BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gulston M, de Lara C, Jenner T, Davis E, O'Neill P. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res 2004;32:1602-9. [PMID: 15004247 DOI: 10.1093/nar/gkh306] [Cited by in Crossref: 150] [Cited by in F6Publishing: 157] [Article Influence: 7.9] [Reference Citation Analysis]
Number Citing Articles
1 Jun YW, Kool ET. Chemical Tools for the Study of DNA Repair. Acc Chem Res 2022;55:3495-506. [PMID: 36355579 DOI: 10.1021/acs.accounts.2c00608] [Reference Citation Analysis]
2 Zadneprianetc M, Boreyko A, Jezkova L, Falk M, Ryabchenko A, Hramco T, Krupnova M, Kulikova E, Pavlova A, Shamina D, Smirnova E, Krasavin E. Clustered DNA Damage Formation in Human Cells after Exposure to Low- and Intermediate-Energy Accelerated Heavy Ions. Phys Part Nuclei Lett 2022;19:440-50. [DOI: 10.1134/s1547477122040227] [Reference Citation Analysis]
3 Nakano T, Akamatsu K, Tsuda M, Tujimoto A, Hirayama R, Hiromoto T, Tamada T, Ide H, Shikazono N. Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: Visualization and analysis with atomic force microscopy. Proc Natl Acad Sci U S A 2022;119:e2119132119. [PMID: 35324325 DOI: 10.1073/pnas.2119132119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Buck J, Bowden N, Endersby R. Cancer therapies inducing DNA damage. Epigenetics and DNA Damage 2022. [DOI: 10.1016/b978-0-323-91081-1.00014-5] [Reference Citation Analysis]
5 Naumenko NV, Petruseva IO, Lavrik OI. Bulky Adducts in Clustered DNA Lesions: Causes of Resistance to the NER System. Acta Naturae 2022;14:38-49. [PMID: 36694906 DOI: 10.32607/actanaturae.11741] [Reference Citation Analysis]
6 Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021;66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021;97:1229-40. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Karwowski BT. (5'S) 5',8-Cyclo-2'-Deoxyadenosine Cannot Stop BER. Clustered DNA Lesion Studies. Int J Mol Sci 2021;22:5934. [PMID: 34072994 DOI: 10.3390/ijms22115934] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Bhartiya A, Batey D, Cipiccia S, Shi X, Rau C, Botchway S, Yusuf M, Robinson IK. X-ray Ptychography Imaging of Human Chromosomes After Low-dose Irradiation. Chromosome Res 2021;29:107-26. [PMID: 33786705 DOI: 10.1007/s10577-021-09660-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Pearson DD, Provencher L, Brownlee PM, Goodarzi AA. Modern sources of environmental ionizing radiation exposure and associated health consequences. Genome Stability 2021. [DOI: 10.1016/b978-0-323-85679-9.00032-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Jakob B, Dubiak-Szepietowska M, Janiel E, Schmidt A, Durante M, Taucher-Scholz G. Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci Rep 2020;10:1443. [PMID: 31996740 DOI: 10.1038/s41598-020-58084-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
12 Elbakrawy EM, Hill MA, Kadhim MA. Radiation-induced Chromosome Instability: The Role of Dose and Dose Rate. Genome Integr 2019;10:3. [PMID: 31897286 DOI: 10.4103/genint.genint_5_19] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Zheng Y, Sanche L. Clustered DNA Damages induced by 0.5 to 30 eV Electrons. Int J Mol Sci 2019;20:E3749. [PMID: 31370253 DOI: 10.3390/ijms20153749] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
14 Makurat S, Spisz P, Kozak W, Rak J, Zdrowowicz M. 5-Iodo-4-thio-2'-Deoxyuridine as a Sensitizer of X-ray Induced Cancer Cell Killing. Int J Mol Sci 2019;20:E1308. [PMID: 30875879 DOI: 10.3390/ijms20061308] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
15 Kohutova A, Raška J, Kruta M, Seneklova M, Barta T, Fojtik P, Jurakova T, Walter CA, Hampl A, Dvorak P, Rotrekl V. Ligase 3–mediated end‐joining maintains genome stability of human embryonic stem cells. FASEB j 2019;33:6778-88. [DOI: 10.1096/fj.201801877rr] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Abramenkovs A, Stenerlöw B. Removal of heat-sensitive clustered damaged DNA sites is independent of double-strand break repair. PLoS One 2018;13:e0209594. [PMID: 30592737 DOI: 10.1371/journal.pone.0209594] [Reference Citation Analysis]
17 Chatzipapas KP, Papadimitroulas P, Obeidat M, McConnell KA, Kirby N, Loudos G, Papanikolaou N, Kagadis GC. Quantification of DNA double-strand breaks using Geant4-DNA. Med Phys 2019;46:405-13. [PMID: 30418675 DOI: 10.1002/mp.13290] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
18 Laverty DJ, Greenberg MM. Expanded Substrate Scope of DNA Polymerase θ and DNA Polymerase β: Lyase Activity on 5'-Overhangs and Clustered Lesions. Biochemistry 2018;57:6119-27. [PMID: 30299084 DOI: 10.1021/acs.biochem.8b00911] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
