BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008;36:5123-38. [PMID: 18676453 DOI: 10.1093/nar/gkn493] [Cited by in Crossref: 259] [Cited by in F6Publishing: 235] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Nishiyama K, Mori K, Takezawa Y, Shionoya M. Metal-responsive reversible binding of triplex-forming oligonucleotides with 5-hydroxyuracil nucleobases. Chem Commun (Camb) 2021;57:2487-90. [PMID: 33616595 DOI: 10.1039/d1cc00553g] [Reference Citation Analysis]
2 de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012;40:10596-613. [PMID: 23002135 DOI: 10.1093/nar/gks863] [Cited by in Crossref: 114] [Cited by in F6Publishing: 102] [Article Influence: 11.4] [Reference Citation Analysis]
3 Beck A, Vijayanathan V, Thomas T, Thomas TJ. Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT). Biochimie 2013;95:1310-8. [PMID: 23454377 DOI: 10.1016/j.biochi.2013.02.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
4 He S, Zhang H, Liu H, Zhu H. LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics 2015;31:178-86. [PMID: 25262155 DOI: 10.1093/bioinformatics/btu643] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 7.1] [Reference Citation Analysis]
5 Hari Y, Ijitsu S, Akabane-Nakata M, Yoshida T, Obika S. Kinetic study of the binding of triplex-forming oligonucleotides containing partial cationic modifications to double-stranded DNA. Bioorg Med Chem Lett 2014;24:3046-9. [PMID: 24865415 DOI: 10.1016/j.bmcl.2014.05.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
6 Barman J, Gurav D, Oommen OP, Varghese OP. 2′-N-Guanidino,4′-C-ethylene bridged thymidine (GENA-T) modified oligonucleotide exhibits triplex formation with excellent enzymatic stability. RSC Adv 2015;5:12257-60. [DOI: 10.1039/c4ra14721a] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
7 Hari Y, Kashima S, Inohara H, Ijitsu S, Imanishi T, Obika S. Base-pair recognition ability of hydroxyphenyl nucleobases in parallel triplex DNA. Tetrahedron 2013;69:6381-91. [DOI: 10.1016/j.tet.2013.05.107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
8 Brown ZZ, Müller MM, Kong HE, Lewis PW, Muir TW. Targeted Histone Peptides: Insights into the Spatial Regulation of the Methyltransferase PRC2 by using a Surrogate of Heterotypic Chromatin. Angew Chem 2015;127:6557-61. [DOI: 10.1002/ange.201500085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
9 Emehiser RG, Hrdlicka PJ. Chimeric γPNA-Invader probes: using intercalator-functionalized oligonucleotides to enhance the DNA-targeting properties of γPNA. Org Biomol Chem 2020;18:1359-68. [PMID: 31984413 DOI: 10.1039/c9ob02726b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Chen C, Song G, Yang X, Ren J, Qu X. A gold nanoparticle-based strategy for label-free and colorimetric screening of DNA triplex binders. Biochimie 2010;92:1416-21. [DOI: 10.1016/j.biochi.2010.07.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
11 Karmakar S, Madsen AS, Guenther DC, Gibbons BC, Hrdlicka PJ. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2'-alkylated RNA monomers. Org Biomol Chem 2014;12:7758-73. [PMID: 25144705 DOI: 10.1039/c4ob01183j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
12 Liang Y, Mao J, Bong D. Synthetic bPNAs as allosteric triggers of hammerhead ribozyme catalysis. Methods Enzymol 2019;623:151-75. [PMID: 31239045 DOI: 10.1016/bs.mie.2019.04.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
13 Greifenstein AA, Jo S, Bierhoff H. RNA:DNA triple helices: from peculiar structures to pervasive chromatin regulators. Essays Biochem 2021:EBC20200089. [PMID: 33835128 DOI: 10.1042/EBC20200089] [Reference Citation Analysis]
14 Szabat M, Pedzinski T, Czapik T, Kierzek E, Kierzek R. Structural Aspects of the Antiparallel and Parallel Duplexes Formed by DNA, 2'-O-Methyl RNA and RNA Oligonucleotides. PLoS One 2015;10:e0143354. [PMID: 26579720 DOI: 10.1371/journal.pone.0143354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
15 Karmakar S, Horrocks T, Gibbons BC, Guenther DC, Emehiser R, Hrdlicka PJ. Synthesis and biophysical characterization of oligonucleotides modified with O2'-alkylated RNA monomers featuring substituted pyrene moieties. Org Biomol Chem 2019;17:609-21. [PMID: 30575837 DOI: 10.1039/c8ob02764a] [Reference Citation Analysis]
16 Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A, Nguyen CH, Zain R, Lee JS, Wu Y. A distinct triplex DNA unwinding activity of ChlR1 helicase. J Biol Chem 2015;290:5174-89. [PMID: 25561740 DOI: 10.1074/jbc.M114.634923] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
17 Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. Spectrochim Acta A Mol Biomol Spectrosc 2014;120:257-64. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chen Z, Zhang H, Ma X, Lin Z, Zhang L, Chen G. A novel fluorescent reagent for recognition of triplex DNA with high specificity and selectivity. Analyst 2015;140:7742-7. [PMID: 26456316 DOI: 10.1039/c5an01852h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
19 Doluca O, Boutorine AS, Filichev VV. Triplex-Forming Twisted Intercalating Nucleic Acids (TINAs): Design Rules, Stabilization of Antiparallel DNA Triplexes and Inhibition of G-Quartet-Dependent Self-Association. ChemBioChem 2011;12:2365-74. [DOI: 10.1002/cbic.201100354] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
20 Chatterjee PK, Shakes LA, Wolf HM, Mujalled MA, Zhou C, Hatcher C, Norford DC. Identifying Distal cis-acting Gene-Regulatory Sequences by Expressing BACs Functionalized with loxP-Tn10 Transposons in Zebrafish. RSC Adv 2013;3:8604-17. [PMID: 24772295 DOI: 10.1039/C3RA40332G] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
21 Sau SP, Madsen AS, Podbevsek P, Andersen NK, Kumar TS, Andersen S, Rathje RL, Anderson BA, Guenther DC, Karmakar S, Kumar P, Plavec J, Wengel J, Hrdlicka PJ. Identification and characterization of second-generation invader locked nucleic acids (LNAs) for mixed-sequence recognition of double-stranded DNA. J Org Chem 2013;78:9560-70. [PMID: 24032477 DOI: 10.1021/jo4015936] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
22 Taniguchi Y, Okamura H, Fujino N, Sasaki S. Synthesis of 1′-phenyl-2′-OMe ribose analogues connecting the thymine base at the 1′ position through a flexible linker for the formation of a stable anti-parallel triplex DNA. Tetrahedron 2013;69:600-6. [DOI: 10.1016/j.tet.2012.11.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Lou C, Christensen NJ, Martos-Maldonado MC, Midtgaard SR, Ejlersen M, Thulstrup PW, Sørensen KK, Jensen KJ, Wengel J. Folding Topology of a Short Coiled-Coil Peptide Structure Templated by an Oligonucleotide Triplex. Chemistry 2017;23:9297-305. [PMID: 28383784 DOI: 10.1002/chem.201700971] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
24 Rhoden Smith A, Iverson BL. Threading polyintercalators with extremely slow dissociation rates and extended DNA binding sites. J Am Chem Soc 2013;135:12783-9. [PMID: 23919778 DOI: 10.1021/ja4057344] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
25 Hrdlicka PJ, Karmakar S. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science. Org Biomol Chem 2017;15:9760-74. [PMID: 29135014 DOI: 10.1039/c7ob02152f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Fatthalla MI, Elkholy YM, Abbas NS, Mandour AH, Jørgensen PT, Bomholt N, Pedersen EB. Conjugation of a 3-(1H-phenanthro[9,10-d]imidazol-2-yl)-1H-indole intercalator to a triplex oligonucleotide and to a three-way junction. Bioorg Med Chem 2012;20:207-14. [PMID: 22154560 DOI: 10.1016/j.bmc.2011.11.013] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
27 Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Targeting 24 bp within Telomere Repeat Sequences with Tandem Tetramer Pyrrole–Imidazole Polyamide Probes. J Am Chem Soc 2016;138:14100-7. [DOI: 10.1021/jacs.6b09023] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
28 Luzzietti N, Brutzer H, Klaue D, Schwarz FW, Staroske W, Clausing S, Seidel R. Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res 2011;39:e15. [PMID: 21071409 DOI: 10.1093/nar/gkq1004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
29 Sato T, Sato Y, Nishizawa S. Spectroscopic, thermodynamic and kinetic analysis of selective triplex formation by peptide nucleic acid with double-stranded RNA over its DNA counterpart. Biopolymers 2021;:e23474. [PMID: 34478151 DOI: 10.1002/bip.23474] [Reference Citation Analysis]
