BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 2015;43:3764-75. [PMID: 25779044 DOI: 10.1093/nar/gkv205] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Leen EN, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, Xu Y, Graham SC, Matthews SJ, Goodfellow IG, Curry S. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog 2016;12:e1005379. [PMID: 26734730 DOI: 10.1371/journal.ppat.1005379] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
2 Smirnova VV, Shestakova ED, Nogina DS, Mishchenko PA, Prikazchikova TA, Zatsepin TS, Kulakovskiy IV, Shatsky IN, Terenin IM. Ribosomal leaky scanning through a translated uORF requires eIF4G2. Nucleic Acids Res 2022:gkab1286. [PMID: 35018467 DOI: 10.1093/nar/gkab1286] [Reference Citation Analysis]
3 Bryant JD, Brown MC, Dobrikov MI, Dobrikova EY, Gemberling SL, Zhang Q, Gromeier M. Regulation of Hypoxia-Inducible Factor 1α during Hypoxia by DAP5-Induced Translation of PHD2. Mol Cell Biol 2018;38:e00647-17. [PMID: 29530922 DOI: 10.1128/MCB.00647-17] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
4 Shi Y, Jia X, Xu J. The new function of circRNA: translation. Clin Transl Oncol 2020;22:2162-9. [PMID: 32449127 DOI: 10.1007/s12094-020-02371-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, Ainbinder E, Saada A, Bialik S, Kimchi A. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev 2016;30:1991-2004. [PMID: 27664238 DOI: 10.1101/gad.285239.116] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
6 Bera A, Lewis SM. Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. Int J Mol Sci 2020;21:E4075. [PMID: 32517298 DOI: 10.3390/ijms21114075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018;43:882-95. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
8 Berlivet S, Scutenaire J, Deragon JM, Bousquet-Antonelli C. Readers of the m6A epitranscriptomic code. Biochim Biophys Acta Gene Regul Mech 2019;1862:329-42. [PMID: 30660758 DOI: 10.1016/j.bbagrm.2018.12.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
9 Zhang X, Shu XE, Qian SB. O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nat Chem Biol 2018;14:909-16. [PMID: 30127386 DOI: 10.1038/s41589-018-0120-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
10 Haizel SA, Bhardwaj U, Gonzalez RL Jr, Mitra S, Goss DJ. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem 2020;295:11693-706. [PMID: 32571876 DOI: 10.1074/jbc.RA120.013678] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Hantelys F, Godet AC, David F, Tatin F, Renaud-Gabardos E, Pujol F, Diallo LH, Ader I, Ligat L, Henras AK, Sato Y, Parini A, Lacazette E, Garmy-Susini B, Prats AC. Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation in early hypoxia. Elife 2019;8:e50094. [PMID: 31815666 DOI: 10.7554/eLife.50094] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
12 Kearse MG, Wilusz JE. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev 2017;31:1717-31. [PMID: 28982758 DOI: 10.1101/gad.305250.117] [Cited by in Crossref: 159] [Cited by in F6Publishing: 126] [Article Influence: 31.8] [Reference Citation Analysis]
13 Hanson PJ, Ye X, Qiu Y, Zhang HM, Hemida MG, Wang F, Lim T, Gu A, Cho B, Kim H, Fung G, Granville DJ, Yang D. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes. Cell Death Differ 2016;23:828-40. [PMID: 26586572 DOI: 10.1038/cdd.2015.145] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
14 Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Wiley Interdiscip Rev RNA 2018;9:e1473. [PMID: 29624880 DOI: 10.1002/wrna.1473] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 11.5] [Reference Citation Analysis]
15 Takahashi K, Jeong D, Wang S, Narita M, Jin X, Iwasaki M, Perli SD, Conklin BR, Yamanaka S. Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Rep 2020;31:107715. [PMID: 32492424 DOI: 10.1016/j.celrep.2020.107715] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
16 Gabut M, Bourdelais F, Durand S. Ribosome and Translational Control in Stem Cells. Cells 2020;9:E497. [PMID: 32098201 DOI: 10.3390/cells9020497] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
17 Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats AC. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci 2019;20:E924. [PMID: 30791615 DOI: 10.3390/ijms20040924] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
18 Lee KM, Chen CJ, Shih SR. Regulation Mechanisms of Viral IRES-Driven Translation. Trends Microbiol 2017;25:546-61. [PMID: 28242053 DOI: 10.1016/j.tim.2017.01.010] [Cited by in Crossref: 76] [Cited by in F6Publishing: 67] [Article Influence: 15.2] [Reference Citation Analysis]
19 Alard A, Marboeuf C, Fabre B, Jean C, Martineau Y, Lopez F, Vende P, Poncet D, Schneider RJ, Bousquet C, Pyronnet S. Differential Regulation of the Three Eukaryotic mRNA Translation Initiation Factor (eIF) 4Gs by the Proteasome. Front Genet 2019;10:254. [PMID: 30984242 DOI: 10.3389/fgene.2019.00254] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
20 Dave P, George B, Raheja H, Rani P, Behera P, Das S. The mammalian host protein DAP5 facilitates the initial round of translation of Coxsackievirus B3 RNA. J Biol Chem 2019;294:15386-94. [PMID: 31455634 DOI: 10.1074/jbc.RA119.009000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
21 Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. Wiley Interdiscip Rev RNA 2018;:e1480. [PMID: 29722158 DOI: 10.1002/wrna.1480] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
22 Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017;74:1659-80. [PMID: 27913822 DOI: 10.1007/s00018-016-2428-2] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 10.2] [Reference Citation Analysis]