19 Yang K, Greenberg MM. Enhanced Cleavage at Abasic Sites within Clustered Lesions in Nucleosome Core Particles. Chembiochem 2018;19:2061-5. [PMID: 30043401 DOI: 10.1002/cbic.201800338] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
20 Luo J, Song Z, Ning J, Cheng Y, Wang Y, Cui F, Shen Y, Wang M. The ethanol-induced global alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance. Appl Microbiol Biotechnol 2018;102:9331-50. [DOI: 10.1007/s00253-018-9301-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
21 Zheng L, Greenberg MM. Traceless Tandem Lesion Formation in DNA from a Nitrogen-Centered Purine Radical. J Am Chem Soc 2018;140:6400-7. [PMID: 29738242 DOI: 10.1021/jacs.8b02828] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
22 Hegde ML, Dutta A, Yang C, Mantha AK, Hegde PM, Pandey A, Sengupta S, Yu Y, Calsou P, Chen D, Lees-Miller SP, Mitra S. Scaffold attachment factor A (SAF-A) and Ku temporally regulate repair of radiation-induced clustered genome lesions. Oncotarget 2016;7:54430-44. [PMID: 27303920 DOI: 10.18632/oncotarget.9914] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
23 Hill MA. Track to the future: historical perspective on the importance of radiation track structure and DNA as a radiobiological target. Int J Radiat Biol 2018;94:759-68. [PMID: 29219655 DOI: 10.1080/09553002.2017.1387304] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
24 Shah MA, Zhang X, Rossin R, Robillard MS, Fisher DR, Bueltmann T, Hoeben FJM, Quinn TP. Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using α-Particle Radiation. Bioconjugate Chem 2017;28:3007-15. [DOI: 10.1021/acs.bioconjchem.7b00612] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
25 Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017;2017:1641845. [PMID: 29181193 DOI: 10.1155/2017/1641845] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
26 Fasshauer M, Krüwel T, Zapf A, Stahnke VC, Rave-fränk M, Staab W, Sohns JM, Steinmetz M, Unterberg-buchwald C, Schuster A, Ritter C, Lotz J. Absence of DNA double-strand breaks in human peripheral blood mononuclear cells after 3 Tesla magnetic resonance imaging assessed by γH2AX flow cytometry. Eur Radiol 2018;28:1149-56. [DOI: 10.1007/s00330-017-5056-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
27 Kejnovská I, Bednárová K, Renciuk D, Dvoráková Z, Školáková P, Trantírek L, Fiala R, Vorlícková M, Sagi J. Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res 2017;45:4294-305. [PMID: 28369584 DOI: 10.1093/nar/gkx191] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
28 Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv 2018;15:185-96. [PMID: 28893110 DOI: 10.1080/17425247.2018.1378180] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
29 Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017;9:E91. [PMID: 28718816 DOI: 10.3390/cancers9070091] [Cited by in Crossref: 91] [Cited by in F6Publishing: 94] [Article Influence: 15.2] [Reference Citation Analysis]
30 Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radical Biology and Medicine 2017;107:125-35. [DOI: 10.1016/j.freeradbiomed.2016.12.008] [Cited by in Crossref: 137] [Cited by in F6Publishing: 118] [Article Influence: 22.8] [Reference Citation Analysis]
31 Sayed AEH, Mitani H. Immunostaining of UVA-induced DNA damage in erythrocytes of medaka (Oryzias latipes). J Photochem Photobiol B 2017;171:90-5. [PMID: 28482225 DOI: 10.1016/j.jphotobiol.2017.04.032] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
32 Biechonski S, Yassin M, Milyavsky M. DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis 2017;38:367-77. [PMID: 28334174 DOI: 10.1093/carcin/bgx002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
33 Shao Y, Dong Y, Hunting D, Zheng Y, Sanche L. Unified Mechanism for the Generation of Isolated and Clustered DNA Damages by a Single Low Energy (5–10 eV) Electron. J Phys Chem C 2017;121:2466-72. [DOI: 10.1021/acs.jpcc.6b12110] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
34 Banerjee S, Chakraborty S, Jacinto MP, Paul MD, Balster MV, Greenberg MM. Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles. Biochemistry 2017;56:14-21. [PMID: 28005342 DOI: 10.1021/acs.biochem.6b01144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
35 Shiraishi I, Shikazono N, Suzuki M, Fujii K, Yokoya A. Efficiency of radiation-induced base lesion excision and the order of enzymatic treatment. Int J Radiat Biol 2017;93:295-302. [PMID: 27707033 DOI: 10.1080/09553002.2017.1239849] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
36 Nikitaki Z, Nikolov V, Mavragani IV, Plante I, Emfietzoglou D, Iliakis G, Georgakilas AG. Non-DSB clustered DNA lesions. Does theory colocalize with the experiment? Radiation Physics and Chemistry 2016;128:26-35. [DOI: 10.1016/j.radphyschem.2016.06.020] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