30 Li Z, Zhao W, Wang M, Zhou X. The Role of Long Noncoding RNAs in Gene Expression Regulation. In: Vlachakis D, editor. Gene Expression Profiling in Cancer. IntechOpen; 2019. [DOI: 10.5772/intechopen.81773] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
31 Zhu P, Ding Y, Guo R. Coil-globule structure transition and binding characteristics of DNA molecules induced by isoquinoline-based photoactive ionic liquid surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;531:150-63. [DOI: 10.1016/j.colsurfa.2017.07.082] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
32 Kaushik S, Kaushik M, Svinarchuk F, Malvy C, Fermandjian S, Kukreti S. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target. Biochemistry 2011;50:4132-42. [PMID: 21381700 DOI: 10.1021/bi1012589] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
33 Lohani N, Rajeswari MR. Preferential binding of anticancer drugs to triplex DNA compared to duplex DNA: a spectroscopic and calorimetric study. RSC Adv 2016;6:39903-17. [DOI: 10.1039/c6ra03514k] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
34 Hu H, Huang X, Ren J. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy: Studies on the formation and stability of triplex DNA using FCS. Luminescence 2016;31:830-6. [DOI: 10.1002/bio.3030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 Yang B, Fang X, Kong J. In Situ Sampling and Monitoring Cell-Free DNA of the Epstein–Barr Virus from Dermal Interstitial Fluid Using Wearable Microneedle Patches. ACS Appl Mater Interfaces 2019;11:38448-58. [DOI: 10.1021/acsami.9b12244] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
36 Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. R Soc Open Sci 2020;7:200222. [PMID: 32742689 DOI: 10.1098/rsos.200222] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
37 Mazzoccoli G, Tarquini R, Durfort T, Francois JC. Chronodisruption in lung cancer and possible therapeutic approaches. Biomed Pharmacother 2011;65:500-8. [PMID: 21993005 DOI: 10.1016/j.biopha.2011.06.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
38 Hari Y, Akabane M, Obika S. 2′,4′-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Chem Commun 2013;49:7421. [DOI: 10.1039/c3cc44030c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
39 Conde J, Oliva N, Atilano M, Song HS, Artzi N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater 2016;15:353-63. [PMID: 26641016 DOI: 10.1038/nmat4497] [Cited by in Crossref: 149] [Cited by in F6Publishing: 132] [Article Influence: 21.3] [Reference Citation Analysis]
40 Wang S, Ke H, Zhang H, Ma Y, Ao L, Zou L, Yang Q, Zhu H, Nie J, Wu C, Jiao B. LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis 2018;9:805. [PMID: 30042378 DOI: 10.1038/s41419-018-0869-2] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 15.0] [Reference Citation Analysis]
41 Reshat R, Priestley CC, Gooderham NJ. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation. Mutagenesis 2012;27:713-9. [PMID: 22914677 DOI: 10.1093/mutage/ges037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
42 Kotkowiak W, Kotkowiak M, Kierzek R, Pasternak A. Unlocked nucleic acids: implications of increased conformational flexibility for RNA/DNA triplex formation. Biochem J 2014;464:203-11. [PMID: 25226286 DOI: 10.1042/BJ20141023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
43 Sato T, Sakamoto N, Nishizawa S. Kinetic and thermodynamic analysis of triplex formation between peptide nucleic acid and double-stranded RNA. Org Biomol Chem 2018;16:1178-87. [PMID: 29376179 DOI: 10.1039/c7ob02912h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
44 Adhikari SP, Vukelich P, Guenther DC, Karmakar S, Hrdlicka PJ. Recognition of double-stranded DNA using LNA-modified toehold Invader probes. Org Biomol Chem 2021;19:9276-90. [PMID: 34657934 DOI: 10.1039/d1ob01888d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Biver T. Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coordination Chemistry Reviews 2013;257:2765-83. [DOI: 10.1016/j.ccr.2013.04.016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
46 Herbert A. Simple Repeats as Building Blocks for Genetic Computers. Trends Genet 2020;36:739-50. [PMID: 32690316 DOI: 10.1016/j.tig.2020.06.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Sau SP, Kumar P, Anderson BA, Østergaard ME, Deobald L, Paszczynski A, Sharma PK, Hrdlicka PJ. Optimized DNA-targeting using triplex forming C5-alkynyl functionalized LNA. Chem Commun (Camb) 2009;:6756-8. [PMID: 19885469 DOI: 10.1039/b917312a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
48 Carr CE, Ganugula R, Shikiya R, Soto AM, Marky LA. Effect of dC → d(m5C) substitutions on the folding of intramolecular triplexes with mixed TAT and C+GC base triplets. Biochimie 2018;146:156-65. [PMID: 29277568 DOI: 10.1016/j.biochi.2017.12.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
49 Ren J, Wang T, Wang E, Wang J. Versatile G-quadruplex-mediated strategies in label-free biosensors and logic systems. Analyst 2015;140:2556-72. [DOI: 10.1039/c4an02282c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
50 Kosbar TR, Sofan MA, Abou-Zeid L, Pedersen EB. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA. Org Biomol Chem 2015;13:5115-21. [PMID: 25833006 DOI: 10.1039/c5ob00535c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Kumar P, Østergaard ME, Baral B, Anderson BA, Guenther DC, Kaura M, Raible DJ, Sharma PK, Hrdlicka PJ. Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid). J Org Chem 2014;79:5047-61. [PMID: 24825249 DOI: 10.1021/jo500614a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
52 Isogawa A, Fuchs RP, Fujii S. Chromatin Pull-Down Methodology Based on DNA Triple Helix Formation. Methods Mol Biol 2020;2119:183-99. [PMID: 31989525 DOI: 10.1007/978-1-0716-0323-9_16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
53 Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013;113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Cited by in Crossref: 128] [Cited by in F6Publishing: 110] [Article Influence: 14.2] [Reference Citation Analysis]
54 Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun 2010;46:7283. [DOI: 10.1039/c0cc01312a] [Cited by in Crossref: 78] [Cited by in F6Publishing: 65] [Article Influence: 6.5] [Reference Citation Analysis]
55 Adhikari SP, Karmakar S, Hrdlicka PJ. Nicked Invader probes: multistranded and sequence-unrestricted recognition of double-stranded DNA. Org Biomol Chem 2021. [PMID: 34874037 DOI: 10.1039/d1ob02019f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem 2017;129:15410-34. [DOI: 10.1002/ange.201701868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
57 Malnuit V, Duca M, Benhida R. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org Biomol Chem 2011;9:326-36. [PMID: 21046036 DOI: 10.1039/c0ob00418a] [Cited by in Crossref: 50] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
58 Liang W, Zhang W, Zhao S, Li Q, Yang Y, Liang H, Ceng R. A study of the ultrasound-targeted microbubble destruction based triplex-forming oligodexinucleotide delivery system to inhibit tissue factor expression. Mol Med Rep 2015;11:903-9. [PMID: 25355395 DOI: 10.3892/mmr.2014.2822] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Arya DP. New approaches toward recognition of nucleic acid triple helices. Acc Chem Res 2011;44:134-46. [PMID: 21073199 DOI: 10.1021/ar100113q] [Cited by in Crossref: 130] [Cited by in F6Publishing: 114] [Article Influence: 11.8] [Reference Citation Analysis]
60 Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011;8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Cited by in Crossref: 133] [Cited by in F6Publishing: 116] [Article Influence: 12.1] [Reference Citation Analysis]
61 Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021;26:5420. [PMID: 34500849 DOI: 10.3390/molecules26175420] [Reference Citation Analysis]
62 Eick A, Riechert-Krause F, Weisz K. Spectroscopic and calorimetric studies on the triplex formation with oligonucleotide-ligand conjugates. Bioconjug Chem 2010;21:1105-14. [PMID: 20481559 DOI: 10.1021/bc100107n] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
63 Lin PY, Chi R, Wu YL, Ho JA. Applications of triplex DNA nanostructures in sensor development. Anal Bioanal Chem 2022. [PMID: 35469098 DOI: 10.1007/s00216-022-04058-8] [Reference Citation Analysis]
