BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: El-Awady RA, Dikomey E, Dahm-Daphi J. Heat effects on DNA repair after ionising radiation: hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements. Nucleic Acids Res. 2001;29:1960-1966. [PMID: 11328880 DOI: 10.1093/nar/29.9.1960] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Najafi A, Keykhaee M, Khorramdelazad H, Karimi MY, Nejatbakhsh Samimi L, Aghamohamadi N, Karimi M, Falak R, Khoobi M. Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomedicine & Pharmacotherapy 2022;153:113483. [DOI: 10.1016/j.biopha.2022.113483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021;40:197. [PMID: 34154610 DOI: 10.1186/s13046-021-02000-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
3 Ashour ME, Allam W, Elsayed W, Atteya R, Elserafy M, Magdeldin S, Hassan MK, El-Khamisy SF. High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice. Cancers (Basel) 2021;13:2315. [PMID: 34065967 DOI: 10.3390/cancers13102315] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Oei AL, Kok HP, Oei SB, Horsman MR, Stalpers LJA, Franken NAP, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020;163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 22.5] [Reference Citation Analysis]
5 Ihara M, Shichijo K, Kudo T, Ohtsuka K. Reactivation of heat-inactivated Ku proteins by heat shock cognate protein HSC73. Int J Hyperthermia 2019;36:438-43. [PMID: 30922135 DOI: 10.1080/02656736.2019.1587009] [Reference Citation Analysis]
6 Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. Ultrasound Med Biol 2019;45:1025-43. [PMID: 30773377 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
7 Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019;11:E60. [PMID: 30634444 DOI: 10.3390/cancers11010060] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 29.0] [Reference Citation Analysis]
8 Cheng X, Yong Y, Dai Y, Song X, Yang G, Pan Y, Ge C. Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment. Theranostics 2017;7:4087-98. [PMID: 29158812 DOI: 10.7150/thno.20548] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
9 Oei AL, Ahire VR, van Leeuwen CM, Ten Cate R, Stalpers LJA, Crezee J, Kok HP, Franken NAP. Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1-i. Int J Hyperthermia 2018;34:39-48. [PMID: 28540821 DOI: 10.1080/02656736.2017.1324642] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
10 Albuzaudi M, Eerikäinen T, Turunen O, Ghelawi M, El Haj Assad M, Tawalbeh M, Bedade D, Shamekh S. Effect of gamma irradiation and heat treatment on the artificial contamination of maize grains by Aspergillus flavus Link NRRL 5906. Journal of Stored Products Research 2017;71:57-63. [DOI: 10.1016/j.jspr.2017.01.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Mantso T, Goussetis G, Franco R, Botaitis S, Pappa A, Panayiotidis M. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin Cancer Biol 2016;37-38:96-105. [PMID: 27025900 DOI: 10.1016/j.semcancer.2016.03.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 5.8] [Reference Citation Analysis]
12 Ryabchenko NM, Rodionova NK, Sychevska IS, Muzalev II, Mykhailenko VM, Druzhina MO. Genotoxic effects of radiation and hyperthermia in linear mice with different radiation sensitivity. Cytol Genet 2013;47:39-43. [DOI: 10.3103/s0095452713010088] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
13 Bergs JW, Krawczyk PM, Borovski T, ten Cate R, Rodermond HM, Stap J, Medema JP, Haveman J, Essers J, van Bree C, Stalpers LJ, Kanaar R, Aten JA, Franken NA. Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. DNA Repair (Amst) 2013;12:38-45. [PMID: 23237939 DOI: 10.1016/j.dnarep.2012.10.008] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 3.6] [Reference Citation Analysis]
14 Wittlinger M, Grabenbauer GG, Sprung CN, Sauer R, Distel LVR. Time and dose-dependent activation of p53 serine 15 phosphorylation among cell lines with different radiation sensitivity. International Journal of Radiation Biology 2009;83:245-57. [DOI: 10.1080/09553000701275432] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
15 Lupu A, Nevo E, Zamorzaeva I, Korol A. Ecological–genetic feedback in DNA repair in wild barley, Hordeum spontaneum. Genetica 2006;127:121-32. [DOI: 10.1007/s10709-005-2611-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
16 Gulston M, de Lara C, Jenner T, Davis E, O'Neill P. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res 2004;32:1602-9. [PMID: 15004247 DOI: 10.1093/nar/gkh306] [Cited by in Crossref: 150] [Cited by in F6Publishing: 157] [Article Influence: 8.3] [Reference Citation Analysis]
17 Dahm-daphi J, Hubbe P. Recombination and Radiation-Induced Cancer. Mechanisms and Genetic Testing. Life Sciences and Radiation 2004. [DOI: 10.1007/978-3-642-18687-5_11] [Reference Citation Analysis]
18 Dikomey E, Borgmann K, Brammer I, Kasten-pisula U. Molecular mechanisms of individual radiosensitivity studied in normal diploid human fibroblasts. Toxicology 2003;193:125-35. [DOI: 10.1016/s0300-483x(03)00293-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 1.9] [Reference Citation Analysis]
19 El-Awady RA, Dikomey E, Dahm-Daphi J. Radiosensitivity of human tumour cells is correlated with the induction but not with the repair of DNA double-strand breaks. Br J Cancer 2003;89:593-601. [PMID: 12888835 DOI: 10.1038/sj.bjc.6601133] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 2.4] [Reference Citation Analysis]
20 Zeng ZC, Jiang GL, Wang GM, Tang ZY, Curran WJ, Iliakis G. DNA-PKcs subunits in radiosensitization by hyperthermia on hepatocellular carcinoma hepG2 cell line. World J Gastroenterol 2002; 8(5): 797-803 [PMID: 12378618 DOI: 10.3748/wjg.v8.i5.797] [Cited by in CrossRef: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]