37 Singatulina AS, Pestryakov PE. Mechanisms of DNA repair in mitochondria. Biopolym Cell 2016;32:245-261. [DOI: 10.7124/bc.000927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
38 Hill MA, O'Neill P, McKenna WG. Comments on potential health effects of MRI-induced DNA lesions: quality is more important to consider than quantity. Eur Heart J Cardiovasc Imaging 2016;17:1230-8. [PMID: 27550664 DOI: 10.1093/ehjci/jew163] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
39 Zálešák J, Constant JF, Jourdan M. Nuclear Magnetic Resonance Solution Structure of DNA Featuring Clustered 2'-Deoxyribonolactone and 8-Oxoguanine Lesions. Biochemistry 2016;55:3899-906. [PMID: 27322640 DOI: 10.1021/acs.biochem.6b00396] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
40 Lee WH, Nguyen PK, Fleischmann D, Wu JC. DNA damage-associated biomarkers in studying individual sensitivity to low-dose radiation from cardiovascular imaging. Eur Heart J 2016;37:3075-80. [PMID: 27272147 DOI: 10.1093/eurheartj/ehw206] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
41 Churchill CD, Eriksson LA, Wetmore SD. DNA Distortion Caused by Uracil-Containing Intrastrand Cross-Links. J Phys Chem B 2016;120:1195-204. [PMID: 26830475 DOI: 10.1021/acs.jpcb.5b10381] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
42 Georgantzoglou A, Merchant MJ, Jeynes JC, Mayhead N, Punia N, Butler RE, Jena R. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams. Front Oncol 2015;5:305. [PMID: 26835414 DOI: 10.3389/fonc.2015.00305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
43 Goodarzi A, Anikin A, Pearson D. Environmental Sources of Ionizing Radiation and Their Health Consequences. Genome Stability 2016. [DOI: 10.1016/b978-0-12-803309-8.00033-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
44 Eccles LJ, Menoni H, Angelov D, Lomax ME, O'Neill P. Efficient cleavage of single and clustered AP site lesions within mono-nucleosome templates by CHO-K1 nuclear extract contrasts with retardation of incision by purified APE1. DNA Repair (Amst) 2015;35:27-36. [PMID: 26439176 DOI: 10.1016/j.dnarep.2015.08.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
45 Gustafsson A, Hartman T, Stenerlöw B. Formation and repair of clustered damaged DNA sites in high LET irradiated cells. International Journal of Radiation Biology 2015;91:820-6. [DOI: 10.3109/09553002.2015.1068463] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
46 Lebedeva NA, Anarbaev RO, Sukhanova M, Vasil'eva IA, Rechkunova NI, Lavrik OI. Poly(ADP-ribose)polymerase 1 stimulates the AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. Biosci Rep 2015;35:e00230. [PMID: 26181362 DOI: 10.1042/BSR20140192] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
47 Karwowski BT, Bellon S, O'Neill P, Lomax ME, Cadet J. Effects of (5'S)-5',8-cyclo-2'-deoxyadenosine on the base excision repair of oxidatively generated clustered DNA damage. A biochemical and theoretical study. Org Biomol Chem 2014;12:8671-82. [PMID: 25253544 DOI: 10.1039/c4ob01089b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
48 Ikhtiar AM. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization. International Journal of Radiation Biology 2015;91:562-7. [DOI: 10.3109/09553002.2015.1027422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
49 Tsai JY, Chen FH, Hsieh TY, Hsiao YY. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. J Radiat Res 2015;56:691-9. [PMID: 25902742 DOI: 10.1093/jrr/rrv025] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
50 Reynolds P, Cooper S, Lomax M, O'Neill P. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res 2015;43:4028-38. [PMID: 25813046 DOI: 10.1093/nar/gkv250] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 5.4] [Reference Citation Analysis]
51 Kutuzov MM, Khodyreva SN, Ilina ES, Sukhanova MV, Amé JC, Lavrik OI. Interaction of PARP-2 with AP site containing DNA. Biochimie 2015;112:10-9. [PMID: 25724268 DOI: 10.1016/j.biochi.2015.02.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
52 Taleei R, Girard PM, Nikjoo H. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality. Mutat Res Genet Toxicol Environ Mutagen 2015;779:5-14. [PMID: 25813721 DOI: 10.1016/j.mrgentox.2015.01.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
53 Kouass Sahbani S, Sanche L, Cloutier P, Bass AD, Hunting DJ. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons. J Phys Chem B 2014;118:13123-31. [PMID: 25325149 DOI: 10.1021/jp508170c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
54 Kutuzov MM, Khodyreva SN, Schreiber V, Lavrik OI. Role of PARP2 in DNA repair. Mol Biol 2014;48:485-95. [DOI: 10.1134/s0026893314040062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