64 Cinti S, Proietti E, Casotto F, Moscone D, Arduini F. Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Anal Chem 2018;90:13680-6. [DOI: 10.1021/acs.analchem.8b04052] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
65 Jarvis TC, Davies DR, Hisaminato A, Resnicow DI, Gupta S, Waugh SM, Nagabukuro A, Wadatsu T, Hishigaki H, Gawande B, Zhang C, Wolk SK, Mayfield WS, Nakaishi Y, Burgin AB, Stewart LJ, Edwards TE, Gelinas AD, Schneider DJ, Janjic N. Non-helical DNA Triplex Forms a Unique Aptamer Scaffold for High Affinity Recognition of Nerve Growth Factor. Structure 2015;23:1293-304. [PMID: 26027732 DOI: 10.1016/j.str.2015.03.027] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
66 Pandian GN, Syed J, Sugiyama H. Synthetic Strategies to Identify and Regulate Noncoding RNAs. In: Kurokawa R, editor. Long Noncoding RNAs. Tokyo: Springer Japan; 2015. pp. 23-43. [DOI: 10.1007/978-4-431-55576-6_2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
67 Jeong HS, Park M, Yi JW, Joo T, Kim BH. Structural diversity induced by pyrene intercalators in homogeneous oligodeoxyguanylates. Mol Biosyst 2010;6:951-3. [PMID: 20485740 DOI: 10.1039/b926677a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
68 Andersen NK, Anderson BA, Wengel J, Hrdlicka PJ. Synthesis and characterization of oligodeoxyribonucleotides modified with 2'-amino-α-L-LNA adenine monomers: high-affinity targeting of single-stranded DNA. J Org Chem 2013;78:12690-702. [PMID: 24304240 DOI: 10.1021/jo4022937] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
69 Maciaszek A, Krakowiak A, Janicka M, Tomaszewska-Antczak A, Sobczak M, Mikołajczyk B, Guga P. LNA units present in the (2'-OMe)-RNA strand stabilize parallel duplexes (2'-OMe)-RNA/[All-R(P)-PS]-DNA and parallel triplexes (2'-OMe)-RNA/[All-R(P)-PS]-DNA/RNA. An improved tool for the inhibition of reverse transcription. Org Biomol Chem 2015;13:2375-84. [PMID: 25564351 DOI: 10.1039/c4ob02364a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
70 Ji Q, Fischer AL, Brown CR, Eastlund ER, Dvash T, Zhong B, Gerber MA, Lyons I, Knight SW, Kreader CA. Engineered zinc-finger transcription factors activate OCT4 (POU5F1), SOX2, KLF4, c-MYC (MYC) and miR302/367. Nucleic Acids Res 2014;42:6158-67. [PMID: 24792165 DOI: 10.1093/nar/gku243] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
71 Bogliotti N, Vasella A. Oligonucleotide Analogues with Integrated Bases and Backbone. Part 21: Influence of the Hydrogen-Bonding Motif on the Gelation of Self-Complementary A*[s]U ( * ) Dinucleosides. HCA 2009;92:1167-83. [DOI: 10.1002/hlca.200900075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
72 Rajeswari MR. DNA triplex structures in neurodegenerative disorder, Friedreich's ataxia. J Biosci 2012;37:519-32. [PMID: 22750988 DOI: 10.1007/s12038-012-9219-1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
73 Wang S, Yue L, Shpilt Z, Cecconello A, Kahn JS, Lehn J, Willner I. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. J Am Chem Soc 2017;139:9662-71. [DOI: 10.1021/jacs.7b04531] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 7.4] [Reference Citation Analysis]
74 Asanuma H, Niwa R, Akahane M, Murayama K, Kashida H, Kamiya Y. Strand-invading linear probe combined with unmodified PNA. Bioorg Med Chem 2016;24:4129-37. [PMID: 27394693 DOI: 10.1016/j.bmc.2016.06.055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
75 Koilan S, Hamilton D, Baburyan N, Padala MK, Weber KT, Guntaka RV. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene. Oligonucleotides. 2010;20:231-237. [PMID: 20818932 DOI: 10.1089/oli.2010.0244] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
76 Osman AM, Pedersen EB, Bergman J. Synthesis of a new intercalating nucleic acid 6H-INDOLO[2,3-b] quinoxaline oligonucleotides to improve thermal stability of Hoogsteen-type triplexes. Nucleosides Nucleotides Nucleic Acids 2013;32:98-108. [PMID: 23448144 DOI: 10.1080/15257770.2013.765013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
77 Guarracino DA, Bullock BN, Arora PS. Mini review: protein-protein interactions in transcription: a fertile ground for helix mimetics. Biopolymers 2011;95:1-7. [PMID: 20882600 DOI: 10.1002/bip.21546] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
78 Liu X, Xu N, Gai P, Li F. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine. Talanta 2018;185:352-8. [PMID: 29759211 DOI: 10.1016/j.talanta.2018.03.094] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
79 Vargiu AV, Magistrato A. Atomistic-Level Portrayal of Drug-DNA Interplay: A History of Courtships and Meetings Revealed by Molecular Simulations. ChemMedChem 2014;9:1966-81. [DOI: 10.1002/cmdc.201402203] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
80 Vo DD, Staedel C, Zehnacker L, Benhida R, Darfeuille F, Duca M. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem Biol 2014;9:711-21. [PMID: 24359019 DOI: 10.1021/cb400668h] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 9.8] [Reference Citation Analysis]
81 Zou L, Li R, Zhang M, Luo Y, Zhou N, Wang J, Ling L. A colorimetric sensing platform based upon recognizing hybridization chain reaction products with oligonucleotide modified gold nanoparticles through triplex formation. Nanoscale 2017;9:1986-92. [PMID: 28106202 DOI: 10.1039/c6nr09089c] [Cited by in Crossref: 41] [Cited by in F6Publishing: 3] [Article Influence: 10.3] [Reference Citation Analysis]
82 Petralia S, Forte G, Zimbone M, Conoci S. The cooperative interaction of triplex forming oligonucleotides on DNA-triplex formation at electrode surface: Molecular dynamics studies and experimental evidences. Colloids Surf B Biointerfaces 2020;187:110648. [PMID: 31767411 DOI: 10.1016/j.colsurfb.2019.110648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
83 Geny S, Moreno PM, Krzywkowski T, Gissberg O, Andersen NK, Isse AJ, El-Madani AM, Lou C, Pabon YV, Anderson BA, Zaghloul EM, Zain R, Hrdlicka PJ, Jørgensen PT, Nilsson M, Lundin KE, Pedersen EB, Wengel J, Smith CI. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 2016;44:2007-19. [PMID: 26857548 DOI: 10.1093/nar/gkw021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
84 Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018;23:E1479. [PMID: 29921764 DOI: 10.3390/molecules23061479] [Cited by in Crossref: 110] [Cited by in F6Publishing: 89] [Article Influence: 27.5] [Reference Citation Analysis]
85 Anderson BA, Hrdlicka PJ. Merging Two Strategies for Mixed-Sequence Recognition of Double-Stranded DNA: Pseudocomplementary Invader Probes. J Org Chem 2016;81:3335-46. [PMID: 26998918 DOI: 10.1021/acs.joc.6b00369] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
86 Yang H, Wang Y, Yu W, Shi L, Wang H, Su R, Chen C, Liu S. Screening and investigation of triplex DNA binders from Stephania tetrandra S. Moore by a combination of peak area-fading ultra high-performance liquid chromatography with orbitrap mass spectrometry and optical spectroscopies. J Sep Sci 2018;41:2878-85. [DOI: 10.1002/jssc.201800190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
87 Seio K, Yamaguchi K, Yamazaki A, Kanamori T, Masaki Y. Transcription of DNA duplex containing deoxypseudouridine and deoxypseudoisocytidine, and inhibition of transcription by triplex forming oligonucleotide that recognizes the modified duplex. Nucleosides Nucleotides Nucleic Acids 2020;39:892-904. [PMID: 32126878 DOI: 10.1080/15257770.2020.1714652] [Reference Citation Analysis]
88 Eritja R, Aviñó A, Fàbrega C, Alagia A, Jorge AF, Grijalvo S. Synthesis of Oligonucleotides Carrying Nucleic Acid Derivatives of Biomedical and Structural Interest. In: Fernández-lucas J, editor. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2019. pp. 237-58. [DOI: 10.1002/9783527812103.ch9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
89 Torigoe H, Rahman SM, Takuma H, Sato N, Imanishi T, Obika S, Sasaki K. Interrupted 2'-o,4'-C-aminomethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition. Nucleosides Nucleotides Nucleic Acids 2011;30:63-81. [PMID: 21259164 DOI: 10.1080/15257770.2010.543118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
90 Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S, Nguyen CH, Pedersen EB, Jørgensen PT, Wengel J, Nilsson L, Smith CIE, Zain R. LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci Rep 2017;7:11043. [PMID: 28887512 DOI: 10.1038/s41598-017-09147-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
