BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: González-Gordo S, Bautista R, Claros MG, Cañas A, Palma JM, Corpas FJ. Nitric oxide-dependent regulation of sweet pepper fruit ripening. J Exp Bot 2019;70:4557-70. [PMID: 31046097 DOI: 10.1093/jxb/erz136] [Cited by in Crossref: 32] [Cited by in F6Publishing: 41] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhu Y, Du M, Jiang X, Huang M, Zhao J. Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. IJMS 2022;23:11512. [DOI: 10.3390/ijms231911512] [Reference Citation Analysis]
2 Pols S, Van de Poel B, Hertog M, Nicolaï B. The regulatory role of nitric oxide and its significance for future postharvest applications. Postharvest Biology and Technology 2022;188:111869. [DOI: 10.1016/j.postharvbio.2022.111869] [Reference Citation Analysis]
3 González-Gordo S, Rodríguez-Ruiz M, Paradela A, Ramos-Fernández A, Corpas FJ, Palma JM. Mitochondrial protein expression during sweet pepper (Capsicum annuum L.) fruit ripening: iTRAQ-based proteomic analysis and role of cytochrome c oxidase. J Plant Physiol 2022;274:153734. [PMID: 35667195 DOI: 10.1016/j.jplph.2022.153734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Rezayian M, Ebrahimzadeh H, Niknam V. Metabolic and Physiological Changes Induced by Nitric Oxide and Its Impact on Drought Tolerance in Soybean. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10668-4] [Reference Citation Analysis]
5 González-gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper (Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. Front Plant Sci 2022;13:893376. [DOI: 10.3389/fpls.2022.893376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Kohli SK, Khanna K, Bhardwaj R, Corpas FJ, Ahmad P. Nitric oxide, salicylic acid and oxidative stress: Is it a perfect equilateral triangle? Plant Physiology and Biochemistry 2022. [DOI: 10.1016/j.plaphy.2022.05.017] [Reference Citation Analysis]
7 González-gordo S, Rodríguez-ruiz M, López-jaramillo J, Muñoz-vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants 2022;11:765. [DOI: 10.3390/antiox11040765] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Shen LY, Luo H, Wang XL, Wang XM, Qiu XJ, Liu H, Zhou SS, Jia KH, Nie S, Bao YT, Zhang RG, Yun QZ, Chai YH, Lu JY, Li Y, Zhao SW, Mao JF, Jia SG, Mao YM. Chromosome-Scale Genome Assembly for Chinese Sour Jujube and Insights Into Its Genome Evolution and Domestication Signature. Front Plant Sci 2021;12:773090. [PMID: 34899800 DOI: 10.3389/fpls.2021.773090] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Mukarram M, Khan MMA, Uddin M, Corpas FJ. Irradiated chitosan (ICH): an alternative tool to increase essential oil content in lemongrass (Cymbopogon flexuosus). Acta Physiol Plant 2022;44. [DOI: 10.1007/s11738-021-03335-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Hasan MM, Alharbi BM, Alhaithloul HAS, Abdulmajeed AM, Alghanem SM, Al-Mushhin AAM, Jahan MS, Corpas FJ, Fang XW, Soliman MH. Spermine-Mediated Tolerance to Selenium Toxicity in Wheat (Triticum aestivum L.) Depends on Endogenous Nitric Oxide Synthesis. Antioxidants (Basel) 2021;10:1835. [PMID: 34829706 DOI: 10.3390/antiox10111835] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Jabato FM, Córdoba-Caballero J, Rojano E, Romá-Mateo C, Sanz P, Pérez B, Gallego D, Seoane P, Ranea JAG, Perkins JR. Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite. Sci Rep 2021;11:15062. [PMID: 34301987 DOI: 10.1038/s41598-021-94343-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Buet A, Steelheart C, Perini MA, Galatro A, Simontacchi M, Gergoff Grozeff GE. Nitric Oxide as a Key Gasotransmitter in Fruit Postharvest: An Overview. J Plant Growth Regul 2021;40:2286-302. [DOI: 10.1007/s00344-021-10428-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kumar A, Kumar S, Anju T, Ramchiary N. Genetic, Epigenetic, and Hormonal Regulation of Fruit Development and Ripening in Capsicum L. Species. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 295-356. [DOI: 10.1002/9781119312994.apr0782] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mukarram M, Khan MMA, Corpas FJ. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J Hazard Mater 2021;412:125254. [PMID: 33550131 DOI: 10.1016/j.jhazmat.2021.125254] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
15 Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. J Exp Bot 2021;72:941-58. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
16 Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. Plant Cell Rep 2021;40:1395-414. [PMID: 33974111 DOI: 10.1007/s00299-021-02705-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
17 Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez Del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021;22:4476. [PMID: 33922964 DOI: 10.3390/ijms22094476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
18 Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ, Sperotto R. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. Plant Biol J 2021;23:39-49. [DOI: 10.1111/plb.13246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
19 Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. Journal of Hazardous Materials 2021;408:124820. [DOI: 10.1016/j.jhazmat.2020.124820] [Cited by in Crossref: 6] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