55 Kouass Sahbani S, Rezaee M, Cloutier P, Sanche L, Hunting DJ. Non-DSB clustered DNA lesions induced by ionizing radiation are largely responsible for the loss of plasmid DNA functionality in the presence of cisplatin. Chem Biol Interact 2014;217:9-18. [PMID: 24732435 DOI: 10.1016/j.cbi.2014.04.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
56 Laskaratou DA, Mavragani IV, Georgakilas AG. Inflammatory Pathways of Radiation-Induced Tissue Injury. Cancer and Inflammation Mechanisms 2014. [DOI: 10.1002/9781118826621.ch18] [Reference Citation Analysis]
57 Cunniffe S, O'Neill P, Greenberg MM, Lomax ME. Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions. Mutat Res 2014;762:32-9. [PMID: 24631220 DOI: 10.1016/j.mrfmmm.2014.02.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
58 Li Y, Reynolds P, O'Neill P, Cucinotta FA. Modeling damage complexity-dependent non-homologous end-joining repair pathway. PLoS One 2014;9:e85816. [PMID: 24520318 DOI: 10.1371/journal.pone.0085816] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
59 Srivastava NN, Shukla SK, Yashavarddhan M, Devi M, Tripathi RP, Gupta ML. Modification of radiation-induced DNA double strand break repair pathways by chemicals extracted from Podophyllum hexandrum : An in vitro study in human blood leukocytes: DNA Damage Protection by Podophyllum hexandrum. Environ Mol Mutagen 2014;55:436-48. [DOI: 10.1002/em.21853] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
60 Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol 2014;3:324. [PMID: 24459634 DOI: 10.3389/fonc.2013.00324] [Cited by in Crossref: 110] [Cited by in F6Publishing: 118] [Article Influence: 12.2] [Reference Citation Analysis]
61 Zálešák J, Lourdin M, Krejčί L, Constant JF, Jourdan M. Structure and dynamics of DNA duplexes containing a cluster of mutagenic 8-oxoguanine and abasic site lesions. J Mol Biol 2014;426:1524-38. [PMID: 24384094 DOI: 10.1016/j.jmb.2013.12.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
62 Saha J, Wang M, Cucinotta FA. Investigation of switch from ATM to ATR signaling at the sites of DNA damage induced by low and high LET radiation. DNA Repair (Amst) 2013;12:1143-51. [PMID: 24238855 DOI: 10.1016/j.dnarep.2013.10.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
63 Plante I, Ponomarev AL, Cucinotta FA. Calculation of the energy deposition in nanovolumes by protons and HZE particles: geometric patterns of initial distributions of DNA repair foci. Phys Med Biol 2013;58:6393-405. [PMID: 23999659 DOI: 10.1088/0031-9155/58/18/6393] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
64 Swindall AF, Stanley JA, Yang ES. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis? Cancers (Basel) 2013;5:943-58. [PMID: 24202328 DOI: 10.3390/cancers5030943] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 7.0] [Reference Citation Analysis]
65 Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 2013;25:578-85. [PMID: 23849504 DOI: 10.1016/j.clon.2013.06.007] [Cited by in Crossref: 361] [Cited by in F6Publishing: 381] [Article Influence: 36.1] [Reference Citation Analysis]
66 Franco R, Garcia-garcia A, Kryston TB, Georgakilas AG, Panayiotidis MI, Pappa A. Oxidative Stress and Redox Signaling in Carcinogenesis. Molecular Basis of Oxidative Stress 2013. [DOI: 10.1002/9781118355886.ch9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
67 Reynolds P, Botchway SW, Parker AW, O'Neill P. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage - when is a DSB not a DSB? Mutat Res 2013;756:14-20. [PMID: 23688615 DOI: 10.1016/j.mrgentox.2013.05.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
68 Kavanagh JN, Redmond KM, Schettino G, Prise KM. DNA double strand break repair: a radiation perspective. Antioxid Redox Signal 2013;18:2458-72. [PMID: 23311752 DOI: 10.1089/ars.2012.5151] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 5.5] [Reference Citation Analysis]
69 Strande NT, Waters CA, Ramsden DA. Resolution of complex ends by Nonhomologous end joining - better to be lucky than good? Genome Integr 2012;3:10. [PMID: 23276302 DOI: 10.1186/2041-9414-3-10] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
70 Grądzka I, Sochanowicz B, Brzóska K, Wójciuk G, Sommer S, Wojewódzka M, Gasińska A, Degen C, Jahreis G, Szumiel I. Cis-9,trans-11-conjugated linoleic acid affects lipid raft composition and sensitizes human colorectal adenocarcinoma HT-29 cells to X-radiation. Biochim Biophys Acta 2013;1830:2233-42. [PMID: 23116821 DOI: 10.1016/j.bbagen.2012.10.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
71 Reynolds P, Anderson JA, Harper JV, Hill MA, Botchway SW, Parker AW, O’Neill P. The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Res. 2012;40:10821-10831. [PMID: 23012265 DOI: 10.1093/nar/gks879] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 7.9] [Reference Citation Analysis]
