BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ. Nitric oxide in the physiology and quality of fleshy fruits. J Exp Bot 2019;70:4405-17. [PMID: 31359063 DOI: 10.1093/jxb/erz350] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Sharafi Y, Jannatizadeh A, Fard JR, Aghdam MS. Melatonin treatment delays senescence and improves antioxidant potential of sweet cherry fruits during cold storage. Scientia Horticulturae 2021;288:110304. [DOI: 10.1016/j.scienta.2021.110304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
2 Ze Y, Gao H, Li T, Yang B, Jiang Y. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends in Food Science & Technology 2021;109:569-78. [DOI: 10.1016/j.tifs.2021.01.051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
3 Machado MR, Veiga JCD, Silveira NM, Seabra AB, Boza YEAG, Pelegrino MT, Cia P, Valentini SRDT, Bron IU. Nitric oxide supply reduces ethylene production, softening and weight loss in papaya fruit. Bragantia 2022;81:e1222. [DOI: 10.1590/1678-4499.20210109] [Reference Citation Analysis]
4 Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022;23:6646. [PMID: 35743084 DOI: 10.3390/ijms23126646] [Reference Citation Analysis]
5 Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021;10:775. [PMID: 34068211 DOI: 10.3390/antiox10050775] [Reference Citation Analysis]
6 Hancock JT, Veal D, Kolbert Z. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. Journal of Experimental Botany 2021;72:819-29. [DOI: 10.1093/jxb/eraa331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. J Exp Bot 2021;72:848-63. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 González-Gordo S, Rodríguez-Ruiz M, Paradela A, Ramos-Fernández A, Corpas FJ, Palma JM. Mitochondrial protein expression during sweet pepper (Capsicum annuum L.) fruit ripening: iTRAQ-based proteomic analysis and role of cytochrome c oxidase. J Plant Physiol 2022;274:153734. [PMID: 35667195 DOI: 10.1016/j.jplph.2022.153734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation. Plant J 2021;105:446-58. [PMID: 33274492 DOI: 10.1111/tpj.15112] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
10 Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez Del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021;22:4476. [PMID: 33922964 DOI: 10.3390/ijms22094476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Buet A, Steelheart C, Perini MA, Galatro A, Simontacchi M, Gergoff Grozeff GE. Nitric Oxide as a Key Gasotransmitter in Fruit Postharvest: An Overview. J Plant Growth Regul 2021;40:2286-302. [DOI: 10.1007/s00344-021-10428-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yang R, Lin X, Dou Y, Zhang W, Du H, Wan C, Chen J, Zhang L, Zhu L. Transcriptome profiling of postharvest kiwifruit in response to exogenous nitric oxide. Scientia Horticulturae 2021;277:109788. [DOI: 10.1016/j.scienta.2020.109788] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
13 Steffens CA, Miqueloto T, Fernandes RC, Demari CKP, Anami JM, Lugaresi A, Amarante CVTD. Treatment with nitric oxide preserves the quality of cold stored ‘Cripps Pink’ apples. Bragantia 2021;80:e5021. [DOI: 10.1590/1678-4499.20200494] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Li G, Qin B, Li S, Yin Y, Zhao J, An W, Cao Y, Mu Z. LbNR-Derived Nitric Oxide Delays Lycium Fruit Coloration by Transcriptionally Modifying Flavonoid Biosynthetic Pathway. Front Plant Sci 2020;11:1215. [PMID: 32903673 DOI: 10.3389/fpls.2020.01215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Pols S, Van de Poel B, Hertog M, Nicolaï B. The regulatory role of nitric oxide and its significance for future postharvest applications. Postharvest Biology and Technology 2022;188:111869. [DOI: 10.1016/j.postharvbio.2022.111869] [Reference Citation Analysis]
16 Pardo-Hernández M, López-Delacalle M, Rivero RM. ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants (Basel) 2020;9:E1078. [PMID: 33153156 DOI: 10.3390/antiox9111078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
17 Zhu L, Yang R, Sun Y, Zhang F, Du H, Zhang W, Wan C, Chen J. Nitric oxide maintains postharvest quality of navel orange fruit by reducing postharvest rotting during cold storage and enhancing antioxidant activity. Physiological and Molecular Plant Pathology 2021;113:101589. [DOI: 10.1016/j.pmpp.2020.101589] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
18 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
19 Sahu SK, Barman K, Singh AK. Nitric oxide application for postharvest quality retention of guava fruits. Acta Physiol Plant 2020;42. [DOI: 10.1007/s11738-020-03143-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
20 Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. J Exp Bot 2021;72:941-58. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
21 González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper (Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. Front Plant Sci 2020;11:485. [PMID: 32477380 DOI: 10.3389/fpls.2020.00485] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
22 Palma JM, Terán F, Contreras-Ruiz A, Rodríguez-Ruiz M, Corpas FJ. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020;9:E878. [PMID: 32957493 DOI: 10.3390/antiox9090878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Lopes-oliveira PJ, Oliveira HC, Kolbert Z, Freschi L, Loake G. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. Journal of Experimental Botany 2021;72:885-903. [DOI: 10.1093/jxb/eraa504] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Brouquisse R. Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany 2019;70:4319-22. [DOI: 10.1093/jxb/erz352] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Aghdam MS, Palma JM, Corpas FJ. NADPH as a quality footprinting in horticultural crops marketability. Trends in Food Science & Technology 2020;103:152-61. [DOI: 10.1016/j.tifs.2020.07.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
26 Ji Y, Wang A. Recent Advances in Phytohormone Regulation of Apple-Fruit Ripening. Plants (Basel) 2021;10:2061. [PMID: 34685870 DOI: 10.3390/plants10102061] [Reference Citation Analysis]
27 Zhang ZW, Liu H, Li H, Yang XY, Fu YF, Kang Q, Wang CQ, Yuan M, Chen YE, Yuan S. Beneficial Effects of Sodium Nitroprusside on the Aroma, Flavors, and Anthocyanin Accumulation in Blood Orange Fruits. Foods 2022;11:2218. [PMID: 35892802 DOI: 10.3390/foods11152218] [Reference Citation Analysis]
28 Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. Hortic Res 2021;8:71. [PMID: 33790257 DOI: 10.1038/s41438-021-00500-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
29 Solórzano E, Corpas FJ, González-gordo S, Palma JM. Reactive Oxygen Species (ROS) Metabolism and Nitric Oxide (NO) Content in Roots and Shoots of Rice (Oryza sativa L.) Plants under Arsenic-Induced Stress. Agronomy 2020;10:1014. [DOI: 10.3390/agronomy10071014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
30 Berger A, Boscari A, Puppo A, Brouquisse R, Loake G. Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation. Journal of Experimental Botany 2021;72:873-84. [DOI: 10.1093/jxb/eraa403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
31 Huang D, Tian W, Feng J, Zhu S. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit. Plant Physiology and Biochemistry 2020;151:60-8. [DOI: 10.1016/j.plaphy.2020.03.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Huang D, Wang Y, Zhang D, Dong Y, Meng Q, Zhu S, Zhang L. Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage. Postharvest Biology and Technology 2021;178:111546. [DOI: 10.1016/j.postharvbio.2021.111546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]