BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiong X, Du Z, Wang Y, Feng Z, Fan P, Yan C, Willers H, Zhang J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 2015;43:1659-70. [PMID: 25586219 DOI: 10.1093/nar/gku1406] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Foertsch F, Szambowska A, Weise A, Zielinski A, Schlott B, Kraft F, Mrasek K, Borgmann K, Pospiech H, Grosse F, Melle C. S100A11 plays a role in homologous recombination and genome maintenance by influencing the persistence of RAD51 in DNA repair foci. Cell Cycle 2016;15:2766-79. [PMID: 27590262 DOI: 10.1080/15384101.2016.1220457] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
2 Caracciolo D, Riillo C, Di Martino MT, Tagliaferri P, Tassone P. Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel. Cancers (Basel) 2021;13:1392. [PMID: 33808562 DOI: 10.3390/cancers13061392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Tahseen D, Rady PL, Tyring SK. Human polyomavirus modulation of the host DNA damage response. Virus Genes 2020;56:128-35. [PMID: 31997082 DOI: 10.1007/s11262-020-01736-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys 2021. [PMID: 34426981 DOI: 10.1002/mp.15184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 2018;293:10536-46. [PMID: 29530982 DOI: 10.1074/jbc.TM117.000375] [Cited by in Crossref: 94] [Cited by in F6Publishing: 68] [Article Influence: 23.5] [Reference Citation Analysis]
6 Sinha S, Villarreal D, Shim EY, Lee SE. Risky business: Microhomology-mediated end joining. Mutat Res 2016;788:17-24. [PMID: 26790771 DOI: 10.1016/j.mrfmmm.2015.12.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
7 Nelson CB, Alturki TM, Luxton JJ, Taylor LE, Maranon DG, Muraki K, Murnane JP, Bailey SM. Telomeric Double Strand Breaks in G1 Human Cells Facilitate Formation of 5' C-Rich Overhangs and Recruitment of TERRA. Front Genet 2021;12:644803. [PMID: 33841503 DOI: 10.3389/fgene.2021.644803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021;11:1487. [PMID: 34680120 DOI: 10.3390/biom11101487] [Reference Citation Analysis]
9 Kohutova A, Raška J, Kruta M, Seneklova M, Barta T, Fojtik P, Jurakova T, Walter CA, Hampl A, Dvorak P, Rotrekl V. Ligase 3–mediated end‐joining maintains genome stability of human embryonic stem cells. FASEB j 2019;33:6778-88. [DOI: 10.1096/fj.201801877rr] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020;9:E1657. [PMID: 32660124 DOI: 10.3390/cells9071657] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
11 Woods ML, Barnes CP. Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair. PLoS Comput Biol 2016;12:e1005131. [PMID: 27741226 DOI: 10.1371/journal.pcbi.1005131] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Lakshmanan LN, Yee Z, Halliwell B, Gruber J, Gunawan R. Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints. iScience 2021;24:102138. [PMID: 33665557 DOI: 10.1016/j.isci.2021.102138] [Reference Citation Analysis]
13 Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T, Tanaka K. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 2016;17:979. [PMID: 27894274 DOI: 10.1186/s12864-016-3331-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 7.5] [Reference Citation Analysis]
14 Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res 2018;809:81-7. [PMID: 28754468 DOI: 10.1016/j.mrfmmm.2017.07.002] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 18.4] [Reference Citation Analysis]
15 Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 2016;11:118-33. [PMID: 26678082 DOI: 10.1038/nprot.2015.140] [Cited by in Crossref: 178] [Cited by in F6Publishing: 165] [Article Influence: 25.4] [Reference Citation Analysis]
16 Suberbielle E, Djukic B, Evans M, Kim DH, Taneja P, Wang X, Finucane M, Knox J, Ho K, Devidze N, Masliah E, Mucke L. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat Commun 2015;6:8897. [PMID: 26615780 DOI: 10.1038/ncomms9897] [Cited by in Crossref: 96] [Cited by in F6Publishing: 89] [Article Influence: 13.7] [Reference Citation Analysis]
17 Labarbe R, Hotoiu L, Barbier J, Favaudon V. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother Oncol 2020;153:303-10. [PMID: 32534957 DOI: 10.1016/j.radonc.2020.06.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
18 Alcaraz Silva B, Jones TJ, Murnane JP. Differences in the recruitment of DNA repair proteins at subtelomeric and interstitial I-SceI endonuclease-induced DNA double-strand breaks. DNA Repair (Amst) 2017;49:1-8. [PMID: 27842255 DOI: 10.1016/j.dnarep.2016.10.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Marin PA, Obonaga R, Pavani RS, da Silva MS, de Araujo CB, Lima AA, Avila CC, Cestari I, Machado CR, Elias MC. ATR Kinase Is a Crucial Player Mediating the DNA Damage Response in Trypanosoma brucei. Front Cell Dev Biol 2020;8:602956. [PMID: 33415107 DOI: 10.3389/fcell.2020.602956] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Suchánková J, Kozubek S, Legartová S, Sehnalová P, Küntziger T, Bártová E. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci: Distinct kinetics of DNA repair proteins. Biol Cell 2015;107:440-54. [DOI: 10.1111/boc.201500050] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