91 Das A, Saha T, Ahmad F, Roy KB, Rishi V. Dodecamer d-AGATCTAGATCT and a homologous hairpin form triplex in the presence of peptide REWER. PLoS One 2013;8:e65010. [PMID: 23705027 DOI: 10.1371/journal.pone.0065010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
92 Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021;35:355-69. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Reference Citation Analysis]
93 Iwaura R, Iizawa T, Minamikawa H, Ohnishi-Kameyama M, Shimizu T. Diverse morphologies of self-assemblies from homoditopic 1,18-nucleotide-appended bolaamphiphiles: effects of nucleobases and complementary oligonucleotides. Small 2010;6:1131-9. [PMID: 20449848 DOI: 10.1002/smll.200902262] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
94 Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018;9:E564. [PMID: 30469382 DOI: 10.3390/genes9110564] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
95 Hari Y, Matsugu S, Inohara H, Hatanaka Y, Akabane M, Imanishi T, Obika S. 2',4'-BNA bearing a 2-pyridine nucleobase for CG base pair recognition in the parallel motif triplex DNA. Org Biomol Chem 2010;8:4176-80. [PMID: 20648389 DOI: 10.1039/c004895j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
96 Adhikari SP, Emehiser RG, Karmakar S, Hrdlicka PJ. Recognition of mixed-sequence DNA targets using spermine-modified Invader probes. Org Biomol Chem 2019;17:8795-9. [PMID: 31469146 DOI: 10.1039/c9ob01686d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Andrushchenko V, Bouř P. Applications of the Cartesian coordinate tensor transfer technique in the simulations of vibrational circular dichroism spectra of oligonucleotides. Chirality 2010;22 Suppl 1:E96-E114. [PMID: 21038400 DOI: 10.1002/chir.20872] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
98 Laguerre A, Chang Y, Pirrotta M, Desbois N, Gros CP, Lesniewska E, Monchaud D. Surface-promoted aggregation of amphiphilic quadruplex ligands drives their selectivity for alternative DNA structures. Org Biomol Chem 2015;13:7034-9. [DOI: 10.1039/c5ob00692a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
99 Karmakar S, Hrdlicka PJ. DNA strands with alternating incorporations of LNA and 2'-O-(pyren-1-yl)methyluridine: SNP-discriminating RNA detection probes. Chem Sci 2013;4:3447-54. [PMID: 23930202 DOI: 10.1039/C3SC50726B] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
100 Stefan L, Bertrand B, Richard P, Le Gendre P, Denat F, Picquet M, Monchaud D. Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures. ChemBioChem 2012;13:1905-12. [DOI: 10.1002/cbic.201200396] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
101 Lee N, Johner A, Lee I, Hong S. DNA triplex folding: Moderate versus high salt conditions. Eur Phys J E 2013;36. [DOI: 10.1140/epje/i2013-13057-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
102 Akabane-Nakata M, Obika S, Hari Y. Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA. Org Biomol Chem 2014;12:9011-5. [PMID: 25285418 DOI: 10.1039/c4ob01760a] [Cited by in Crossref: 6] [Article Influence: 0.8] [Reference Citation Analysis]
103 Torigoe H, Nakagawa O, Imanishi T, Obika S, Sasaki K. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH. Biochimie 2012;94:1032-40. [PMID: 22245184 DOI: 10.1016/j.biochi.2012.01.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
104 Hari Y, Nakahara M, Pang J, Akabane M, Kuboyama T, Obika S. Synthesis and triplex-forming ability of oligonucleotides bearing 1-substituted 1H-1,2,3-triazole nucleobases. Bioorg Med Chem 2011;19:1162-6. [PMID: 21256033 DOI: 10.1016/j.bmc.2010.12.049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
105 Howell LA, Searcey M. Targeting Higher-Order DNA: Beyond the G-Quadruplex. ChemBioChem 2009;10:2139-43. [DOI: 10.1002/cbic.200900243] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
106 Aviñó A, Eritja R, Ciudad CJ, Noé V. Parallel Clamps and Polypurine Hairpins (PPRH) for Gene Silencing and Triplex‐Affinity Capture: Design, Synthesis, and Use. Current Protocols in Nucleic Acid Chemistry 2019;77. [DOI: 10.1002/cpnc.78] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
107 Zhou Y, Kierzek E, Loo ZP, Antonio M, Yau YH, Chuah YW, Geifman-Shochat S, Kierzek R, Chen G. Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides. Nucleic Acids Res 2013;41:6664-73. [PMID: 23658228 DOI: 10.1093/nar/gkt352] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
108 Doluca O, Hale TK, Edwards PJB, González C, Filichev VV. Assembly Dependent Fluorescence Enhancing Nucleic Acids in Sequence-Specific Detection of Double-Stranded DNA. Chempluschem 2014;79:58-66. [PMID: 31986766 DOI: 10.1002/cplu.201300310] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
109 Guenther DC, Emehiser RG, Inskeep A, Karmakar S, Hrdlicka PJ. Impact of non-nucleotidic bulges on recognition of mixed-sequence dsDNA by pyrene-functionalized Invader probes. Org Biomol Chem 2020;18:4645-55. [PMID: 32520054 DOI: 10.1039/d0ob01052a] [Reference Citation Analysis]
110 Graham MK, Brown TR, Miller PS. Targeting the human androgen receptor gene with platinated triplex-forming oligonucleotides. Biochemistry 2015;54:2270-82. [PMID: 25768916 DOI: 10.1021/bi501565n] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
111 Noy A, Soteras I, Luque FJ, Orozco M. The impact of monovalent ion force field model in nucleic acids simulations. Phys Chem Chem Phys 2009;11:10596-607. [PMID: 20145804 DOI: 10.1039/b912067j] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 4.3] [Reference Citation Analysis]
112 Kumar V, Kesavan V, Gothelf KV. Highly stable triple helix formation by homopyrimidine ( l )-acyclic threoninol nucleic acids with single stranded DNA and RNA. Org Biomol Chem 2015;13:2366-74. [DOI: 10.1039/c4ob02328e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
113 Goodchild J. Therapeutic oligonucleotides. Methods Mol Biol. 2011;764:1-15. [PMID: 21748630 DOI: 10.1007/978-1-61779-188-8_1] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
114 Sau SP, Kumar P, Sharma PK, Hrdlicka PJ. Fluorescent intercalator displacement replacement (FIDR) assay: determination of relative thermodynamic and kinetic parameters in triplex formation--a case study using triplex-forming LNAs. Nucleic Acids Res 2012;40:e162. [PMID: 22855561 DOI: 10.1093/nar/gks729] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
115 Ukale DU, Lönnberg T. Triplex Formation by Oligonucleotides Containing Organomercurated Base Moieties. Chembiochem 2018;19:1096-101. [PMID: 29575511 DOI: 10.1002/cbic.201800112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
116 Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021;22:9552. [PMID: 34502459 DOI: 10.3390/ijms22179552] [Reference Citation Analysis]
117 Mckenzie LK, El-khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021;50:5126-64. [DOI: 10.1039/d0cs01430c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 14.0] [Reference Citation Analysis]
118 Davenport CF, Tümmler B. Abundant oligonucleotides common to most bacteria. PLoS One 2010;5:e9841. [PMID: 20352124 DOI: 10.1371/journal.pone.0009841] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
119 Torigoe H, Rahman SM, Takuma H, Sato N, Imanishi T, Obika S, Sasaki K. 2'-O,4'-C-aminomethylene-bridged nucleic acid modification with enhancement of nuclease resistance promotes pyrimidine motif triplex nucleic acid formation at physiological pH. Chemistry 2011;17:2742-51. [PMID: 21264967 DOI: 10.1002/chem.201002745] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
120 Xi H, Kumar S, Dosen-Micovic L, Arya DP. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices. Biochimie 2010;92:514-29. [PMID: 20167243 DOI: 10.1016/j.biochi.2010.02.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
121 Sau SP, Kumar TS, Hrdlicka PJ. Invader LNA: efficient targeting of short double stranded DNA. Org Biomol Chem 2010;8:2028-36. [PMID: 20401378 DOI: 10.1039/b923465a] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.3] [Reference Citation Analysis]
122 Fatthalla MI, Pedersen EB. Improved DNA Clamps by Stacking to Adjacent Nucleobases. HCA 2012;95:1538-47. [DOI: 10.1002/hlca.201200130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
123 Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021;49:10275-88. [PMID: 34551430 DOI: 10.1093/nar/gkab796] [Reference Citation Analysis]
