BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res 2017;45:6023-36. [PMID: 28334758 DOI: 10.1093/nar/gkx135] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
Number Citing Articles
1 Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet 2021;41:100424. [PMID: 34757287 DOI: 10.1016/j.dmpk.2021.100424] [Reference Citation Analysis]
2 Roy B. Effects of mRNA Modifications on Translation: An Overview. Methods Mol Biol 2021;2298:327-56. [PMID: 34085254 DOI: 10.1007/978-1-0716-1374-0_20] [Reference Citation Analysis]
3 Miller JB, Siegwart DJ. Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing. Nano Res 2018;11:5310-37. [DOI: 10.1007/s12274-018-2099-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
4 Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Cent Sci 2021;7:512-33. [PMID: 34056083 DOI: 10.1021/acscentsci.1c00120] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 24.0] [Reference Citation Analysis]
5 Harvey R, Dezi V, Pizzinga M, Willis AE. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem Soc Trans 2017;45:1007-14. [PMID: 28710288 DOI: 10.1042/BST20160364] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
6 Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol 2020. [PMID: 32638114 DOI: 10.1007/82_2020_220] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Hadas Y, Sultana N, Youssef E, Sharkar MTK, Kaur K, Chepurko E, Zangi L. Optimizing Modified mRNA In Vitro Synthesis Protocol for Heart Gene Therapy. Mol Ther Methods Clin Dev 2019;14:300-5. [PMID: 31508439 DOI: 10.1016/j.omtm.2019.07.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
8 Melamed JR, Hajj KA, Chaudhary N, Strelkova D, Arral ML, Pardi N, Alameh MG, Miller JB, Farbiak L, Siegwart DJ, Weissman D, Whitehead KA. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release 2021;341:206-14. [PMID: 34801660 DOI: 10.1016/j.jconrel.2021.11.022] [Reference Citation Analysis]
9 Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018;29:3072-83. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
10 Carlsson L, Clarke JC, Yen C, Gregoire F, Albery T, Billger M, Egnell AC, Gan LM, Jennbacken K, Johansson E, Linhardt G, Martinsson S, Sadiq MW, Witman N, Wang QD, Chen CH, Wang YP, Lin S, Ticho B, Hsieh PCH, Chien KR, Fritsche-Danielson R. Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection 1 Week Post-myocardial Infarction in Swine. Mol Ther Methods Clin Dev 2018;9:330-46. [PMID: 30038937 DOI: 10.1016/j.omtm.2018.04.003] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 13.0] [Reference Citation Analysis]
11 Nakanishi H. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells. Life (Basel) 2021;11:1192. [PMID: 34833067 DOI: 10.3390/life11111192] [Reference Citation Analysis]
12 Morais P, Adachi H, Yu YT. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front Cell Dev Biol 2021;9:789427. [PMID: 34805188 DOI: 10.3389/fcell.2021.789427] [Reference Citation Analysis]
13 Nakanishi H, Saito H. Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only delivery. Nat Commun 2020;11:1297. [PMID: 32157083 DOI: 10.1038/s41467-020-15061-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020;160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Arya S, Lin Q, Zhou N, Gao X, Huang JD. Strong Immune Responses Induced by Direct Local Injections of Modified mRNA-Lipid Nanocomplexes. Mol Ther Nucleic Acids 2020;19:1098-109. [PMID: 32059336 DOI: 10.1016/j.omtn.2019.12.044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther 2019;27:710-28. [PMID: 30846391 DOI: 10.1016/j.ymthe.2019.02.012] [Cited by in Crossref: 207] [Cited by in F6Publishing: 187] [Article Influence: 69.0] [Reference Citation Analysis]
17 Yu AM, Tu MJ. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol Ther 2021;:107967. [PMID: 34403681 DOI: 10.1016/j.pharmthera.2021.107967] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Martini PGV, Guey LT. A New Era for Rare Genetic Diseases: Messenger RNA Therapy. Hum Gene Ther 2019;30:1180-9. [PMID: 31179759 DOI: 10.1089/hum.2019.090] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
19 Karalė K, Bollmark M, Stulz R, Honcharenko D, Tedebark U, Strömberg R. A Study on Synthesis and Upscaling of 2'-O-AECM-5-methyl Pyrimidine Phosphoramidites for Oligonucleotide Synthesis. Molecules 2021;26:6927. [PMID: 34834019 DOI: 10.3390/molecules26226927] [Reference Citation Analysis]