72 Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res. 2012;40:10263-10273. [PMID: 22941639 DOI: 10.1093/nar/gks824] [Cited by in Crossref: 95] [Cited by in F6Publishing: 96] [Article Influence: 8.6] [Reference Citation Analysis]
73 Churchill CD, Eriksson LA, Wetmore SD. Formation mechanism and structure of a guanine-uracil DNA intrastrand cross-link. Chem Res Toxicol 2011;24:2189-99. [PMID: 22060045 DOI: 10.1021/tx2003239] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
74 Hada M, Huff JL, Patel ZS, Kawata T, Pluth JM, George KA, Cucinotta FA. AT cells are not radiosensitive for simple chromosomal exchanges at low dose. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2011;716:76-83. [DOI: 10.1016/j.mrfmmm.2011.08.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
75 Do TT, Tang VJ, Konigsfeld K, Aguilera JA, Perry CC, Milligan JR. Damage clusters after gamma irradiation of a nanoparticulate plasmid DNA peptide condensate. Radiat Environ Biophys 2012;51:43-52. [PMID: 21964719 DOI: 10.1007/s00411-011-0388-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
76 Kutuzov MM, Ilina ES, Sukhanova MV, Pyshnaya IA, Pyshnyi DV, Lavrik OI, Khodyreva SN. Interaction of poly(ADP-ribose) polymerase 1 with apurinic/apyrimidinic sites within clustered DNA damage. Biochemistry (Mosc) 2011;76:147-56. [PMID: 21568846 DOI: 10.1134/s0006297911010147] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
77 Denissova NG, Tereshchenko IV, Cui E, Stambrook PJ, Shao C, Tischfield JA. Ionizing radiation is a potent inducer of mitotic recombination in mouse embryonic stem cells. Mutat Res 2011;715:1-6. [PMID: 21802432 DOI: 10.1016/j.mrfmmm.2011.06.017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
78 Singh SK, Wang M, Staudt C, Iliakis G. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair. Nucleic Acids Res 2011;39:8416-29. [PMID: 21745815 DOI: 10.1093/nar/gkr463] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
79 Asaithamby A, Hu B, Delgado O, Ding LH, Story MD, Minna JD, Shay JW, Chen DJ. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture. Nucleic Acids Res 2011;39:5474-88. [PMID: 21421565 DOI: 10.1093/nar/gkr149] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
80 Das B, Bennett PV, Cutter NC, Sutherland JC, Sutherland BM. Melatonin protects human cells from clustered DNA damages, killing and acquisition of soft agar growth induced by X-rays or 970 MeV/n Fe ions. Int J Radiat Biol 2011;87:545-55. [PMID: 21401316 DOI: 10.3109/09553002.2011.560993] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
81 Sage E, Harrison L. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res 2011;711:123-33. [PMID: 21185841 DOI: 10.1016/j.mrfmmm.2010.12.010] [Cited by in Crossref: 168] [Cited by in F6Publishing: 171] [Article Influence: 12.9] [Reference Citation Analysis]
82 Yokoya A, Fujii K, Shikazono N, Ukai M. Spectroscopic Study of Radiation-Induced DNA Lesions and Their Susceptibility to Enzymatic Repair. Charged Particle and Photon Interactions with Matter 2010. [DOI: 10.1201/b10389-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
83 Eccles LJ, O'Neill P, Lomax ME. Delayed repair of radiation induced clustered DNA damage: friend or foe? Mutat Res 2011;711:134-41. [PMID: 21130102 DOI: 10.1016/j.mrfmmm.2010.11.003] [Cited by in Crossref: 165] [Cited by in F6Publishing: 154] [Article Influence: 12.7] [Reference Citation Analysis]
84 Asaithamby A, Chen DJ. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res. 2011;711:87-99. [PMID: 21126526 DOI: 10.1016/j.mrfmmm.2010.11.002] [Cited by in Crossref: 109] [Cited by in F6Publishing: 115] [Article Influence: 8.4] [Reference Citation Analysis]
85 Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, Lechman E, Hermans KG, Eppert K, Konovalova Z, Ornatsky O, Domany E, Meyn MS, Dick JE. A Distinctive DNA Damage Response in Human Hematopoietic Stem Cells Reveals an Apoptosis-Independent Role for p53 in Self-Renewal. Cell Stem Cell 2010;7:186-97. [DOI: 10.1016/j.stem.2010.05.016] [Cited by in Crossref: 197] [Cited by in F6Publishing: 185] [Article Influence: 15.2] [Reference Citation Analysis]
86 Harper JV, Anderson JA, O’neill P. Radiation induced DNA DSBs: Contribution from stalled replication forks? DNA Repair 2010;9:907-13. [DOI: 10.1016/j.dnarep.2010.06.002] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
87 Natarajan AT, Palitti F, Hill MA, Stevens DL, Ahnström G. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells. Mutat Res 2010;691:23-6. [PMID: 20600168 DOI: 10.1016/j.mrfmmm.2010.06.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
88 Mizukami-murata S, Iwahashi H, Kimura S, Nojima K, Sakurai Y, Saitou T, Fujii N, Murata Y, Suga S, Kitagawa K, Tanaka K, Endo S, Hoshi M. Genome-Wide Expression Changes in Saccharomyces cerevisiae in Response to High-LET Ionizing Radiation. Appl Biochem Biotechnol 2010;162:855-70. [DOI: 10.1007/s12010-009-8825-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
