200203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]