20 Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration In Vivo. Mol Cell. 2019;74:508-520.e4. [PMID: 30902547 DOI: 10.1016/j.molcel.2019.02.015] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 23.7] [Reference Citation Analysis]
21 Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022;7:292-323. [PMID: 34466734 DOI: 10.1016/j.bioactmat.2021.05.038] [Reference Citation Analysis]
22 Croce S, Serdjukow S, Carell T, Frischmuth T. Chemoenzymatic Preparation of Functional Click-Labeled Messenger RNA. Chembiochem 2020;21:1641-6. [PMID: 31943671 DOI: 10.1002/cbic.201900718] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
23 Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020;72:862-98. [PMID: 32929000 DOI: 10.1124/pr.120.019554] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
24 Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021;179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mathlin J, Le Pera L, Colombo T. A Census and Categorization Method of Epitranscriptomic Marks. Int J Mol Sci 2020;21:E4684. [PMID: 32630140 DOI: 10.3390/ijms21134684] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
26 Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 2019;47:3-14. [PMID: 30462291 DOI: 10.1093/nar/gky1163] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 16.3] [Reference Citation Analysis]
27 Mauger DM, Cabral BJ, Presnyak V, Su SV, Reid DW, Goodman B, Link K, Khatwani N, Reynders J, Moore MJ, McFadyen IJ. mRNA structure regulates protein expression through changes in functional half-life. Proc Natl Acad Sci U S A 2019;116:24075-83. [PMID: 31712433 DOI: 10.1073/pnas.1908052116] [Cited by in Crossref: 69] [Cited by in F6Publishing: 66] [Article Influence: 23.0] [Reference Citation Analysis]
28 Lv X, Liu X, Zhao M, Wu H, Zhang W, Lu Q, Chen X. RNA Methylation in Systemic Lupus Erythematosus. Front Cell Dev Biol 2021;9:696559. [PMID: 34307373 DOI: 10.3389/fcell.2021.696559] [Reference Citation Analysis]
29 Svitkin YV, Gingras AC, Sonenberg N. Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs. Nucleic Acids Res 2021:gkab1241. [PMID: 34933339 DOI: 10.1093/nar/gkab1241] [Reference Citation Analysis]
30 Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol Ther 2019;27:757-72. [PMID: 30803823 DOI: 10.1016/j.ymthe.2019.01.020] [Cited by in Crossref: 113] [Cited by in F6Publishing: 104] [Article Influence: 37.7] [Reference Citation Analysis]
31 Wang P, Perche F, Logeart-avramoglou D, Pichon C. RNA-based therapy for osteogenesis. International Journal of Pharmaceutics 2019;569:118594. [DOI: 10.1016/j.ijpharm.2019.118594] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Toki N, Takahashi H, Zucchelli S, Gustincich S, Carninci P. Synthetic in vitro transcribed lncRNAs (SINEUPs) with chemical modifications enhance target mRNA translation. FEBS Lett 2020;594:4357-69. [PMID: 33012004 DOI: 10.1002/1873-3468.13928] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Peer E, Moshitch-Moshkovitz S, Rechavi G, Dominissini D. The Epitranscriptome in Translation Regulation. Cold Spring Harb Perspect Biol 2019;11:a032623. [PMID: 30037968 DOI: 10.1101/cshperspect.a032623] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
34 Deal CE, Carfi A, Plante OJ. Advancements in mRNA Encoded Antibodies for Passive Immunotherapy. Vaccines (Basel) 2021;9:108. [PMID: 33572679 DOI: 10.3390/vaccines9020108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Sahu I, Haque AKMA, Weidensee B, Weinmann P, Kormann MSD. Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019;27:803-23. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
36 Jeeva S, Kim KH, Shin CH, Wang BZ, Kang SM. An Update on mRNA-Based Viral Vaccines. Vaccines (Basel) 2021;9:965. [PMID: 34579202 DOI: 10.3390/vaccines9090965] [Reference Citation Analysis]
37 Kashida S, Wang DO, Saito H, Gueroui Z. Nanoparticle-based local translation reveals mRNA as a translation-coupled scaffold with anchoring function. Proc Natl Acad Sci U S A 2019;116:13346-51. [PMID: 31217293 DOI: 10.1073/pnas.1900310116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Lin TY, Mehta R, Glatt S. Pseudouridines in RNAs: switching atoms means shifting paradigms. FEBS Lett 2021;595:2310-22. [PMID: 34468991 DOI: 10.1002/1873-3468.14188] [Reference Citation Analysis]
39 Parr CJC, Wada S, Kotake K, Kameda S, Matsuura S, Sakashita S, Park S, Sugiyama H, Kuang Y, Saito H. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res 2020;48:e35. [PMID: 32090264 DOI: 10.1093/nar/gkaa070] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