89 du Penhoat MA, Eschenbrenner A, Abel F, Boissiere A, Guigner JM, Chetioui A, Politis MF, Touati A, Sage E, Jenner TJ, Stevens DL, Hill MA. Double-strand break induction and repair in V79-4 hamster cells: the role of core ionisations, as probed by ultrasoft X-rays. Int J Radiat Biol 2010;86:205-19. [PMID: 20201649 DOI: 10.3109/09553000903419296] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
90 Peddi P, Loftin CW, Dickey JS, Hair JM, Burns KJ, Aziz K, Francisco DC, Panayiotidis MI, Sedelnikova OA, Bonner WM. DNA-PKcs deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells. Free Radic Biol Med. 2010;48:1435-1443. [PMID: 20193758 DOI: 10.1016/j.freeradbiomed.2010.02.033] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 4.2] [Reference Citation Analysis]
91 Guan L, Greenberg MM. DNA interstrand cross-link formation by the 1,4-dioxobutane abasic lesion. J Am Chem Soc 2009;131:15225-31. [PMID: 19807122 DOI: 10.1021/ja9061695] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 2.7] [Reference Citation Analysis]
92 Goodhead DT. Fifth Warren K. Sinclair Keynote Address: Issues in quantifying the effects of low-level radiation. Health Phys 2009;97:394-406. [PMID: 19820449 DOI: 10.1097/HP.0b013e3181ae8acf] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
93 Sczepanski JT, Jacobs AC, Van Houten B, Greenberg MM. Double-strand break formation during nucleotide excision repair of a DNA interstrand cross-link. Biochemistry 2009;48:7565-7. [PMID: 19606890 DOI: 10.1021/bi901006b] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 3.1] [Reference Citation Analysis]
94 Ayene IS, Koch CJ, Krisch RE. DNA strand breakage by bivalent metal ions and ionizing radiation. International Journal of Radiation Biology 2009;83:195-210. [DOI: 10.1080/09553000601146956] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
95 Ratnayake RK, Semenenko VA, Stewart RD. Retrospective analysis of double-strand break rejoining data collected using warm-lysis PFGE protocols. International Journal of Radiation Biology 2009;81:421-8. [DOI: 10.1080/09553000500156577] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
96 Leatherbarrow EL, Harper JV, Cucinotta FA, O'neill P. Induction and quantification of γ-H2AX foci following low and high LET-irradiation. International Journal of Radiation Biology 2009;82:111-8. [DOI: 10.1080/09553000600599783] [Cited by in Crossref: 151] [Cited by in F6Publishing: 126] [Article Influence: 10.8] [Reference Citation Analysis]
97 Bellon S, Shikazono N, Cunniffe S, Lomax M, O'Neill P. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Res 2009;37:4430-40. [PMID: 19468043 DOI: 10.1093/nar/gkp422] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
98 Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose gamma-irradiation. Nucleic Acids Res 2009;37:3912-23. [PMID: 19401436 DOI: 10.1093/nar/gkp237] [Cited by in Crossref: 137] [Cited by in F6Publishing: 142] [Article Influence: 9.8] [Reference Citation Analysis]
99 O'Neill P, Wardman P. Radiation chemistry comes before radiation biology. Int J Radiat Biol 2009;85:9-25. [PMID: 19205982 DOI: 10.1080/09553000802640401] [Cited by in Crossref: 124] [Cited by in F6Publishing: 98] [Article Influence: 8.9] [Reference Citation Analysis]
100 Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J Radiat Res 2009;50:27-36. [PMID: 19218779 DOI: 10.1269/jrr.08086] [Cited by in Crossref: 106] [Cited by in F6Publishing: 107] [Article Influence: 7.6] [Reference Citation Analysis]
101 Neijenhuis S, Verwijs-Janssen M, Kasten-Pisula U, Rumping G, Borgmann K, Dikomey E, Begg AC, Vens C. Mechanism of cell killing after ionizing radiation by a dominant negative DNA polymerase beta. DNA Repair (Amst) 2009;8:336-46. [PMID: 19059500 DOI: 10.1016/j.dnarep.2008.11.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
102 Natarajan AT, Palitti F. DNA repair and chromosomal alterations. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2008;657:3-7. [DOI: 10.1016/j.mrgentox.2008.08.017] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 4.7] [Reference Citation Analysis]
103 Ilina ES, Lavrik OI, Khodyreva SN. Ku antigen interacts with abasic sites. Biochim Biophys Acta 2008;1784:1777-85. [PMID: 18757043 DOI: 10.1016/j.bbapap.2008.08.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 2.4] [Reference Citation Analysis]
104 Malyarchuk S, Castore R, Harrison L. DNA repair of clustered lesions in mammalian cells: involvement of non-homologous end-joining. Nucleic Acids Res 2008;36:4872-82. [PMID: 18653525 DOI: 10.1093/nar/gkn450] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 3.9] [Reference Citation Analysis]