23 Zheng GZ, Li W, Liu ZY. Alternative role of noncoding RNAs: coding and noncoding properties. J Zhejiang Univ Sci B 2019;20:920-7. [PMID: 31595728 DOI: 10.1631/jzus.B1900336] [Reference Citation Analysis]
24 Chassé H, Boulben S, Cormier P, Morales J. Translational Control of Canonical and Non-Canonical Translation Initiation Factors at the Sea Urchin Egg to Embryo Transition. Int J Mol Sci 2019;20:E626. [PMID: 30717141 DOI: 10.3390/ijms20030626] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017;27:626-41. [PMID: 28281539 DOI: 10.1038/cr.2017.31] [Cited by in Crossref: 683] [Cited by in F6Publishing: 681] [Article Influence: 136.6] [Reference Citation Analysis]
26 Goodman LD, Prudencio M, Srinivasan AR, Rifai OM, Lee VM, Petrucelli L, Bonini NM. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun 2019;7:62. [PMID: 31023341 DOI: 10.1186/s40478-019-0711-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
27 Shrivastava R, Tupperwar N, Schwartz B, Baron N, Shapira M. LeishIF4E-5 Is a Promastigote-Specific Cap-Binding Protein in Leishmania. Int J Mol Sci 2021;22:3979. [PMID: 33921489 DOI: 10.3390/ijms22083979] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Li LJ, Leng RX, Fan YG, Pan HF, Ye DQ. Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res. 2017;361:1-8. [PMID: 29031633 DOI: 10.1016/j.yexcr.2017.10.010] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 11.6] [Reference Citation Analysis]
29 de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ. A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun 2018;9:3068. [PMID: 30076308 DOI: 10.1038/s41467-018-05539-0] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 13.5] [Reference Citation Analysis]
30 Lynch CJ, Kimball SR, Xu Y, Salzberg AC, Kawasawa YI. Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover. Physiol Genomics 2015;47:569-80. [PMID: 26351290 DOI: 10.1152/physiolgenomics.00055.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
31 Sharma DK, Bressler K, Patel H, Balasingam N, Thakor N. Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016;2016:8235121. [PMID: 28083147 DOI: 10.1155/2016/8235121] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
32 Chen TM, Lai MC, Li YH, Chan YL, Wu CH, Wang YM, Chien CW, Huang SY, Sun HS, Tsai SJ. hnRNPM induces translation switch under hypoxia to promote colon cancer development. EBioMedicine 2019;41:299-309. [PMID: 30852162 DOI: 10.1016/j.ebiom.2019.02.059] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
33 Tahmasebi S, Amiri M, Sonenberg N. Translational Control in Stem Cells. Front Genet 2018;9:709. [PMID: 30697227 DOI: 10.3389/fgene.2018.00709] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
34 Lyabin DN, Ovchinnikov LP. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein. Sci Rep 2016;6:22502. [PMID: 26931209 DOI: 10.1038/srep22502] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
35 Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, Du WW, Yang BB. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 2019;26:2758-73. [PMID: 31092884 DOI: 10.1038/s41418-019-0337-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
36 Li X, Zhu Q, Shi X, Cheng Y, Li X, Xu H, Duan X, Hsieh-Wilson LC, Chu J, Pelletier J, Ni M, Zheng Z, Li S, Yi W. O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis. Proc Natl Acad Sci U S A 2019;116:7857-66. [PMID: 30940748 DOI: 10.1073/pnas.1813026116] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
37 Chekulaeva M, Rajewsky N. Roles of Long Noncoding RNAs and Circular RNAs in Translation. Cold Spring Harb Perspect Biol 2019;11:a032680. [PMID: 30082465 DOI: 10.1101/cshperspect.a032680] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
38 Bukhari SI, Vasudevan S. FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biol 2017;14:137-45. [PMID: 27911187 DOI: 10.1080/15476286.2016.1265197] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
39 Lacerda R, Menezes J, Candeias MM. Alternative Mechanisms of mRNA Translation Initiation in Cellular Stress Response and Cancer. Adv Exp Med Biol 2019;1157:117-32. [PMID: 31342440 DOI: 10.1007/978-3-030-19966-1_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Wang LY, Cui JJ, Guo CX, Yin JY. A New Way to Discover IRESs in Pathology or Stress Conditions? Harnessing Latest High-Throughput Technologies. Bioessays 2020;42:e1900180. [PMID: 31909834 DOI: 10.1002/bies.201900180] [Reference Citation Analysis]
41 Xu Y, Huangyang P, Wang Y, Xue L, Devericks E, Nguyen HG, Yu X, Oses-Prieto JA, Burlingame AL, Miglani S, Goodarzi H, Ruggero D. ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell 2021;184:5215-5229.e17. [PMID: 34559986 DOI: 10.1016/j.cell.2021.08.036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
42 Meyer KD. m6A-mediated translation regulation. Biochim Biophys Acta Gene Regul Mech 2019;1862:301-9. [PMID: 30342175 DOI: 10.1016/j.bbagrm.2018.10.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
43 Peischard S, Ho HT, Piccini I, Strutz-Seebohm N, Röpke A, Liashkovich I, Gosain H, Rieger B, Klingel K, Eggers B, Marcus K, Linke WA, Müller FU, Ludwig S, Greber B, Busch K, Seebohm G. The first versatile human iPSC-based model of ectopic virus induction allows new insights in RNA-virus disease. Sci Rep 2020;10:16804. [PMID: 33033381 DOI: 10.1038/s41598-020-72966-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. Wiley Interdiscip Rev RNA 2021;12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]