40 Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1657. [PMID: 32672007 DOI: 10.1002/wnan.1657] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
41 Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 2017;9:60. [PMID: 28655327 DOI: 10.1186/s13073-017-0450-0] [Cited by in Crossref: 295] [Cited by in F6Publishing: 284] [Article Influence: 59.0] [Reference Citation Analysis]
42 Gampe C, White ACS, Siva S, Zécri F, Diener J. 3'-Modification stabilizes mRNA and increases translation in cells. Bioorg Med Chem Lett 2018;28:2451-3. [PMID: 29907393 DOI: 10.1016/j.bmcl.2018.06.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Joo Y, Benavides DR. Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021;22:2811. [PMID: 33802132 DOI: 10.3390/ijms22062811] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Van Hoecke L, Verbeke R, Dewitte H, Lentacker I, Vermaelen K, Breckpot K, Van Lint S. mRNA in cancer immunotherapy: beyond a source of antigen. Mol Cancer 2021;20:48. [PMID: 33658037 DOI: 10.1186/s12943-021-01329-3] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
45 Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018;17:751-67. [DOI: 10.1038/nrd.2018.132] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 17.5] [Reference Citation Analysis]
46 Strzelecka D, Smietanski M, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. RNA 2020;26:1815-37. [PMID: 32820035 DOI: 10.1261/rna.077099.120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019;25:91-112. [PMID: 29661055 DOI: 10.1089/ten.TEA.2017.0444] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
48 Xu Y, Huang L, Kirschman JL, Vanover DA, Tiwari PM, Santangelo PJ, Shen X, Russell DG. Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. J Immunol 2019;202:608-17. [PMID: 30541883 DOI: 10.4049/jimmunol.1800924] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
49 Starostina EV, Sharabrin SV, Antropov DN, Stepanov GA, Shevelev GY, Lemza AE, Rudometov AP, Borgoyakova MB, Rudometova NB, Marchenko VY, Danilchenko NV, Chikaev AN, Bazhan SI, Ilyichev AA, Karpenko LI. Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines (Basel) 2021;9:452. [PMID: 34063689 DOI: 10.3390/vaccines9050452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Lyu X, Yang Q, Zhao F, Liu Y. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Nucleic Acids Res 2021;49:9404-23. [PMID: 34417614 DOI: 10.1093/nar/gkab729] [Reference Citation Analysis]
51 Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Lett 2020;20:1578-89. [PMID: 31951421 DOI: 10.1021/acs.nanolett.9b04246] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 29.5] [Reference Citation Analysis]
52 Jansson-Löfmark R, Ahlström C, Gennemark P. ADME: Assessing Pharmacokinetic-Pharmacodynamic Parameters of Oligonucleotides. Methods Mol Biol 2019;2036:317-39. [PMID: 31410806 DOI: 10.1007/978-1-4939-9670-4_19] [Reference Citation Analysis]
53 Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021;131:1-15. [PMID: 34133982 DOI: 10.1016/j.actbio.2021.06.020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Van der Jeught K, De Koker S, Bialkowski L, Heirman C, Tjok Joe P, Perche F, Maenhout S, Bevers S, Broos K, Deswarte K, Malard V, Hammad H, Baril P, Benvegnu T, Jaffrès PA, Kooijmans SAA, Schiffelers R, Lienenklaus S, Midoux P, Pichon C, Breckpot K, Thielemans K. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS Nano 2018;12:9815-29. [PMID: 30256609 DOI: 10.1021/acsnano.8b00966] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
55 Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021;7:51. [PMID: 34564313 DOI: 10.3390/ncrna7030051] [Reference Citation Analysis]
56 Nakanishi H, Saito H. Purification of Specific Cell Populations Differentiated from Stem Cells Using MicroRNA-Responsive Synthetic Messenger RNAs. Methods Mol Biol 2021;2312:73-86. [PMID: 34228285 DOI: 10.1007/978-1-0716-1441-9_5] [Reference Citation Analysis]
57 Pederson T. A layperson encounter, on the "modified" RNA world. Proc Natl Acad Sci U S A 2021;118:e2110706118. [PMID: 34737200 DOI: 10.1073/pnas.2110706118] [Reference Citation Analysis]
58 Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel F, Murray J, Sadhwani H, Vanderheyden B, Finn MG, Brinton MA, Lafontaine ER, Hogan RJ, Zurla C, Santangelo PJ. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol 2021;39:717-26. [PMID: 33536629 DOI: 10.1038/s41587-021-00822-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