124 Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021;22:2308. [PMID: 33669056 DOI: 10.3390/ijms22052308] [Reference Citation Analysis]
125 Lee HT, Carr CE, Khutsishvili I, Marky LA. Effect of Loop Length and Sequence on the Stability of DNA Pyrimidine Triplexes with TAT Base Triplets. J Phys Chem B 2017;121:9175-84. [PMID: 28875701 DOI: 10.1021/acs.jpcb.7b07591] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
126 Jenjaroenpun P, Chew CS, Yong TP, Choowongkomon K, Thammasorn W, Kuznetsov VA. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome. Nucleic Acids Res 2015;43:D110-6. [PMID: 25324314 DOI: 10.1093/nar/gku970] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
127 Piao X, Xia X, Mao J, Bong D. Peptide Ligation and RNA Cleavage via an Abiotic Template Interface. J Am Chem Soc 2015;137:3751-4. [DOI: 10.1021/jacs.5b00236] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
128 Hari Y, Nakahara M, Obika S. Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer. Bioorg Med Chem 2013;21:5583-8. [PMID: 23830701 DOI: 10.1016/j.bmc.2013.05.034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
129 van der Gun BT, Maluszynska-Hoffman M, Kiss A, Arendzen AJ, Ruiters MH, McLaughlin PM, Weinhold E, Rots MG. Targeted DNA methylation by a DNA methyltransferase coupled to a triple helix forming oligonucleotide to down-regulate the epithelial cell adhesion molecule. Bioconjug Chem 2010;21:1239-45. [PMID: 20593890 DOI: 10.1021/bc1000388] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
130 Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021;2:47-76. [DOI: 10.1039/d0cb00151a] [Cited by in Crossref: 9] [Article Influence: 9.0] [Reference Citation Analysis]
131 Anderson BA, Hrdlicka PJ. Synthesis and characterization of oligodeoxyribonucleotides modified with 2'-thio-2'-deoxy-2'-S-(pyren-1-yl)methyluridine. Bioorg Med Chem Lett 2015;25:3999-4004. [PMID: 26254942 DOI: 10.1016/j.bmcl.2015.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
132 Geel TM, Ruiters MHJ, Cool RH, Halby L, Voshart DC, Andrade Ruiz L, Niezen-Koning KE, Arimondo PB, Rots MG. The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philos Trans R Soc Lond B Biol Sci 2018;373:20170077. [PMID: 29685979 DOI: 10.1098/rstb.2017.0077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
133 Ruigrok VJ, Westra ER, Brouns SJ, Escudé C, Smidt H, van der Oost J. A capture approach for supercoiled plasmid DNA using a triplex-forming oligonucleotide. Nucleic Acids Res 2013;41:e111. [PMID: 23571753 DOI: 10.1093/nar/gkt239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
134 Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev 2013;113:6114-78. [DOI: 10.1021/cr300179f] [Cited by in Crossref: 716] [Cited by in F6Publishing: 560] [Article Influence: 79.6] [Reference Citation Analysis]
135 Kanak M, Alseiari M, Balasubramanian P, Addanki K, Aggarwal M, Noorali S, Kalsum A, Mahalingam K, Pace G, Panasik N, Bagasra O. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl Immunohistochem Mol Morphol 2010;18:532-45. [PMID: 20502318 DOI: 10.1097/PAI.0b013e3181e1ef6a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
136 Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG. Fluorescent probes for nucleic Acid visualization in fixed and live cells. Molecules 2013;18:15357-97. [PMID: 24335616 DOI: 10.3390/molecules181215357] [Cited by in Crossref: 73] [Cited by in F6Publishing: 62] [Article Influence: 8.1] [Reference Citation Analysis]
137 Mazurek B, Lou X, Olze H, Haupt H, Szczepek AJ. In vitro protection of auditory hair cells by salicylate from the gentamicin-induced but not neomycin-induced cell loss. Neurosci Lett 2012;506:107-10. [PMID: 22075224 DOI: 10.1016/j.neulet.2011.10.060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
138 D'Souza AD, Belotserkovskii BP, Hanawalt PC. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system. Biochim Biophys Acta Gene Regul Mech 2018;1861:158-66. [PMID: 29357316 DOI: 10.1016/j.bbagrm.2017.12.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
139 Liu X, Song M, Li F. Triplex DNA-based Bioanalytical Platform for Highly Sensitive Homogeneous Electrochemical Detection of Melamine. Sci Rep 2017;7:4490. [PMID: 28674450 DOI: 10.1038/s41598-017-04812-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
140 Patterson A, Caprio F, Vallée-Bélisle A, Moscone D, Plaxco KW, Palleschi G, Ricci F. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA. Anal Chem 2010;82:9109-15. [PMID: 20936782 DOI: 10.1021/ac1024528] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 6.3] [Reference Citation Analysis]
141 Lou C, Boesen JT, Christensen NJ, Sørensen KK, Thulstrup PW, Pedersen MN, Giralt E, Jensen KJ, Wengel J. Self‐Assembly of DNA–Peptide Supermolecules: Coiled‐Coil Peptide Structures Templated by d ‐DNA and l ‐DNA Triplexes Exhibit Chirality‐Independent but Orientation‐Dependent Stabilizing Cooperativity. Chem Eur J 2020;26:5676-84. [DOI: 10.1002/chem.201905636] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
142 Anderson BA, Karmakar S, Hrdlicka PJ. Mixed-Sequence Recognition of Double-Stranded DNA Using Enzymatically Stable Phosphorothioate Invader Probes. Molecules 2015;20:13780-93. [PMID: 26230684 DOI: 10.3390/molecules200813780] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
143 Carrascosa LG, Gómez-Montes S, Aviñó A, Nadal A, Pla M, Eritja R, Lechuga LM. Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method. Nucleic Acids Res 2012;40:e56. [PMID: 22241768 DOI: 10.1093/nar/gkr1304] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
144 Miyoshi D, Ueda YM, Shimada N, Nakano S, Sugimoto N, Maruyama A. Drastic stabilization of parallel DNA hybridizations by a polylysine comb-type copolymer with hydrophilic graft chain. ChemMedChem 2014;9:2156-63. [PMID: 25045164 DOI: 10.1002/cmdc.201402157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
145 Ni T, Shao M, Zhu S, Zhao Y, Xing F, Li M. Lotus-Root-like One-Dimensional Polymetallocages with Drastic Void Adaptability Constructed from 4,4′-Bis(1,2,4-triazol-1-ylmethyl)biphenyl and Zn(II) or Co(II) and Their Fluorescein Encapsulation Properties. Crystal Growth & Design 2010;10:943-51. [DOI: 10.1021/cg901264e] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
146 Xu H, Stefan L, Haudecoeur R, Vuong S, Richard P, Denat F, Barbe J, Gros CP, Monchaud D. Porphyrin-templated synthetic G-quartet (PorphySQ): a second prototype of G-quartet-based G-quadruplex ligand. Org Biomol Chem 2012;10:5212. [DOI: 10.1039/c2ob25601k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
147 Didion BA, Karmakar S, Guenther DC, Sau SP, Verstegen JP, Hrdlicka PJ. Invaders: Recognition of Double-Stranded DNA by Using Duplexes Modified with Interstrand Zippers of 2'-O-(Pyren-1-yl)methyl-ribonucleotides. Chembiochem 2013;14:1534-8. [PMID: 24038876 DOI: 10.1002/cbic.201300414] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
148 Wang Y, Zhao H, Zhou Q, Dai X, Liu K, Song D, Su H. Monitoring the Structure-Dependent Reaction Pathways of Guanine Radical Cations in Triplex DNA: Deprotonation Versus Hydration. J Phys Chem B 2019;123:2853-63. [PMID: 30834754 DOI: 10.1021/acs.jpcb.9b00608] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
149 Liu X, Abbott NL. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant. J Phys Chem B 2010;114:15554-64. [PMID: 21062067 DOI: 10.1021/jp107936b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
150 Vasquez KM. Targeting and processing of site-specific DNA interstrand crosslinks. Environ Mol Mutagen 2010;51:527-39. [PMID: 20196133 DOI: 10.1002/em.20557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 23] [Article Influence: 0.3] [Reference Citation Analysis]
151 Zohar H, Muller SJ. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale 2011;3:3027-39. [PMID: 21734993 DOI: 10.1039/c1nr10280j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
152 Hari Y, Akabane M, Hatanaka Y, Nakahara M, Obika S. A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Chem Commun (Camb) 2011;47:4424-6. [PMID: 21390385 DOI: 10.1039/c1cc10138b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
153 Liu C, Danilowicz C, Kleckner N, Prentiss M. Single molecule identification of homology-dependent interactions between long ssRNA and dsDNA. Nucleic Acids Res 2017;45:894-901. [PMID: 27580717 DOI: 10.1093/nar/gkw758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