105 Natarajan AT, Berni A, Marimuthu KM, Palitti F. The type and yield of ionising radiation induced chromosomal aberrations depend on the efficiency of different DSB repair pathways in mammalian cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2008;642:80-5. [DOI: 10.1016/j.mrfmmm.2008.05.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 1.8] [Reference Citation Analysis]
106 Harrison J, Day P. Radiation doses and risks from internal emitters. J Radiol Prot 2008;28:137-59. [DOI: 10.1088/0952-4746/28/2/r01] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 3.2] [Reference Citation Analysis]
107 Hada M, Georgakilas AG. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res (Tokyo). 2008;49:203-210. [PMID: 18413977 DOI: 10.1269/jrr.07123] [Cited by in Crossref: 330] [Cited by in F6Publishing: 344] [Article Influence: 22.0] [Reference Citation Analysis]
108 Davis BJ, Havener JM, Ramsden DA. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining. Nucleic Acids Res 2008;36:3085-94. [PMID: 18397950 DOI: 10.1093/nar/gkn164] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 3.3] [Reference Citation Analysis]
109 Kaminskyy V, Kulachkovskyy O, Stoika R. A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters 2008;177:168-81. [DOI: 10.1016/j.toxlet.2008.01.009] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 2.9] [Reference Citation Analysis]
110 Paap B, Wilson DM 3rd, Sutherland BM. Human abasic endonuclease action on multilesion abasic clusters: implications for radiation-induced biological damage. Nucleic Acids Res 2008;36:2717-27. [PMID: 18353858 DOI: 10.1093/nar/gkn118] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 2.8] [Reference Citation Analysis]
111 Bruyneel F, Enaud E, Billottet L, Vanhulle S, Marchand-brynaert J. Regioselective Synthesis of 3-Hydroxyorthanilic Acid and Its Biotransformation into a Novel Phenoxazinone Dye by Use of Laccase. Eur J Org Chem 2008;2008:72-9. [DOI: 10.1002/ejoc.200700865] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 3.0] [Reference Citation Analysis]
112 Georgakilas AG. Processing of DNA damage clusters in human cells: current status of knowledge. Mol Biosyst. 2008;4:30-35. [PMID: 18075671 DOI: 10.1039/b713178j] [Cited by in Crossref: 99] [Cited by in F6Publishing: 101] [Article Influence: 6.2] [Reference Citation Analysis]
113 Mourgues S, Lomax ME, O'Neill P. Base excision repair processing of abasic site/single-strand break lesions within clustered damage sites associated with XRCC1 deficiency. Nucleic Acids Res 2007;35:7676-87. [PMID: 17982170 DOI: 10.1093/nar/gkm947] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
114 Regulus P, Duroux B, Bayle PA, Favier A, Cadet J, Ravanat JL. Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci U S A 2007;104:14032-7. [PMID: 17715301 DOI: 10.1073/pnas.0706044104] [Cited by in Crossref: 126] [Cited by in F6Publishing: 131] [Article Influence: 7.9] [Reference Citation Analysis]
115 Cunniffe SM, Lomax ME, O'Neill P. An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli. DNA Repair (Amst) 2007;6:1839-49. [PMID: 17704010 DOI: 10.1016/j.dnarep.2007.07.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
116 Molin M, Renault JP, Lagniel G, Pin S, Toledano M, Labarre J. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast. Free Radic Biol Med 2007;43:136-44. [PMID: 17561102 DOI: 10.1016/j.freeradbiomed.2007.04.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
117 Goodhead DT. Energy deposition stochastics and track structure: what about the target? Radiat Prot Dosimetry 2006;122:3-15. [PMID: 17276998 DOI: 10.1093/rpd/ncl498] [Cited by in Crossref: 128] [Cited by in F6Publishing: 134] [Article Influence: 8.0] [Reference Citation Analysis]
118 Prise KM, Burdak-rothkamm S, Folkard M, Kashino G, Shao C, Tartier L. New insights on radiation-induced bystander signalling and its relationship to DNA repair. International Congress Series 2007;1299:121-7. [DOI: 10.1016/j.ics.2006.10.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
119 von Sonntag C. Free-Radical-Induced DNA Damage as Approached by Quantum-Mechanical and Monte Carlo Calculations: An Overview from the Standpoint of an Experimentalist. Advances in Quantum Chemistry 2007. [DOI: 10.1016/s0065-3276(06)52002-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 1.5] [Reference Citation Analysis]
120 Couvé-privat S, Ishchenko AA, Laval J, Saparbaev M. Nucleotide Incision Repair: An Alternative and Ubiquitous Pathway to Handle Oxidative DNA Damage. Oxidative Damage to Nucleic Acids 2007. [DOI: 10.1007/978-0-387-72974-9_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