59 Lockhart J, Canfield J, Mong EF, VanWye J, Totary-Jain H. Nucleotide Modification Alters MicroRNA-Dependent Silencing of MicroRNA Switches. Mol Ther Nucleic Acids 2019;14:339-50. [PMID: 30665183 DOI: 10.1016/j.omtn.2018.12.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
60 Dhaliwal HK, Fan Y, Kim J, Amiji MM. Intranasal Delivery and Transfection of mRNA Therapeutics in the Brain Using Cationic Liposomes. Mol Pharm 2020;17:1996-2005. [PMID: 32365295 DOI: 10.1021/acs.molpharmaceut.0c00170] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
61 Magadum A, Kaur K, Zangi L. mRNA-Based Protein Replacement Therapy for the Heart. Mol Ther 2019;27:785-93. [PMID: 30611663 DOI: 10.1016/j.ymthe.2018.11.018] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
62 Luxán G, Dimmeler S. The vasculature: a therapeutic target in heart failure? Cardiovasc Res 2021:cvab047. [PMID: 33620071 DOI: 10.1093/cvr/cvab047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís MÁ, Del Pozo-Rodríguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials (Basel) 2020;10:E364. [PMID: 32093140 DOI: 10.3390/nano10020364] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 16.5] [Reference Citation Analysis]
64 Nakanishi H, Yoshii T, Kawasaki S, Hayashi K, Tsutsui K, Oki C, Tsukiji S, Saito H. Light-controllable RNA-protein devices for translational regulation of synthetic mRNAs in mammalian cells. Cell Chem Biol 2021;28:662-674.e5. [PMID: 33508227 DOI: 10.1016/j.chembiol.2021.01.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Steinle H, Weber M, Behring A, Mau-Holzmann U, von Ohle C, Popov AF, Schlensak C, Wendel HP, Avci-Adali M. Reprogramming of Urine-Derived Renal Epithelial Cells into iPSCs Using srRNA and Consecutive Differentiation into Beating Cardiomyocytes. Mol Ther Nucleic Acids. 2019;17:907-921. [PMID: 31476669 DOI: 10.1016/j.omtn.2019.07.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
66 [DOI: 10.1101/2020.04.24.060418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Rijkers GT, Weterings N, Obregon-Henao A, Lepolder M, Dutt TS, van Overveld FJ, Henao-Tamayo M. Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (Basel) 2021;9:848. [PMID: 34451973 DOI: 10.3390/vaccines9080848] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Sayers EJ, Peel SE, Schantz A, England RM, Beano M, Bates SM, Desai AS, Puri S, Ashford MB, Jones AT. Endocytic Profiling of Cancer Cell Models Reveals Critical Factors Influencing LNP-Mediated mRNA Delivery and Protein Expression. Mol Ther 2019;27:1950-62. [PMID: 31427168 DOI: 10.1016/j.ymthe.2019.07.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
69 Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun 2020;11:6080. [PMID: 33247092 DOI: 10.1038/s41467-020-19486-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
70 Nance KD, Meier JL. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent Sci 2021;7:748-56. [PMID: 34075344 DOI: 10.1021/acscentsci.1c00197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
71 Ohno H, Akamine S, Saito H. Synthetic mRNA-Based Systems in Mammalian Cells. Adv Biosyst 2020;4:e1900247. [PMID: 32402126 DOI: 10.1002/adbi.201900247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Okay S, Özge Özcan Ö, Karahan M; 1 Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey, 2 Department of Molecular Neuroscience, Institute of Health Sciences, Üsküdar University, Istanbul, Turkey, 3 Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, Istanbul, Turkey. . AIMS Biophysics 2020;7:323-38. [DOI: 10.3934/biophy.2020023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
73 Mu X, Hur S. Immunogenicity of In Vitro-Transcribed RNA. Acc Chem Res 2021;54:4012-23. [PMID: 34677064 DOI: 10.1021/acs.accounts.1c00521] [Reference Citation Analysis]
74 Gergen J, Petsch B. mRNA-Based Vaccines and Mode of Action. Curr Top Microbiol Immunol 2021. [PMID: 33591423 DOI: 10.1007/82_2020_230] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Chu JM, Ye TT, Ma CJ, Lan MD, Liu T, Yuan BF, Feng YQ. Existence of Internal N7-Methylguanosine Modification in mRNA Determined by Differential Enzyme Treatment Coupled with Mass Spectrometry Analysis. ACS Chem Biol 2018;13:3243-50. [PMID: 29313662 DOI: 10.1021/acschembio.7b00906] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]