154 Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016;11:e0152102. [PMID: 27010368 DOI: 10.1371/journal.pone.0152102] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
155 Brown ZZ, Müller MM, Kong HE, Lewis PW, Muir TW. Targeted Histone Peptides: Insights into the Spatial Regulation of the Methyltransferase PRC2 by using a Surrogate of Heterotypic Chromatin. Angew Chem Int Ed Engl 2015;54:6457-61. [PMID: 25873363 DOI: 10.1002/anie.201500085] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
156 Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, Welsch MA, Cherry KE, Arnold J, Poon LW, Jazwinski SM. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 2012;13:119-31. [PMID: 21972126 DOI: 10.1007/s10522-011-9360-5] [Cited by in Crossref: 69] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
157 Zhou T, Llizo A, Wang C, Xu G, Yang Y. Nanostructure-induced DNA condensation. Nanoscale 2013;5:8288-306. [PMID: 23838744 DOI: 10.1039/c3nr01630g] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
158 Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 2012;22:1372-81. [PMID: 22550012 DOI: 10.1101/gr.130237.111] [Cited by in Crossref: 124] [Cited by in F6Publishing: 111] [Article Influence: 12.4] [Reference Citation Analysis]
159 Liu S, Peng P, Wang H, Shi L, Li T. Thioflavin T binds dimeric parallel-stranded GA-containing non-G-quadruplex DNAs: a general approach to lighting up double-stranded scaffolds. Nucleic Acids Res 2017;45:12080-9. [PMID: 29059300 DOI: 10.1093/nar/gkx942] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
160 Zeng Y, Pratumyot Y, Piao X, Bong D. Discrete Assembly of Synthetic Peptide–DNA Triplex Structures from Polyvalent Melamine–Thymine Bifacial Recognition. J Am Chem Soc 2012;134:832-5. [DOI: 10.1021/ja2099326] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 5.6] [Reference Citation Analysis]
161 Anderson BA, Onley JJ, Hrdlicka PJ. Recognition of Double-Stranded DNA Using Energetically Activated Duplexes Modified with N2'-Pyrene-, Perylene-, or Coronene-Functionalized 2'-N-Methyl-2'-amino-DNA Monomers. J Org Chem 2015;80:5395-406. [PMID: 25984765 DOI: 10.1021/acs.joc.5b00742] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
162 Maji J, Bhattacharjee SM, Seno F, Trovato A. When a DNA triple helix melts: an analogue of the Efimov state. New J Phys 2010;12:083057. [DOI: 10.1088/1367-2630/12/8/083057] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
163 Kumar TS, Madsen AS, Østergaard ME, Sau SP, Wengel J, Hrdlicka PJ. Functionalized 2'-amino-alpha-L-LNA: directed positioning of intercalators for DNA targeting. J Org Chem 2009;74:1070-81. [PMID: 19108636 DOI: 10.1021/jo802037v] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
164 Torigoe H, Sato N, Nagasawa N. 2'-O,4'-C-ethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability under physiological condition. J Biochem 2012;152:17-26. [PMID: 22563101 DOI: 10.1093/jb/mvs049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
165 Russo Krauss I, Spiridonova V, Pica A, Napolitano V, Sica F. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding. Nucleic Acids Res 2016;44:983-91. [PMID: 26673709 DOI: 10.1093/nar/gkv1384] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
166 Biemann L, Häber T, Maydt D, Schaper K, Kleinermanns K. Fourier transform infrared spectroscopy of 2′-deoxycytidine aggregates in CDCl 3 solutions. The Journal of Chemical Physics 2011;134:115103. [DOI: 10.1063/1.3557821] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
167 Sgallová R, Curtis EA. Secondary Structure Libraries for Artificial Evolution Experiments. Molecules 2021;26:1671. [PMID: 33802780 DOI: 10.3390/molecules26061671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
168 Yamagata Y, Emura T, Hidaka K, Sugiyama H, Endo M. Triple Helix Formation in a Topologically Controlled DNA Nanosystem. Chemistry 2016;22:5494-8. [PMID: 26938310 DOI: 10.1002/chem.201505030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
169 Cruz-ortiz AF, Jara-toro RA, Berdakin M, Loire E, Pino GA. Gas phase structure and fragmentation of [Cytosine-Guanine]$$\hbox {Ag}^{+}$$ complex studied by mass-resolved IRMPD spectroscopy. Eur Phys J D 2021;75. [DOI: 10.1140/epjd/s10053-021-00129-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Arslan P, Jyo A, Ihara T. Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application. Org Biomol Chem 2010;8:4843-8. [PMID: 20734012 DOI: 10.1039/c0ob00282h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
171 Ikeda S, Yanagisawa H, Yuki M, Okamoto A. Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit. Artif DNA PNA XNA 2013;4:19-27. [PMID: 23445822 DOI: 10.4161/adna.24102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
172 Du R, Litonjua AA, Tantisira KG, Lasky-Su J, Sunyaev SR, Klanderman BJ, Celedón JC, Avila L, Soto-Quiros ME, Weiss ST. Genome-wide association study reveals class I MHC-restricted T cell-associated molecule gene (CRTAM) variants interact with vitamin D levels to affect asthma exacerbations. J Allergy Clin Immunol 2012;129:368-73, 373.e1-5. [PMID: 22051697 DOI: 10.1016/j.jaci.2011.09.034] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
173 Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009;86:151-164. [PMID: 19454272 DOI: 10.1016/j.yexmp.2009.01.004] [Cited by in Crossref: 497] [Cited by in F6Publishing: 467] [Article Influence: 38.2] [Reference Citation Analysis]
174 Luzzietti N, Knappe S, Richter I, Seidel R. Nicking enzyme-based internal labeling of DNA at multiple loci. Nat Protoc 2012;7:643-53. [PMID: 22402634 DOI: 10.1038/nprot.2012.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
175 Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. Biochim Biophys Acta Mol Cell Res 2019;1866:118539. [PMID: 31491448 DOI: 10.1016/j.bbamcr.2019.118539] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
176 Guo Y, Lv M, Ren J, Wang E. Regulating Catalytic Activity of DNA‐Templated Silver Nanoclusters Based on their Differential Interactions with DNA Structures and Stimuli‐Responsive Structural Transition. Small 2021;17:2006553. [DOI: 10.1002/smll.202006553] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
177 Cao S, Okamoto I, Tsunoda H, Ohkubo A, Seio K, Sekine M. Synthesis and triplex-forming properties of oligonucleotides containing thio-substituted C-nucleoside 4-thiopseudoisocytidine. Tetrahedron Letters 2011;52:407-10. [DOI: 10.1016/j.tetlet.2010.11.065] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
178 Idili A, Plaxco KW, Vallée-Bélisle A, Ricci F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS Nano 2013;7:10863-9. [PMID: 24219761 DOI: 10.1021/nn404305e] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 6.1] [Reference Citation Analysis]
179 Zheng H, Botos I, Clausse V, Nikolayevskiy H, Rastede EE, Fouz MF, Mazur SJ, Appella DH. Conformational constraints of cyclopentane peptide nucleic acids facilitate tunable binding to DNA. Nucleic Acids Res 2021;49:713-25. [PMID: 33406227 DOI: 10.1093/nar/gkaa1249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
180 Chiou CC, Chen SW, Luo JD, Chien YT. Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes. Anal Biochem 2011;416:1-7. [PMID: 21609711 DOI: 10.1016/j.ab.2011.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
181 Østergaard ME, Hrdlicka PJ. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev 2011;40:5771-88. [PMID: 21487621 DOI: 10.1039/c1cs15014f] [Cited by in Crossref: 195] [Cited by in F6Publishing: 168] [Article Influence: 17.7] [Reference Citation Analysis]
182 Morvan F, Debart F, Vasseur JJ. From anionic to cationic alpha-anomeric oligodeoxynucleotides. Chem Biodivers 2010;7:494-535. [PMID: 20232324 DOI: 10.1002/cbdv.200900220] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
183 Emehiser RG, Hall E, Guenther DC, Karmakar S, Hrdlicka PJ. Head-to-head comparison of LNA, MPγPNA, INA and Invader probes targeting mixed-sequence double-stranded DNA. Org Biomol Chem 2019;18:56-65. [PMID: 31681928 DOI: 10.1039/c9ob02111f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
184 Taniguchi Y, Uchida Y, Takaki T, Aoki E, Sasaki S. Recognition of CG interrupting site by W-shaped nucleoside analogs (WNA) having the pyrazole ring in an anti-parallel triplex DNA. Bioorg Med Chem 2009;17:6803-10. [PMID: 19736014 DOI: 10.1016/j.bmc.2009.08.040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