21 Popp HD, Naumann N, Brendel S, Henzler T, Weiss C, Hofmann WK, Fabarius A. Increase of DNA damage and alteration of the DNA damage response in myelodysplastic syndromes and acute myeloid leukemias. Leuk Res 2017;57:112-8. [PMID: 28359030 DOI: 10.1016/j.leukres.2017.03.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
22 Anand SK, Sharma A, Singh N, Kakkar P. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst) 2020;86:102748. [PMID: 31790874 DOI: 10.1016/j.dnarep.2019.102748] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
23 Saha T, Sundaravinayagam D, Di Virgilio M. Charting a DNA Repair Roadmap for Immunoglobulin Class Switch Recombination. Trends Biochem Sci 2021;46:184-99. [PMID: 33250286 DOI: 10.1016/j.tibs.2020.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021;13:3130. [PMID: 34201502 DOI: 10.3390/cancers13133130] [Reference Citation Analysis]
25 Popp HD, Flach J, Brendel S, Ruppenthal S, Kleiner H, Seifarth W, Schneider S, Schulze TJ, Weiss C, Wenz F, Hofmann W, Fabarius A. Accumulation of DNA damage and alteration of the DNA damage response in monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. Leukemia & Lymphoma 2019;60:795-804. [DOI: 10.1080/10428194.2018.1498494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
26 Willers H, Gheorghiu L, Liu Q, Efstathiou JA, Wirth LJ, Krause M, von Neubeck C. DNA Damage Response Assessments in Human Tumor Samples Provide Functional Biomarkers of Radiosensitivity. Semin Radiat Oncol 2015;25:237-50. [PMID: 26384272 DOI: 10.1016/j.semradonc.2015.05.007] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 6.4] [Reference Citation Analysis]
27 Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021;9:708763. [PMID: 34322492 DOI: 10.3389/fcell.2021.708763] [Reference Citation Analysis]
28 Popp HD, Kohl V, Naumann N, Flach J, Brendel S, Kleiner H, Weiss C, Seifarth W, Saussele S, Hofmann WK, Fabarius A. DNA Damage and DNA Damage Response in Chronic Myeloid Leukemia. Int J Mol Sci 2020;21:E1177. [PMID: 32053969 DOI: 10.3390/ijms21041177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Mirza-aghazadeh-attari M, Mohammadzadeh A, Yousefi B, Mihanfar A, Karimian A, Majidinia M. 53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair 2019;73:110-9. [DOI: 10.1016/j.dnarep.2018.11.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
30 Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, Noordermeer SM, Seclen E, Wilson MD, Vorobyov A, Munro M, Ernst A, Ng TF, Cho T, Cannon PM, Sidhu SS, Sicheri F, Durocher D. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 2018;36:95-102. [PMID: 29176614 DOI: 10.1038/nbt.4021] [Cited by in Crossref: 103] [Cited by in F6Publishing: 90] [Article Influence: 20.6] [Reference Citation Analysis]
31 Michelena J, Pellegrino S, Spegg V, Altmeyer M. Replicated chromatin curtails 53BP1 recruitment in BRCA1-proficient and BRCA1-deficient cells. Life Sci Alliance 2021;4:e202101023. [PMID: 33811064 DOI: 10.26508/lsa.202101023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Curik N, Polivkova V, Burda P, Koblihova J, Laznicka A, Kalina T, Kanderova V, Brezinova J, Ransdorfova S, Karasova D, Rejlova K, Bakardjieva M, Kuzilkova D, Kundrat D, Linhartova J, Klamova H, Salek C, Klener P, Hrusak O, Machova Polakova K. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Front Oncol 2021;11:744373. [PMID: 34616685 DOI: 10.3389/fonc.2021.744373] [Reference Citation Analysis]
33 Liu L, Cai S, Han C, Banerjee A, Wu D, Cui T, Xie G, Zhang J, Zhang X, McLaughlin E, Yin M, Backes FJ, Chakravarti A, Zheng Y, Wang QE. ALDH1A1 Contributes to PARP Inhibitor Resistance via Enhancing DNA Repair in BRCA2-/- Ovarian Cancer Cells. Mol Cancer Ther 2020;19:199-210. [PMID: 31534014 DOI: 10.1158/1535-7163.MCT-19-0242] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
34 Padella A, Ghelli Luserna Di Rorà A, Marconi G, Ghetti M, Martinelli G, Simonetti G. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022;15. [DOI: 10.1186/s13045-022-01228-0] [Reference Citation Analysis]
35 Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020;13:E18. [PMID: 33374540 DOI: 10.3390/cancers13010018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
36 Boussios S, Karathanasi A, Cooke D, Neille C, Sadauskaite A, Moschetta M, Zakynthinakis-Kyriakou N, Pavlidis N. PARP Inhibitors in Ovarian Cancer: The Route to "Ithaca". Diagnostics (Basel) 2019;9:E55. [PMID: 31109041 DOI: 10.3390/diagnostics9020055] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
37 Kan C, Zhang J. BRCA1 Mutation: A Predictive Marker for Radiation Therapy? Int J Radiat Oncol Biol Phys 2015;93:281-93. [PMID: 26383678 DOI: 10.1016/j.ijrobp.2015.05.037] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
38 Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017;60:9932-59. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
39 Shanbhag NM, Evans MD, Mao W, Nana AL, Seeley WW, Adame A, Rissman RA, Masliah E, Mucke L. Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease. Acta Neuropathol Commun 2019;7:77. [PMID: 31101070 DOI: 10.1186/s40478-019-0723-5] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 17.3] [Reference Citation Analysis]