121 Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP. XRCC1 interactions with base excision repair DNA intermediates. DNA Repair (Amst) 2007;6:254-64. [PMID: 17118717 DOI: 10.1016/j.dnarep.2006.10.002] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 4.1] [Reference Citation Analysis]
122 Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol 2006;7:431-5. [PMID: 16648048 DOI: 10.1016/S1470-2045(06)70695-7] [Cited by in Crossref: 484] [Cited by in F6Publishing: 491] [Article Influence: 28.5] [Reference Citation Analysis]
123 Paul S, Gros L, Laval J, Sutherland BM. Expression of theE. coli fpg protein in CHO cells lowers endogenous oxypurine clustered damage levels and decreases accumulation of endogenousHprt mutations. Environ Mol Mutagen 2006;47:311-9. [DOI: 10.1002/em.20208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
124 Kang HM, Jang JJ, Langford C, Shin SH, Park SY, Chung YJ. DNA copy number alterations and expression of relevant genes in mouse thymic lymphomas induced by gamma-irradiation and N-methyl-N-nitrosourea. Cancer Genet Cytogenet 2006;166:27-35. [PMID: 16616109 DOI: 10.1016/j.cancergencyto.2005.08.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 0.8] [Reference Citation Analysis]
125 Prise KM, Folkard M, Kuosaite V, Tartier L, Zyuzikov N, Shao C. What role for DNA damage and repair in the bystander response? Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2006;597:1-4. [DOI: 10.1016/j.mrfmmm.2005.06.034] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 1.9] [Reference Citation Analysis]
126 Kaminskyy V, Lootsik M, Stoika R. Correlation of the cytotoxic activity of four different alkaloids, from Chelidonium majus (greater celandine), with their DNA intercalating properties and ability to induce breaks in the DNA of NK/Ly murine lymphoma cells. Open Life Sciences 2006;1:2-15. [DOI: 10.2478/s11535-006-0001-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.4] [Reference Citation Analysis]
127 . DNA and Double-Stranded Oligonucleotides. Free-Radical-Induced DNA Damage and Its Repair. Berlin: Springer Berlin Heidelberg; 2006. pp. 357-482. [DOI: 10.1007/3-540-30592-0_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
128 Bennett PV, Cuomo NL, Paul S, Tafrov ST, Sutherland BM. Endogenous DNA damage clusters in human skin, 3-D model, and cultured skin cells. Free Radic Biol Med 2005;39:832-9. [PMID: 16109312 DOI: 10.1016/j.freeradbiomed.2005.05.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 1.9] [Reference Citation Analysis]
129 Valentin J. Chapter 3. Ann ICRP 2005;35:41-60. [DOI: 10.1016/j.icrp.2005.11.003] [Reference Citation Analysis]
130 Valentin J. Chapters 6 and 7. Ann ICRP 2005;35:93-140. [DOI: 10.1016/j.icrp.2005.11.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
131 Audebert M, Salles B, Weinfeld M, Calsou P. Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol 2006;356:257-65. [PMID: 16364363 DOI: 10.1016/j.jmb.2005.11.028] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 4.2] [Reference Citation Analysis]
132 Foray N, Charvet A, Duchemin D, Favaudon V, Lavalette D. The repair rate of radiation-induced DNA damage: A stochastic interpretation based on the Gamma function. Journal of Theoretical Biology 2005;236:448-58. [DOI: 10.1016/j.jtbi.2005.03.027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 1.6] [Reference Citation Analysis]
133 Budworth H, Matthewman G, O'Neill P, Dianov GL. Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks. J Mol Biol 2005;351:1020-9. [PMID: 16054643 DOI: 10.1016/j.jmb.2005.06.069] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 1.9] [Reference Citation Analysis]
134 Grądzka I, Iwaneńko T. A non-radioactive, PFGE-based assay for low levels of DNA double-strand breaks in mammalian cells. DNA Repair 2005;4:1129-39. [DOI: 10.1016/j.dnarep.2005.06.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.3] [Reference Citation Analysis]
135 Parsons JL, Zharkov DO, Dianov GL. NEIL1 excises 3' end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1. Nucleic Acids Res 2005;33:4849-56. [PMID: 16129732 DOI: 10.1093/nar/gki816] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 3.0] [Reference Citation Analysis]
136 Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol 2005;6:520-8. [PMID: 15992701 DOI: 10.1016/S1470-2045(05)70246-1] [Cited by in Crossref: 253] [Cited by in F6Publishing: 269] [Article Influence: 14.1] [Reference Citation Analysis]
137 Yang N, Chaudhry MA, Wallace SS. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells. DNA Repair (Amst) 2006;5:43-51. [PMID: 16111924 DOI: 10.1016/j.dnarep.2005.07.003] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 5.1] [Reference Citation Analysis]
138 Hayata I. Chromosomal mutations by low dose radiation vs. those by other mutagenic factors. International Congress Series 2005;1276:17-20. [DOI: 10.1016/j.ics.2004.11.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]