185 Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid "shape readout" by an aminosugar. Biochemistry 2011;50:9088-113. [PMID: 21863895 DOI: 10.1021/bi201077h] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 5.5] [Reference Citation Analysis]
186 Bhowmik D, Kumar GS. Interaction of 9-O-(ω-amino) alkyl ether berberine analogs with poly(dT)·poly(dA)*poly(dT) triplex and poly(dA)·poly(dT) duplex: a comparative study. Mol Biol Rep 2013;40:5439-50. [PMID: 23666107 DOI: 10.1007/s11033-013-2642-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
187 Schwalb NK, Temps F. On the structure and excited electronic state lifetimes of cytidine self-assemblies with extended hydrogen-bonding networks. Journal of Photochemistry and Photobiology A: Chemistry 2009;208:164-70. [DOI: 10.1016/j.jphotochem.2009.09.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
188 Lou C, Shelbourne M, Fox KR, Brown T. 2'-Aminoethoxy-2-amino-3-methylpyridine in triplex-forming oligonucleotides: high affinity, selectivity and resistance to enzymatic degradation. Chemistry 2011;17:14851-6. [PMID: 22127905 DOI: 10.1002/chem.201102287] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
189 Isogawa A, Fuchs RP, Fujii S. Versatile and efficient chromatin pull-down methodology based on DNA triple helix formation. Sci Rep 2018;8:5925. [PMID: 29651103 DOI: 10.1038/s41598-018-24417-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
190 Fujii A, Nakagawa O, Kishimoto Y, Nakatsuji Y, Nozaki N, Obika S. Oligonucleotides Containing Phenoxazine Artificial Nucleobases: Triplex-Forming Abilities and Fluorescence Properties. Chembiochem 2020;21:860-4. [PMID: 31568630 DOI: 10.1002/cbic.201900536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
191 Li N, Wang J, Ma K, Liang L, Mi L, Huang W, Ma X, Wang Z, Zheng W, Xu L, Chen JH, Yu Z. The dynamics of forming a triplex in an artificial telomere inferred by DNA mechanics. Nucleic Acids Res 2019;47:e86. [PMID: 31114915 DOI: 10.1093/nar/gkz464] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
192 Mahon AB, Miller SE, Joy ST, Arora PS. Rational Design Strategies for Developing Synthetic Inhibitors of Helical Protein Interfaces. In: Wendt MD, editor. Protein-Protein Interactions. Berlin: Springer Berlin Heidelberg; 2012. pp. 197-230. [DOI: 10.1007/978-3-642-28965-1_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
193 Hégarat N, Novopashina D, Fokina AA, Boutorine AS, Venyaminova AG, Praseuth D, François J. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation. FEBS J 2014;281:1417-31. [DOI: 10.1111/febs.12714] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
194 Nakano M, Tateishi-karimata H, Tanaka S, Sugimoto N. Affinity of Molecular Ions for DNA Structures Is Determined by Solvent-Accessible Surface Area. J Phys Chem B 2014;118:9583-94. [DOI: 10.1021/jp505107g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
195 Tähtinen V, Granqvist L, Virta P. Synthesis of C-5, C-2' and C-4'-neomycin-conjugated triplex forming oligonucleotides and their affinity to DNA-duplexes. Bioorg Med Chem 2015;23:4472-80. [PMID: 26118338 DOI: 10.1016/j.bmc.2015.06.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
196 Awad AM, Collazo MJ, Carpio K, Flores C, Bruice TC. A convenient synthesis of the cytidyl 3′-terminal monomer for solid-phase synthesis of RNG oligonucleotides. Tetrahedron Letters 2012;53:3792-4. [DOI: 10.1016/j.tetlet.2012.05.055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
197 Idili A, Amodio A, Vidonis M, Feinberg-Somerson J, Castronovo M, Ricci F. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Anal Chem 2014;86:9013-9. [PMID: 24947124 DOI: 10.1021/ac501418g] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 7.1] [Reference Citation Analysis]
198 Su Y, Li X, Lam KL, Cheung PCK. pH-sensitive PEG-coated hyper-branched β-d-glucan derivative as carrier for CpG oligodeoxynucleotide delivery. Carbohydr Polym 2020;246:116621. [PMID: 32747260 DOI: 10.1016/j.carbpol.2020.116621] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
199 Li Y, Syed J, Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chemical Biology 2016;23:1325-33. [DOI: 10.1016/j.chembiol.2016.09.011] [Cited by in Crossref: 105] [Cited by in F6Publishing: 97] [Article Influence: 17.5] [Reference Citation Analysis]
200 Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. Adv Sci (Weinh) 2021;8:2100328. [PMID: 34258165 DOI: 10.1002/advs.202100328] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
201 Akhter MZ, Rajeswari MR. Triplex forming oligonucleotides targeted to hmga1 selectively inhibit its expression and induce apoptosis in human cervical cancer. J Biomol Struct Dyn 2017;35:689-703. [PMID: 26923360 DOI: 10.1080/07391102.2016.1160257] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
202 Liu H, Shang X, Zhu H. LncRNA/DNA binding analysis reveals losses and gains and lineage specificity of genomic imprinting in mammals. Bioinformatics 2017;33:1431-6. [PMID: 28052924 DOI: 10.1093/bioinformatics/btw818] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
203 Mahtab M, Boavida A, Santos D, Pisani FM. The Genome Stability Maintenance DNA Helicase DDX11 and Its Role in Cancer. Genes (Basel) 2021;12:395. [PMID: 33802088 DOI: 10.3390/genes12030395] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
204 Srisawat C, Engelke DR. Selection of RNA aptamers that bind HIV-1 LTR DNA duplexes: strand invaders. Nucleic Acids Res 2010;38:8306-15. [PMID: 20693539 DOI: 10.1093/nar/gkq696] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
205 Denn B, Karmakar S, Guenther DC, Hrdlicka PJ. Sandwich assay for mixed-sequence recognition of double-stranded DNA: invader-based detection of targets specific to foodborne pathogens. Chem Commun (Camb) 2013;49:9851-3. [PMID: 24036937 DOI: 10.1039/c3cc45705b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
206 Hari Y, Obika S, Imanishi T. Towards the Sequence-Selective Recognition of Double-Stranded DNA Containing Pyrimidine-Purine Interruptions by Triplex-Forming Oligonucleotides. Eur J Org Chem 2012;2012:2875-87. [DOI: 10.1002/ejoc.201101821] [Cited by in Crossref: 50] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
207 Kolganova NA, Shchyolkina AK, Chudinov AV, Zasedatelev AS, Florentiev VL, Timofeev EN. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides. Nucleic Acids Res 2012;40:8175-85. [PMID: 22641847 DOI: 10.1093/nar/gks410] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
208 Novopashina DS, Siniakov AN, Riabinin VA, Perrouault L, Giovannangeli C, Venyaminova AG, Butorin AS. [Oligo(2'-O-Methylribonucleotides) and their derivatives: IV. Conjugates of oligo(2'-O-methylribonucleotides) with minor groove binders and intercalators: synthesis, properties and application]. Bioorg Khim 2013;39:159-74. [PMID: 23964516 DOI: 10.1134/s1068162013010081] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
209 Karmakar S, Anderson BA, Rathje RL, Andersen S, Jensen TB, Nielsen P, Hrdlicka PJ. High-affinity DNA targeting using readily accessible mimics of N2'-functionalized 2'-amino-α-L-LNA. J Org Chem 2011;76:7119-31. [PMID: 21827174 DOI: 10.1021/jo201095p] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
210 Kaura M, Kumar P, Hrdlicka PJ. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers. J Org Chem 2014;79:6256-68. [PMID: 24933409 DOI: 10.1021/jo500994c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
211 Mozafari N, Umek T. Assessing Oligonucleotide Binding to Double-Stranded DNA. Methods Mol Biol 2019;2036:91-112. [PMID: 31410792 DOI: 10.1007/978-1-4939-9670-4_5] [Reference Citation Analysis]
212 Ejlersen M, Langkjær N, Wengel J. 3'-Pyrene-modified unlocked nucleic acids: synthesis, fluorescence properties and a surprising stabilization effect on duplexes and triplexes. Org Biomol Chem 2017;15:2073-85. [PMID: 28210721 DOI: 10.1039/c6ob02773c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Bhattacharyya J, Maiti S, Muhuri S, Nakano S, Miyoshi D, Sugimoto N. Effect of locked nucleic acid modifications on the thermal stability of noncanonical DNA structure. Biochemistry. 2011;50:7414-7425. [PMID: 21774551 DOI: 10.1021/bi200477g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