20 Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. Hortic Res 2021;8:71. [PMID: 33790257 DOI: 10.1038/s41438-021-00500-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ghosh A, Saha I, Debnath SC, Hasanuzzaman M, Adak MK. Chitosan and putrescine modulate reactive oxygen species metabolism and physiological responses during chili fruit ripening. Plant Physiol Biochem 2021;163:55-67. [PMID: 33812227 DOI: 10.1016/j.plaphy.2021.03.026] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. J Exp Bot 2021;72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Martínez-Ispizua E, Martínez-Cuenca MR, Marsal JI, Díez MJ, Soler S, Valcárcel JV, Calatayud Á. Bioactive Compounds and Antioxidant Capacity of Valencian Pepper Landraces. Molecules 2021;26:1031. [PMID: 33672083 DOI: 10.3390/molecules26041031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
24 Sánchez-McSweeney A, González-Gordo S, Aranda-Sicilia MN, Rodríguez-Rosales MP, Venema K, Palma JM, Corpas FJ. Loss of function of the chloroplast membrane K+/H+ antiporters AtKEA1 and AtKEA2 alters the ROS and NO metabolism but promotes drought stress resilience. Plant Physiol Biochem 2021;160:106-19. [PMID: 33485149 DOI: 10.1016/j.plaphy.2021.01.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
25 Siddiqui MW, Homa F, Lata D, Ahmad MS, Surabhi. Exogenous Nitric Oxide Delays Ripening and Maintains Postharvest Quality of Pointed Gourd During Storage. J Plant Growth Regul 2021;40:2371-8. [DOI: 10.1007/s00344-020-10270-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
27 Palma JM, Terán F, Contreras-Ruiz A, Rodríguez-Ruiz M, Corpas FJ. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020;9:E878. [PMID: 32957493 DOI: 10.3390/antiox9090878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
28 Li G, Qin B, Li S, Yin Y, Zhao J, An W, Cao Y, Mu Z. LbNR-Derived Nitric Oxide Delays Lycium Fruit Coloration by Transcriptionally Modifying Flavonoid Biosynthetic Pathway. Front Plant Sci 2020;11:1215. [PMID: 32903673 DOI: 10.3389/fpls.2020.01215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
29 Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ. Nitric oxide in the physiology and quality of fleshy fruits. J Exp Bot 2019;70:4405-17. [PMID: 31359063 DOI: 10.1093/jxb/erz350] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
30 Kim TJ, Hyeon H, Park NI, Yi TG, Lim SH, Park SY, Ha SH, Kim JK. A high-throughput platform for interpretation of metabolite profile data from pepper (Capsicum) fruits of 13 phenotypes associated with different fruit maturity states. Food Chem 2020;331:127286. [PMID: 32562978 DOI: 10.1016/j.foodchem.2020.127286] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
31 Huang D, Tian W, Feng J, Zhu S. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit. Plant Physiology and Biochemistry 2020;151:60-8. [DOI: 10.1016/j.plaphy.2020.03.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
32 Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 2020;399:123020. [PMID: 32526442 DOI: 10.1016/j.jhazmat.2020.123020] [Cited by in Crossref: 41] [Cited by in F6Publishing: 70] [Article Influence: 20.5] [Reference Citation Analysis]
33 Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H2S targets. Redox Biol 2020;34:101525. [PMID: 32505768 DOI: 10.1016/j.redox.2020.101525] [Cited by in Crossref: 41] [Cited by in F6Publishing: 59] [Article Influence: 20.5] [Reference Citation Analysis]
34 Calumpang CLF, Saigo T, Watanabe M, Tohge T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020;10:E209. [PMID: 32438728 DOI: 10.3390/metabo10050209] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
35 González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper (Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. Front Plant Sci 2020;11:485. [PMID: 32477380 DOI: 10.3389/fpls.2020.00485] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
36 Berger A, Guinand S, Boscari A, Puppo A, Brouquisse R. Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. New Phytol 2020;227:84-98. [PMID: 32003030 DOI: 10.1111/nph.16462] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
37 Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants (Basel) 2019;8:E641. [PMID: 31842380 DOI: 10.3390/antiox8120641] [Cited by in Crossref: 91] [Cited by in F6Publishing: 154] [Article Influence: 30.3] [Reference Citation Analysis]
38 Geng B, Huang D, Zhu S. Regulation of Hydrogen Sulfide Metabolism by Nitric Oxide Inhibitors and the Quality of Peaches during Cold Storage. Antioxidants (Basel) 2019;8:E401. [PMID: 31527494 DOI: 10.3390/antiox8090401] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
39 Rodríguez-Ruiz M, González-Gordo S, Cañas A, Campos MJ, Paradela A, Corpas FJ, Palma JM. Sweet Pepper (Capsicum annuum L.) Fruits Contain an Atypical Peroxisomal Catalase That is Modulated by Reactive Oxygen and Nitrogen Species. Antioxidants (Basel) 2019;8:E374. [PMID: 31487955 DOI: 10.3390/antiox8090374] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
40 Lokesh V, Manjunatha G, Hegde NS, Bulle M, Puthusseri B, Gupta KJ, Neelwarne B. Polyamine Induction in Postharvest Banana Fruits in Response to NO Donor SNP Occurs via l-Arginine Mediated Pathway and Not via Competitive Diversion of S-Adenosyl-l-Methionine. Antioxidants (Basel) 2019;8:E358. [PMID: 31480617 DOI: 10.3390/antiox8090358] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
41 Brouquisse R. Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany 2019;70:4319-22. [DOI: 10.1093/jxb/erz352] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
42 Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H2 S and NO in sweet pepper (Capsicum annuum L.) fruits. Physiol Plant 2020;168:278-88. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]