214 Xu N, Yang H, Cui M, Wan C, Liu S. High-performance liquid chromatography-electrospray ionization-mass spectrometry ligand fishing assay: a method for screening triplex DNA binders from natural plant extracts. Anal Chem 2012;84:2562-8. [PMID: 22220694 DOI: 10.1021/ac202796v] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
215 Esguerra M, Nilsson L, Villa A. Triple helical DNA in a duplex context and base pair opening. Nucleic Acids Res 2014;42:11329-38. [PMID: 25228466 DOI: 10.1093/nar/gku848] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
216 Guenther DC, Karmakar S, Hrdlicka PJ. Bulged Invader probes: activated duplexes for mixed-sequence dsDNA recognition with improved thermodynamic and kinetic profiles. Chem Commun (Camb) 2015;51:15051-4. [PMID: 26314212 DOI: 10.1039/c5cc06264k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
217 Guenther DC, Anderson GH, Karmakar S, Anderson BA, Didion BA, Guo W, Verstegen JP, Hrdlicka PJ. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications. Chem Sci 2015;6:5006-15. [PMID: 26240741 DOI: 10.1039/C5SC01238D] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
218 Karmakar S, Guenther DC, Hrdlicka PJ. Recognition of mixed-sequence DNA duplexes: design guidelines for invaders based on 2'-O-(pyren-1-yl)methyl-RNA monomers. J Org Chem 2013;78:12040-8. [PMID: 24195730 DOI: 10.1021/jo402085v] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
219 Maji J, Bhattacharjee SM. Efimov effect of triple-stranded DNA: Real-space renormalization group and zeros of the partition function. Phys Rev E 2012;86. [DOI: 10.1103/physreve.86.041147] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
220 Hnedzko D, Cheruiyot SK, Rozners E. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA. Curr Protoc Nucleic Acid Chem 2014;58:4.60.1-23. [PMID: 25199637 DOI: 10.1002/0471142700.nc0460s58] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
221 Rigoli JW, Østergaard ME, Canady KM, Guenther DC, Hrdlicka PJ. Selective deacylation of peracylated ribonucleosides. Tetrahedron Letters 2009;50:1751-3. [DOI: 10.1016/j.tetlet.2009.01.147] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
222 Solé A, Delagoutte E, Ciudad CJ, Noé V, Alberti P. Polypurine reverse-Hoogsteen (PPRH) oligonucleotides can form triplexes with their target sequences even under conditions where they fold into G-quadruplexes. Sci Rep 2017;7:39898. [PMID: 28067256 DOI: 10.1038/srep39898] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
223 Li W, Wang Y, Xiao Y, Li M, Liu Q, Liang L, Xie W, Wang D, Guan X, Wang L. Simultaneous Dual-Site Identification of 5mC/8oG in DNA Triplex Using a Nanopore Sensor. ACS Appl Mater Interfaces 2022. [PMID: 35816657 DOI: 10.1021/acsami.2c08478] [Reference Citation Analysis]
224 van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis. 2010;31:1913-1921. [PMID: 20837599 DOI: 10.1093/carcin/bgq187] [Cited by in Crossref: 211] [Cited by in F6Publishing: 195] [Article Influence: 17.6] [Reference Citation Analysis]
225 Govan JM, Uprety R, Hemphill J, Lively MO, Deiters A. Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. ACS Chem Biol 2012;7:1247-56. [PMID: 22540192 DOI: 10.1021/cb300161r] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 5.5] [Reference Citation Analysis]
226 Birkedal H, Nielsen PE. Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA). Artif DNA PNA XNA 2011;2:23-32. [PMID: 21686249 DOI: 10.4161/adna.2.1.15553] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
227 Pingoud A, Wende W. Generation of Novel Nucleases with Extended Specificity by Rational and Combinatorial Strategies. ChemBioChem 2011;12:1495-500. [DOI: 10.1002/cbic.201100055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
228 Kumar P, Baral B, Anderson BA, Guenther DC, Østergaard ME, Sharma PK, Hrdlicka PJ. C5-alkynyl-functionalized α-L-LNA: synthesis, thermal denaturation experiments and enzymatic stability. J Org Chem 2014;79:5062-73. [PMID: 24797769 DOI: 10.1021/jo5006153] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
229 Ghidini A, Bergquist H, Murtola M, Punga T, Zain R, Strömberg R. Clamping of RNA with PNA enables targeting of microRNA. Org Biomol Chem 2016;14:5210-3. [PMID: 27203783 DOI: 10.1039/c6ob00516k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
230 Kaluzhny DN, Borisova OF, Shchyolkina AK. Diverse modes of 5'-[4-(aminoiminomethyl)phenyl]-[2,2'-bifuran]-5-carboximidamide (DB832) interaction with multi-stranded DNA structures. Biopolymers 2010;93:8-20. [PMID: 19642208 DOI: 10.1002/bip.21287] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
231 Curtis EA, Liu DR. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats. RNA Biol 2014;11:682-92. [PMID: 24824832 DOI: 10.4161/rna.28798] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
232 Szabat M, Kierzek E, Kierzek R. Modified RNA triplexes: Thermodynamics, structure and biological potential. Sci Rep 2018;8:13023. [PMID: 30158667 DOI: 10.1038/s41598-018-31387-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
233 Duskova K, Lejault P, Benchimol É, Guillot R, Britton S, Granzhan A, Monchaud D. DNA Junction Ligands Trigger DNA Damage and Are Synthetic Lethal with DNA Repair Inhibitors in Cancer Cells. J Am Chem Soc 2020;142:424-35. [PMID: 31833764 DOI: 10.1021/jacs.9b11150] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
234 Karmakar S, Guenther DC, Gibbons BC, Hrdlicka PJ. Recognition of mixed-sequence DNA using double-stranded probes with interstrand zipper arrangements of O2'-triphenylene- and coronene-functionalized RNA monomers. Org Biomol Chem 2017;15:9362-71. [PMID: 29090304 DOI: 10.1039/c7ob01920c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
235 Pont I, González-garcía J, Inclán M, Reynolds M, Delgado-pinar E, Albelda MT, Vilar R, García-españa E. Aza-Macrocyclic Triphenylamine Ligands for G-Quadruplex Recognition. Chem Eur J 2018;24:10850-8. [DOI: 10.1002/chem.201802077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
236 Maji J, Seno F, Trovato A, Bhattacharjee SM. Bubble-bound state of triple-stranded DNA: Efimov physics in DNA with repulsion. J Stat Mech 2017;2017:073203. [DOI: 10.1088/1742-5468/aa75dc] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
237 Torigoe H, Sasaki K, Katayama T. Thermodynamic and Kinetic Effects of Morpholino Modification on Pyrimidine Motif Triplex Nucleic Acid Formation under Physiological Condition. Journal of Biochemistry 2009;146:173-83. [DOI: 10.1093/jb/mvp059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
238 Maji J, Bhattacharjee SM, Seno F, Trovato A. Melting behavior and different bound states in three-stranded DNA models. Phys Rev E Stat Nonlin Soft Matter Phys 2014;89:012121. [PMID: 24580186 DOI: 10.1103/PhysRevE.89.012121] [Cited by in Crossref: 7] [Article Influence: 0.9] [Reference Citation Analysis]
239 Lee S, Brown A, Pitt WR, Higueruelo AP, Gong S, Bickerton GR, Schreyer A, Tanramluk D, Baylay A, Blundell TL. Structural interactomics: informatics approaches to aid the interpretation of genetic variation and the development of novel therapeutics. Mol BioSyst 2009;5:1456. [DOI: 10.1039/b906402h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
240 Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017;56:15210-33. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Cited by in Crossref: 141] [Cited by in F6Publishing: 123] [Article Influence: 28.2] [Reference Citation Analysis]
241 Jenjaroenpun P, Kuznetsov VA. TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 2009;10 Suppl 3:S9. [PMID: 19958507 DOI: 10.1186/1471-2164-10-S3-S9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
242 Alberti E, Zampakou M, Donghi D. Covalent and non-covalent binding of metal complexes to RNA. Journal of Inorganic Biochemistry 2016;163:278-91. [DOI: 10.1016/j.jinorgbio.2016.04.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
243 Kolevzon N, Yavin E. Site-Specific DNA Photocleavage and Photomodulation by Oligonucleotide Conjugates. Oligonucleotides 2010;20:263-75. [DOI: 10.1089/oli.2010.0247] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
244 Kanamori T, Masaki Y, Mizuta M, Tsunoda H, Ohkubo A, Sekine M, Seio K. DNA duplexes and triplex-forming oligodeoxynucleotides incorporating modified nucleosides forming stable and selective triplexes. Org Biomol Chem 2012;10:1007-13. [PMID: 22146807 DOI: 10.1039/c1ob06411h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]